STATISTICAL METHODS FOR BUSINESS UNIT 3. DISCRETE PROBABILITY MODELS 3.1.- Bernoulli processes and related distributions. 3.1.1- Binomial model. 3.1.2- Geometric model. 3.2.- Hypergeometric model. 3.3.- Poisson model. Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business UNIT 3. OBJECTIVES • To identify key discrete probability models, realizing the assumptions they are based on. • To handle expressions of the expectation and the variance of the main models. • To calculate probabilities for the main models. Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business PROBABILITY MODELS • The behaviour of different random variables may exhibit common patterns in practice. • A probability model is a family of probability distributions indexed by a common set of parameters. UNIFORM MODEL a NORMAL MODEL b Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Bernoulli distribution Random experiment Success Random variable Failure 1 Probability 0 P(X=1)=p P(X=0)=q A SINGLE TRIAL p q = 1- p Characteristics: E(X)=p 0 1 X Var(X)=pq Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Bernoulli Process Each trial is a random experiment with two possible outcomes n independent trials are carried out. The n observations are mutually independient. The probability of success (p) is the same for all the trials. The assumptions of Bernoulli processes allow us to define several probability models: Binomial, Geometric, … Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Bernoulli Processes EXPERIMENT SUCCESS PROBABILITY OF SUCCESS NUMBER OF TRIALS Toss of a die “To get a 2” 1 p= 6 10 Study on job status “Employed” Employement rate Poll before a referendum Call for an interview “To vote YES” “To attend” 30 p=0.4 240 p 20 “Number of successes in n independent trials” B(n, p) Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Binomial model SUCCESS RV "k successes in n trials" XB(n, p) Probability P(X=k) No. Of sequences of n Trials with k successes C n,k k successes & (n-k) k n− k p (1− p ) =“success" ="failure" () n k n− k P ( X=k )= p (1− p) k Binomial distribution X: Number of successes in n trials. Probability function XB(n,p) n k n k P X k p 1 p k k 0,1,...,n Characteristics: E ( X )=np Var( X )=npq Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Some probability functions XB(n=6, p=0.2) XB(n=6, p=0.5) XB(n=15, p=0.2) XB(n=15, p=0.5) Geometric model EVENT “No. of trials until the 1st. Success" (k-1) times RV X G(p) Probability P(X=k) and 1 k−1 (1− p) p =“success" ="failure" Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Geometric distribution X: Number of trials until the first success. P ( X=k )=(1− p) k−1 p XG(p) k=1, .. . ,n,. .. 1 E ( X )= p q Var ( X )= 2 p Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Hypergeometric model =“sucess" ="failure" X “Number of in the sample” How many samples of size n? C N,n M N-M n How many samples of size n contain k success? C M,k C N− M,n−k P ( X=k )= C M,k C N− M,n−k SAMPLE (without replacement!) C N,n = ( )( ) () M k N −M n−k N n Hypergeometric distribution M N M k n k Probability function P(X k ) N n k= máx0, n-(N-M), …, mín(M,n) Characteristics: M E ( X )=n =np N M ( N −M )( N −n) ( N −n) Var ( X )=n =npq 2 ( N −1) N ( N −1) Convergence H ( N,M,n )→ B(n,p ) Correction factor N > 50 and n <0.1N Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Poisson model No. of people living more than 100 years. No. of plane accidents. No. of errata on a page. No. of telephones dialed incorrectly on a day. Characteristics • STABLE PROCESS ( = average number of events per time unit) • INDEPENDENT EVENTS • PROBABILITY OF 2 OR MORE EVENTS IN A SHORT INTERVAL 0 Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business Poisson distribution X “Number of events in a certain interval” Probability function X P() k e P(X k) k! k= 0, 1, 2,…, n, ... Characteristics E(X) = Var(X) = Universidad de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Statistical Methods for Business