Volverine MSP430FR59xx Family Ing. Rafael Charro [email protected] Arrow Argentina 2012 MSP430 New Technologies and Solutions Radio Frequency (RF) Energy Harvesting Native Sub 1V Application Specific Devices Capacitive Touch Sense Now (Electricity or Water Meters, Glucose Monitors) Sub $1 Devices Ferroelectric RAM (FRAM) Future 2 ¿A qué llamamos bajo Consumo? 3 ¿A qué llamamos bajo Consumo? – Corriente de alimentación 2uA 4 ¿Cómo trabaja un sistema en Ultra Low Power? Active Average Low Power • • • • Minimize active time Maximize time in Low Power Modes Interrupt driven performance on-demand with <1 s wakeup time Always-On, Zero-Power Brownout Reset (BOR) 5 ¿Cómo trabaja un sistema en Ultra Low Power? = LPM3 + RTC_Function 0.60µA + 130µA * 100µs 1000000µs 0.60µA + 0.013µA = 0.613µA 1mA 100µA 10µA // Partial RTC_Function incrementseconds(); incrementminutes(); incrementhours(); // 1µA Time 6 Vida de la batería vs. Ciclo de actividad 7 Puntos Clave Performance de la CPU Modos de bajos consumo Sistema de Clock Consumo y posibilidades de los periféricos Sistemas de seguridad del chip Consumo de corriente de la memoria Ultra-Low Power Is In Our DNA – MSP430 designed for ULP from ground up – Peripherals optimized to reduce power and minimize CPU usage – Intelligent, low power peripherals can operate independently of CPU and let the system stay in a lower power mode longer www.ti.com/ulp Multiple operating modes – – – – 100 nA power down (RAM retained) 0.6 µA standby 60 µA / MIPS from RAM 100 µA / MIPS from Flash Instant-on stable high-speed clock 1.8 - 3.6V single-supply operation Zero-power, always-on BOR <50nA pin leakage CPU that minimizes cycles per task Low-power intelligent peripherals – ADC that automatically transfers data – Timers that consume negligible power – 100 nA analog comparators Performance over required operating conditions 9 MSP430 Orthogonal CPU • C-compiler friendly • Memory address increased up to 1MB • CPU registers increased to 20-bits • Address word instructions • Direct 20-bit CPU register access • Atomic (memory to memory) Instructions • Cycle count optimization • Extension word allows all instructions • Direct access to 1MB address space • Bit, byte, word and address-word data • Repeat instruction function 10 Modos de funcionamiento y bajo consumo – Active Mode – 100 A/MHz! ! * * + – – – CPU active Fast Peripherals Enabled 32 kHz Peripherals Enabled - RTC – – – CPU disabled, Fast Peripherals Enabled Fast Wake up HF clock sources available – – CPU disabled, Fast Peripherals Disabled 32 kHz Peripherals Enabled (RTC, Wd & SVS) – – All clocks disabled Wake on interrupt from port – – – Regulator & all system clocks disabled except for RTC (32768Hz LFXT) Complete FRAM retention BOR on nRST/NMI or Port I/O or RTC – – With SVS enabled With SVS disabled – 10nA – LPM0 – 40 A – LPM3 – 0.6 A " ! # " ! – LPM4 – 0.5 A !$$ " %& !!'( $ ) – LPM3.5 – 0.4 A – LPM4.5 – 0.1 A 11 Clock System Five independent clock sources Low Freq – LFXT1 32768 Hz crystal – Special low power option – VLO 10 kHz – LFMODCLK MODCLK/128 High Freq – XT1, 4 – 24 MHz crystal – XT2, 4 – 24 MHz crystal – DCO Specific CAL range – MODCLK Internal 5MHz •Default DCO = 1MHz •ACLK = Only LF sources •MODOSC provided to ADC12 12 Review of available clocks Clock Frequency (nominal) Precision Current Draw Crystal Required High-Frequency DCO 100kHz – 32MHz Low 60uA HFXT1/2 4 - 32MHz High 60uA @ 12MHz MODOSC 5MHz n/a n/a X Low-Frequency LFXT1 32kHz High 300nA VLO 12kHz Low 0nA* X * Included in ILPM3, VLO spec (~1.2uA) 13 Periféricos Inteligentes ADC12B 8, 10 o 12 bits Up to 200Ksps SNR>64dB; ENOB 11 bits Sample & hold programable Window comparator Differential or single-ended Up to 32 channels Auto power down Ultra low current consumption SE 63uA @ 1,8V 200Ksps Diff. 95uA @ 1,8V 200Ksps Temperature sensor 14 15 MSP430 Portfolio 16 17 MSP430 with FRAM – Future of MCU Memory – FRAM is Universal Memory FRAM Applications: – Superior Endurance – Battery Backed SRAM Replacement – Digital rights management – Data logging, remote sensing – Low Power Electronics – Energy harvesting – Proven data retention to 10 years @ 85°C – Over 100 Trillion write/read cycles – Write Guarantee in case of power loss – Fast write times (like SRAM) – ~50ns per byte – 1,000x faster than Flash/EEPROM – Non-Volatile, Reliable – Low Power – Only 1.5v to write & erase – >10-14v for Flash/EEPROM – Secure Photo: Ramtron Corp FRAM is Programmed by flip of a Ferro Electric Dipole. – Fast access times – No charge pump – No perceptible difference in read/write processes – Radiation Resistance - Terrestrial Soft Error Rate (SER) is below detection limits – Immune to Magnetic Fields - FRAM does not contain iron www.ti.com/fram TI’s FRAM technology 18 Memoria Flash en diferentes marcas Flash Kinetis MC9S08QE PIC24HJ128 PIC24FJ2455 ATtiny24A MSP430 Write Time 20uS a 50uS 20 a 50uS 56uS 2mS 4,5mS 36 a 70uS Sector Erase 20mS 20mS 26mS 26ms 9mS 10mS Erase All 160mS 100mS 40mS 22ms a 32mS Idd_PGM 10mA Max 4mA 10mA 10mA 18mA 1mA Cycling endurance 10K min 10Kmin 10K min 10K min 10K min – (80K EEPROM) 10K min Access Time 40nS 40nS ? Max 12Mhz 40nS? 40nS Operating Voltage 1,7V a 3,6V 1,8v a 3,6V 2V a 5,5V 2 a 5V 12V 1,8 a 3,6V RAM retention 1,2V 0,6 - 1V Idd Run Flash @ 3V 420uA/Mhz 640mA/Mhz 1,8V a 5,5V 1,6V 1,8mA 480uA 800uA/Mhz 230uA/Mhz 19 All-in-one: FRAM MCU delivers max benefits Non-volatile Retains data without power Write speeds Average active Power [µA/MHz] Write endurance Dynamic Bit-wise programmable Unified memory Flexible code and data partitioning FRAM SRAM EEPROM Flash Yes No Yes Yes 100ns <100ns 6ms 85uS 110 <60 100 Trillion+ Unlimited 100,000 10,000 Yes Yes No No Yes No No No 230 Data is representative of embedded memory performance within device Unified memory: Another dimension of freedom for software developers With FRAM Before FRAM Multiple device variants may be required Often an additional 1kB chip EEPROM is needed 16kB Flash (Program) 2kB SRAM 14kB Flash 2kB SRAM One device supporting multiple options “slide the bar as needed” 16kB Universal FRAM Data vs. program memory partitioned as needed • Easier, simpler inventory management 24kB Flash To get more SRAM you may have to buy 5x the needed FLASH ROM 5kB SRAM • Lower cost of issuance / ownership • Faster time to market for memory modifications FRAM = Ultra-fast Writes • Use Case Example: MSP430F2274 Vs MSP430FR5739 • Both devices use System clock = 8MHz • Maximum Speed FRAM = 1.5MBps [100x faster] • Maximum Speed Flash = 12kBps FRAM = Low active write duty cycle • Use Case Example: MSP430F2274 Vs MSP430FR5739 • Both devices write to NV memory @ 12kBps • FRAM remains in standby for 99% of the time • Power savings: >200x of flash FRAM = Ultra-low Power • Use Case Example: MSP430F2274 Vs MSP430FR5739 • Average power FRAM = 720µA @ 1.5Mbps • Average power Flash = 2200µA @ 12kBps • 100 times faster in half the power • Enables more unique energy sources • FRAM = Non-blocking writes • CPU is not held • Interrupts allowed FRAM = Increased flexibility • Use Case Example: EEPROM Vs MSP430FR5739 • Many systems require a backup procedure on power fail • FRAM IP has built-in circuitry to complete the current 4 word write • • Supported by internal FRAM LDO & cap In-system backup is an order of magnitude faster with FRAM Write comparison during power fail events+ + Source: EE Times Europe, An Engineer’s Guide to FRAM by Duncan Bennett FRAM = High Endurance • Use Case Example: MSP430F2274 Vs MSP430FR5739 • FRAM Endurance >= 100 Trillion [10^14] • Flash Endurance < 100,000 [10^5] • Comparison: write to a 512 byte memory block @ a speed of 12kBps • Flash = 6 minutes • FRAM = 100+ years! Ultra-low-power data logging Write Endurance 10,000 cycles > 100,000,000,000,000 cycles Trillions Supports more than 150,000 years of continuous data logging (vs. less than 7 minutes with Flash) 27 Target Applications – Data logging, remote sensor applications (High Write endurance, Fast writes) – Digital rights management (High Write Endurance – need >10M write cycles) – Battery powered consumer/mobile Electronics (low power) – Energy harvesting, especially Wireless (Low Power & Fast Memory Access, especially Writes) – Battery Backed SRAM Replacement (Non- Volatility, High Write Endurance, Low power, Fast Writes) Value Line – Portfolio & Roadmap UART ADC MSP430G24X2 SC Available now MSP430G25X3 SC ADC UART MSP430G24X3 SC ADC UART MSP430G23X3 SC ADC UART MSP430G22X3 SC ADC UART MSP430G21X3 SC ADC UART In Development ADC SC MSP430G23X2 SC ADC MSP430G22X2 SC ADC MSP430G22X1* SC ADC MSP430G21X2 MSP430G21X1* SC SC ADC ADC MSP430G2001* ! * 8-pin SOIC package under evaluation TI Confidential – Maximum Restrictions 29 Meet the new MSP430 LaunchPad " #$ % & ' ( ! # )*+ , ! - # . "# , %& ! $ ! 0, '( $ /" ! ) * ')$ ')% ) * +#$ ) - * 12 3% ( $$ $ 4 )*5( " + ,$ 30 MSP430 with RF – CC430 CC430 Low Power RF Radio frequency MSP430 MCU Application and protocol processor Lowest Power Monolithic RF SoC The Best of Both Worlds MSP430 MCU Low Power RF Transceiver • • • • • High sensitivity Low current consumption Excellent blocking performance Flexible data rate & modulation format Backwards compatible Small Package: 9.1mm x 9.1mm • • • • • Market’s lowest power MCU High analog performance High level of integration Ease of development Sensor interface Wireless Made Easy • Free RF libraries and stacks • SimpliciTI (Star Network protocol) www.ti.com/simpliciti • TIMAC – IEEE 802.15.4 Medium Access Control (MAC) • Z-Stack – Free ZigBee Stack. Compliant with 2006 ZigBee™ spec (www.ti.com/zigbee) • Third party partners with mesh network stacks – coming soon! • SmartRF® Studio - Automatically generates register values eZ430-Chronos Development tool • Based on CC430, MSP430 w/ integrated <1GHz RF • Integrated 3-axis accelerometer, altimeter, & temperature sensor • Includes USB RF access point • Low cost ($49) 31 MSP430 : It´s Easy to Get Started • • • Embedded Emulation enables powerful, low cost development tools Real-time, in-system debug – – – – – – No application resources Full speed execution H/W Single stepping Complex triggering Trace capability Powerful, easy to use tools eZ430 Development Tools • • • • • • Complete development Tool USB Stick form factor Real-time, in-system debug Removable target board Available for wireless development Starting at $20 Solar Energy Harvesting Kit • Based on eZ430-RF2500 • Works in low ambient light; 400+ transmissions in dark • Adaptable to any sensor or RF network tool MSP430 Flash Emulation Tool • $149 for complete • 1 programming tool for all devices • $99 for USB FET • $49 target boards available for all devices Development Software • Free IDEs available • CCS4 $495 for MCU Edition MSP430 Experimenter Boards • Fully features prototyping system • Available for FG4618 & F5438 • Starting at $99 32