Low Power

Anuncio
Volverine
MSP430FR59xx Family
Ing. Rafael Charro
[email protected]
Arrow Argentina
2012
MSP430 New Technologies and Solutions
Radio
Frequency (RF)
Energy
Harvesting
Native
Sub 1V
Application
Specific
Devices
Capacitive
Touch Sense
Now
(Electricity or Water
Meters, Glucose Monitors)
Sub $1
Devices
Ferroelectric
RAM (FRAM)
Future
2
¿A qué llamamos bajo Consumo?
3
¿A qué llamamos bajo Consumo?
– Corriente de alimentación 2uA
4
¿Cómo trabaja un sistema en Ultra Low Power?
Active
Average
Low Power
•
•
•
•
Minimize active time
Maximize time in Low Power Modes
Interrupt driven performance on-demand with <1 s wakeup time
Always-On, Zero-Power Brownout Reset (BOR)
5
¿Cómo trabaja un sistema en Ultra Low Power?
= LPM3 + RTC_Function
0.60µA + 130µA *
100µs
1000000µs
0.60µA + 0.013µA = 0.613µA
1mA
100µA
10µA
// Partial RTC_Function
incrementseconds();
incrementminutes();
incrementhours();
//
1µA
Time
6
Vida de la batería vs. Ciclo de actividad
7
Puntos Clave
Performance de la CPU
Modos de bajos consumo
Sistema de Clock
Consumo y posibilidades de los periféricos
Sistemas de seguridad del chip
Consumo de corriente de la memoria
Ultra-Low Power Is In Our DNA
– MSP430 designed for ULP
from ground up
– Peripherals optimized to
reduce power and minimize
CPU usage
– Intelligent, low power
peripherals can operate
independently of CPU and
let the system stay in a
lower power mode longer
www.ti.com/ulp
Multiple operating modes
–
–
–
–
100 nA power down (RAM retained)
0.6 µA standby
60 µA / MIPS from RAM
100 µA / MIPS from Flash
Instant-on stable high-speed clock
1.8 - 3.6V single-supply operation
Zero-power, always-on BOR
<50nA pin leakage
CPU that minimizes cycles per task
Low-power intelligent peripherals
– ADC that automatically transfers data
– Timers that consume negligible power
– 100 nA analog comparators
Performance over required
operating conditions
9
MSP430 Orthogonal CPU
• C-compiler friendly
• Memory address increased up to 1MB
• CPU registers increased to 20-bits
• Address word instructions
•
Direct 20-bit CPU register access
• Atomic (memory to memory) Instructions
• Cycle count optimization
• Extension word allows all instructions
•
Direct access to 1MB address space
•
Bit, byte, word and address-word data
•
Repeat instruction function
10
Modos de funcionamiento y bajo consumo
– Active Mode – 100 A/MHz!
! *
* +
–
–
–
CPU active
Fast Peripherals Enabled
32 kHz Peripherals Enabled - RTC
–
–
–
CPU disabled, Fast Peripherals Enabled
Fast Wake up
HF clock sources available
–
–
CPU disabled, Fast Peripherals Disabled
32 kHz Peripherals Enabled (RTC, Wd & SVS)
–
–
All clocks disabled
Wake on interrupt from port
–
–
–
Regulator & all system clocks disabled except
for RTC (32768Hz LFXT)
Complete FRAM retention
BOR on nRST/NMI or Port I/O or RTC
–
–
With SVS enabled
With SVS disabled – 10nA
– LPM0 – 40 A
– LPM3 – 0.6 A
"
! # "
!
– LPM4 – 0.5 A
!$$
"
%& !!'(
$
)
– LPM3.5 – 0.4 A
– LPM4.5 – 0.1 A
11
Clock System
Five independent clock sources
Low Freq
–
LFXT1 32768 Hz crystal
–
Special low power option
– VLO 10 kHz
– LFMODCLK MODCLK/128
High Freq
– XT1, 4 – 24 MHz crystal
– XT2, 4 – 24 MHz crystal
– DCO Specific CAL range
– MODCLK Internal 5MHz
•Default DCO = 1MHz
•ACLK = Only LF sources
•MODOSC provided to ADC12
12
Review of available clocks
Clock
Frequency
(nominal)
Precision
Current Draw
Crystal
Required
High-Frequency
DCO
100kHz –
32MHz
Low
60uA
HFXT1/2
4 - 32MHz
High
60uA @ 12MHz
MODOSC
5MHz
n/a
n/a
X
Low-Frequency
LFXT1
32kHz
High
300nA
VLO
12kHz
Low
0nA*
X
* Included in ILPM3, VLO spec (~1.2uA)
13
Periféricos Inteligentes ADC12B
8, 10 o 12 bits
Up to 200Ksps
SNR>64dB; ENOB 11 bits
Sample & hold programable
Window comparator
Differential or single-ended
Up to 32 channels
Auto power down
Ultra low current consumption
SE 63uA @ 1,8V 200Ksps
Diff. 95uA @ 1,8V 200Ksps
Temperature sensor
14
15
MSP430 Portfolio
16
17
MSP430 with FRAM – Future of MCU Memory
– FRAM is Universal Memory
FRAM Applications:
– Superior Endurance
– Battery Backed SRAM
Replacement
– Digital rights management
– Data logging, remote sensing
– Low Power Electronics
– Energy harvesting
– Proven data retention to 10 years @ 85°C
– Over 100 Trillion write/read cycles
– Write Guarantee in case of power loss
– Fast write times (like SRAM)
– ~50ns per byte
– 1,000x faster than Flash/EEPROM
– Non-Volatile, Reliable
– Low Power
– Only 1.5v to write & erase
– >10-14v for Flash/EEPROM
– Secure
Photo: Ramtron Corp
FRAM is
Programmed by
flip of a Ferro
Electric Dipole.
– Fast access times
– No charge pump
– No perceptible difference in read/write processes
– Radiation Resistance - Terrestrial Soft Error
Rate (SER) is below detection limits
– Immune to Magnetic Fields - FRAM does not
contain iron
www.ti.com/fram
TI’s FRAM technology
18
Memoria Flash en diferentes marcas
Flash
Kinetis
MC9S08QE
PIC24HJ128
PIC24FJ2455
ATtiny24A
MSP430
Write Time
20uS a 50uS
20 a 50uS
56uS
2mS
4,5mS
36 a 70uS
Sector Erase
20mS
20mS
26mS
26ms
9mS
10mS
Erase All
160mS
100mS
40mS
22ms a 32mS
Idd_PGM
10mA Max
4mA
10mA
10mA
18mA
1mA
Cycling
endurance
10K min
10Kmin
10K min
10K min
10K min –
(80K EEPROM)
10K min
Access Time
40nS
40nS
? Max 12Mhz
40nS?
40nS
Operating
Voltage
1,7V a 3,6V
1,8v a 3,6V
2V a 5,5V
2 a 5V 12V
1,8 a 3,6V
RAM retention
1,2V
0,6 - 1V
Idd Run Flash
@ 3V
420uA/Mhz
640mA/Mhz
1,8V a 5,5V
1,6V
1,8mA
480uA
800uA/Mhz
230uA/Mhz
19
All-in-one: FRAM MCU delivers max benefits
Non-volatile
Retains data without
power
Write speeds
Average active
Power [µA/MHz]
Write endurance
Dynamic
Bit-wise programmable
Unified memory
Flexible code and data
partitioning
FRAM
SRAM
EEPROM
Flash
Yes
No
Yes
Yes
100ns
<100ns
6ms
85uS
110
<60
100
Trillion+
Unlimited
100,000
10,000
Yes
Yes
No
No
Yes
No
No
No
230
Data is representative of embedded memory performance within device
Unified memory: Another dimension of
freedom for software developers
With FRAM
Before FRAM
Multiple device variants may be required
Often an
additional 1kB
chip EEPROM
is needed
16kB Flash
(Program)
2kB
SRAM
14kB Flash
2kB
SRAM
One device supporting multiple
options “slide the bar as needed”
16kB Universal FRAM
Data vs. program memory
partitioned as needed
• Easier, simpler inventory
management
24kB Flash
To get more SRAM you may have
to buy 5x the needed FLASH ROM
5kB
SRAM
• Lower cost of issuance /
ownership
• Faster time to market for
memory modifications
FRAM = Ultra-fast Writes
•
Use Case Example: MSP430F2274 Vs MSP430FR5739
•
Both devices use System clock = 8MHz
•
Maximum Speed FRAM = 1.5MBps [100x faster]
•
Maximum Speed Flash = 12kBps
FRAM = Low active write duty cycle
•
Use Case Example: MSP430F2274 Vs MSP430FR5739
•
Both devices write to NV memory @ 12kBps
•
FRAM remains in standby for 99% of the time
•
Power savings: >200x of flash
FRAM = Ultra-low Power
•
Use Case Example: MSP430F2274 Vs MSP430FR5739
•
Average power FRAM = 720µA @ 1.5Mbps
•
Average power Flash = 2200µA @ 12kBps
•
100 times faster in half the power
•
Enables more unique energy sources
•
FRAM = Non-blocking writes
•
CPU is not held
•
Interrupts allowed
FRAM = Increased flexibility
•
Use Case Example: EEPROM Vs MSP430FR5739
•
Many systems require a backup procedure on power fail
•
FRAM IP has built-in circuitry to complete the current 4 word write
•
•
Supported by internal FRAM LDO & cap
In-system backup is an order of magnitude faster with FRAM
Write comparison during power fail events+
+
Source: EE Times Europe, An Engineer’s Guide to FRAM by Duncan Bennett
FRAM = High Endurance
•
Use Case Example: MSP430F2274 Vs MSP430FR5739
•
FRAM Endurance >= 100 Trillion [10^14]
•
Flash Endurance < 100,000 [10^5]
•
Comparison: write to a 512 byte memory block @ a speed of 12kBps
•
Flash = 6 minutes
•
FRAM = 100+ years!
Ultra-low-power data logging
Write Endurance
10,000 cycles
> 100,000,000,000,000 cycles
Trillions
Supports more than 150,000 years of continuous data logging
(vs. less than 7 minutes with Flash)
27
Target Applications
– Data logging, remote sensor applications (High Write
endurance, Fast writes)
– Digital rights management (High Write Endurance – need
>10M write cycles)
– Battery powered consumer/mobile Electronics (low power)
– Energy harvesting, especially Wireless (Low Power & Fast
Memory Access, especially Writes)
– Battery Backed SRAM Replacement (Non- Volatility, High
Write Endurance, Low power, Fast Writes)
Value Line – Portfolio & Roadmap
UART
ADC
MSP430G24X2
SC
Available now
MSP430G25X3
SC
ADC UART
MSP430G24X3
SC
ADC UART
MSP430G23X3
SC
ADC UART
MSP430G22X3
SC
ADC UART
MSP430G21X3
SC
ADC UART
In Development
ADC
SC
MSP430G23X2
SC
ADC
MSP430G22X2
SC
ADC
MSP430G22X1*
SC
ADC
MSP430G21X2
MSP430G21X1*
SC
SC
ADC
ADC
MSP430G2001*
!
* 8-pin SOIC package under evaluation
TI Confidential – Maximum Restrictions
29
Meet the new MSP430 LaunchPad
" #$
%
&
' (
!
#
)*+
,
! - # .
"#
,
%&
!
$
! 0,
'(
$ /"
!
)
*
')$ ')% ) * +#$ ) - *
12 3% ( $$ $ 4 )*5( "
+ ,$
30
MSP430 with RF – CC430
CC430
Low Power
RF
Radio
frequency
MSP430
MCU
Application
and protocol
processor
Lowest
Power
Monolithic
RF SoC
The Best of Both Worlds
MSP430 MCU
Low Power RF Transceiver
•
•
•
•
•
High sensitivity
Low current consumption
Excellent blocking
performance
Flexible data rate &
modulation format
Backwards compatible
Small Package:
9.1mm x 9.1mm
•
•
•
•
•
Market’s lowest power MCU
High analog performance
High level of integration
Ease of development
Sensor interface
Wireless Made Easy
•
Free RF libraries and stacks
•
SimpliciTI (Star Network protocol) www.ti.com/simpliciti
•
TIMAC – IEEE 802.15.4 Medium Access
Control (MAC)
•
Z-Stack – Free ZigBee Stack. Compliant
with 2006 ZigBee™ spec
(www.ti.com/zigbee)
•
Third party partners with mesh network
stacks – coming soon!
•
SmartRF® Studio - Automatically
generates register values
eZ430-Chronos
Development tool
• Based on CC430, MSP430 w/
integrated <1GHz RF
• Integrated 3-axis
accelerometer, altimeter, &
temperature sensor
• Includes USB RF access point
• Low cost ($49)
31
MSP430 : It´s Easy to Get Started
•
•
•
Embedded Emulation
enables powerful, low cost
development tools
Real-time, in-system debug
–
–
–
–
–
–
No application resources
Full speed execution
H/W
Single stepping
Complex triggering
Trace capability
Powerful, easy to use tools
eZ430 Development Tools
•
•
•
•
•
•
Complete development Tool
USB Stick form factor
Real-time, in-system debug
Removable target board
Available for wireless development
Starting at $20
Solar Energy Harvesting Kit
• Based on eZ430-RF2500
• Works in low ambient light; 400+
transmissions in dark
• Adaptable to any sensor or RF network
tool
MSP430 Flash Emulation
Tool
• $149 for complete
• 1 programming tool for all devices
• $99 for USB FET
• $49 target boards available for all
devices
Development Software
• Free IDEs available
• CCS4 $495 for MCU Edition
MSP430 Experimenter
Boards
• Fully features prototyping system
• Available for FG4618 & F5438
• Starting at $99
32
Descargar