Document

Anuncio
Planning of the National Electric System
Oliver Ulises Flores Parra Bravo
General Director of Generation and Transmission of Electricity
Energy Secretariat (SENER), Mexico
Background: Electricity Sector in Mexico
19.2%
19.1%
California
a Imperial Valley
Sistema
(SDG&E, IID)
San Luis
Mexicali
Río Colorado
62MW Cetys
La Rosita Abr-16
P. I.
489MW
Sn. Luis
Sn. Luis Rey
Lomas
Op. 161 kV
Puerto
Peñasco
2
Santa Ana
San Simón
Nacozari
Puerto
Libertad
632MW
Bahía
de los
Angeles
Hermosillo III
Hermosillo IV
Guerrero
Negro II
25MW
11MW
Abr-Jun-16 8MW
San
Bahía Ignacio
Asunción
FV Solar
1MW
Op. 230
Nuevo Casas
Grandes
Op. 230 kV
Quevedo
Cuauhtémoc
Huites
422MW
Op.230 kV
Op. 230 kV
Villa
Constitución
Agustín
Olachea
104MW
Bledales
CE Pesquería
949MW
Oct-16
Escobedo
San Nicolás
a
lo
Saltil
Hylsa
Villa de García
a
San Jerónimo
Potencia
mos
Ra e
izp
Ar ncia
te
Po
Monterrey
Potencia
5
El
Palmar
CD Los Cabos
85MW
El Habal
San José
del Cabo
10
6
Monterrey
17
Zacatecas
Mazatlán
616MW
PE La Bufa
180MW
Dic-16
Cabo
San Lucas
Tamazunchale
1,135MW
Potrerillos
23
Guadalajara
Irapuato
Las Fresas
Solar
s.
cia
a Ag
ten
Po
Ixtlahuacán
Guadalajara I
San Martín
Guadalajara II
Transmisión
Subestación
Guadalajara
Industrial
Línea de Transmisión
a Salamanca
Estación Convertidora CA/CD
115 kV
Morelos
Yautepec
Lázaro
Cárdenas
Op
. 23
0 kV
Centro
668MW
Ene-16
Caracol
600MW
Zihuatanejo
35
Chilpancingo
Dic-16
II
Manlio
Fabio
Orizaba Altamirano
37
Temascal II
Temascal I
354MW
Idesa
Braskem
170MW
Abr-16
Chontalpa
Comalcalco
Potencia
Balam
43
Valladolid
820MW
Los Ríos
PS Lázaro
Cárdenas
Dzitnup 30MW
Oct-16
Cancún
Nizuc
Riviera Maya
45
Cozumel
Campeche
41
44
Escárcega
Xpujil
Chetumal
Campeche
252MW
a Buena
Vista
Villahermosa
38
Coatzacoalcos
Juile
Km 20
36
Peñitas
420MW
Cerro
de Oro Papaloapan
Belice
Tabasco
Malpaso
1,080MW
Ixtepec
Potencia
La Ciénega
40
a Ocotlá
n
Huatulco
Op.115 kV
Op. 115 kV
Minatitlán II
Abr-16
Oaxaca
Acapulco
Ene-16
Puerto Real
Veracruz
Dos Bocas
452MW
33
Ene-16 Húmeros
Puebla 27MW
Abr-16
Tecali
Lerma
113MW
Champotón
Laguna Verde
1,510MW
110MW Jul-16
Jalapa
34
San Lorenzo
Infiernillo
1,200MW
29
Poza Rica CC
117MW
240MW Jul-16
Tlaxcala
Valle de
México
382MW
Petacalco
2,778MW
Papantla
Acatlán
Maz
itla
am
Fecha de Entrada de
Proyecto
a
Adiciones de Red de
Transmisión
XXX-XX
Man
za
nillo
230 kV
Capacidad Instalada
MW
a
400 kV
Op.: Operación Inicial
uzmán
a Cd.G
Expansión 2016
Nivel de Tensión
161 kV, 138 kV y < 34.5 kV
a Man
zanillo
Atequiza
Tula
31
Azufres
245MW
42
Ticul II
Golfo
de
México
Poza Rica
32
Mazatepec
220MW
Teziutlán
Op. 230 kV
Atequiza
Enlace Submarino
Enlace Asíncrono
Morelia
Mérida II
198MW
Mérida III
484MW
Tuxpan
2,100MW
Tres Estrellas
1,973MW
San Juan
del Río
Zimapán
292MW
Salamanca
932MW Querétaro
28
Caucel
Kanasín
El Sáuz
591MW
Uruapan
La Villita
320MW
Ag
uas
a
Po ca
te lie
nci n
a tes
Colón
Nucleoeléctrica
Turbogás
Sep-16
Carapan
Zapotlanejo
Niños
Agua
Héroes
Azul Guadalajara
Oriente
Álamos
Zapopan
Hidroeléctrica
Purépecha
Colima
Tapeixtles
Guadalajara Norte
Geotermoeléctrica
500 kV
27
Manzanillo
2,754MW
PE Chacabal
30MW PE Chacabal II
30MW
Jul-16
Jul-16
PS Polyuc
Motul
30MW
Oct-16
Tizimín
Norte
c
tepe
a Yau
Morelos
kV
Agua Prieta
240MW
Tuzanía
Cogeneración Eficiente
Termoeléctrica Convencional
Mazamitla
a La Yesca
Blan
co
Iztapalapa
5
11
Ce
rro
Tesistán
Eólica
Ayotla
Abr-16
Chalco
Santa Cruz
.
a
Combustión Interna
Dual
Cd. Guzmán
Zona Metropolitana
de Guadalajara
Generación
Carboeléctrica
Ciclo Combinado
La Paz
Jamaica
Op
Simbologí a
30
Celaya
26
an
a Zocac
20
Bajío
495MW
La Yesca
750MW
Tepic
Vallarta
xp
Tu
Topilejo
Tampico
San Luis
de la Paz
León
El Cajón
750MW
22
Altamira
500MW
a
Texcoco
a San
Mart
a San
Lorenzo ín
Dic-16
Esmeralda
Villa de Reyes
700MW
24
Nuevo
Vallarta
Puerto
Altamira
2,652MW
a Tres Estrellas
Valle de
México
999MW
Vallejo
Cerro Gordo
Remedios
El Cerrillo
Totoltepec
Toluca
Estadio
Atenco
Deportiva
San Bernabé
Tianguistenco
Volcán
Gordo
Agustín
Millan II
a Zapata
Aguascalientes
Océano
Pacífico
a Lajas
Tecnológico
Teotihuacán
Victoria
19
PE México 2
50MW
Sep-16
Km 110
Chimalpa Dos
Oct-16
Nopala
Almoloya
La Venta III
103MW
La Venta II
Oaxaca I
83MW
102MW
Oaxaca II
102MW
Oaxaca IV
102MW
Oaxaca III
102MW
Golfo de
Tehuantepec
Necaxa
109MW
Irolo
Tizayuca
El Vidrio
Donato
Guerra
era
a Pitir
Tamos
Valles
PE Palo Alto
129MW
Dic-16
Aguamilpa
960MW
Aer a
opu
erto
18
Energía del
Valle de
México
94MW
Feb-16
Apasco
Atlacomulco
PE Las
Mesas
50MW
Abr-16
21
25
Cañada
Parque Ind.
Reforma
Jasso
Op. 230 KV
Nochistongo
Jilotepec
Potencia
Jorobas
La Manga
Anáhuac
1,490MW
Lajas
Güémez
PE Dominica
100MW
PE Cd.
El Salero
Victoria
50MW May-16
Primero
Abr-16
PS
de Mayo
Matehuala
Champayán
Zacatecas I
300MW
Dic-16
Anáhuac
San Luis Potosí
Potencia
PE Vientos
del Altiplano
70MW
Jun-16
JCM
Comedero Durango Jerónimo
100MW 150MW
Ortiz
Nov-16
La Higuera
Santiago
52
Torreón
Cog.
Ramos
50MW
Ene-16
a
15
14
May-16
Saltillo
PE Coahuila 248MW
200MW
Oct-16
a Dañu
300 MW
Juchitán II
a
Conejos
Rica II
a Poza
Tula
2,094MW
H. Carranz
a
a Querétaro
Maniobras
a Rail Road
(SU)
a Military Highway
(AEP)
Río Bravo
a Brownsville
(AEP)
511MW
Guerreño
Matamoros
Gómez
Palacio
738MW
Lerdo
320MW
Norte
Canatlán II
450MW
Abr-16
Culiacán Tres
Culiacán
Durango
Potencia
El Triunfo
Regiomontano
Abr-16
Plaza
16
a Planta
Frontera
(AEP)
a Falcón
(AEP)
Falcón
32MW
Reynosa
Ventika I, II
252MW
11
Bacurato
92MW
Humaya
90MW
Coromuel
163MW
49MW Jun-16
Olas
Altas
Grupo Tech
25MW
Jun-16
CE Dulces
Huinalá Nombres
II
1,476MW
303MW
Mar-16
a Fr
on
tera
51
Ae
ro
pu
er
to
Las Glorias
4
Guamúchil
13
135MW
Ene-16
ro
za as
Lá en
a rd
Cá
a
a Lampazos
Punta
Prieta
156MW
Zona Metropolitana del
Valle de México
a
Nuevo
Laredo
Lampazos
Altos Hornos
Monclova
Los Mochis
Topolobampo
320MW
33MW
La Paz
a Juile
Ixtepec
Potencia
Carbón II
1,400MW
12
Nueva Rosita
Minera
Hércules
Santiago
Abr-16
El Fuerte
59MW
50
El Fraile
Hércules
Potencia
Camargo Mar-16
Pueblo Nuevo
Santo
Domingo
Insurgentes
a Juile
Matías Romero
Potencia
Piedras Negras
Mesteñas
El Encino
619MW
El Encino II
433MW Francisco Villa
300MW
San Pedro
Parques eólicos en el
Istmo de Tehuantepec
a Eagle Pass
(AEP)
36 MW
100 MW a Laredo
(AEP)
9
El Mayo
Zona Metropolitana
de Monterrey
Río Escondido
1,200MW
Chihuahua
Abr-16
3
Mulegé
Acuña
Piedras Negras
Potencia
Hermosillo V
227MW
Loreto
a Monclova
Texas
Op. 138 kV
La Amistad
66MW
Laguna
Encinillas
El Novillo
135MW
Guaymas
Cereso
Guaymas
484MW
Tres
Cahuisori
Vírgenes
Pot.
10MW
Op. 230 kV
Mezquital
Santa Rosalía
Bácum
Cd. Obregón
8MW
2MW Nov-16
Punta
Abreojos
8
kV
Moctezuma
Op. 230 kV
Loma
Hermosillo CC
250MW
53
Terranova
Samalayuca
Sur
Op. 230 kV
Op. 230 kV
Parador
Nacional
2016
Valle de Juárez
Cd. Juárez
7
Samalayuca
1,097MW
Naco-Nogales
258MW Ascensión II
Cananea
1
Seis de
Abril
San Felipe
Eléctrico
Nuevo México
Reforma
Paso del
Norte
Agua
Prieta II
404MW
Feb-16
Ejido
Agua Prieta
Santa
Cruz
Industrial
Caborca
47
Cañón
a Azcárate
(EPECO)
a Diablo
(EPECO)
Arizona
Nogales
Sasabe
Ciprés
27MW
Ensenada
a Citizen
Utilities
(UNSES)
a Three Points
(TECI)
49
Cerro
Prieto
570MW
. 11
5 kV
48
46
Op
a Otay
Mesa
(SDG&E)
Tijuana
Presidente
Juárez
1,438MW
La Jovita
294MW
Ago-16
Guerrero
Negro I
23,641
27,543
56,851
683,226
CFE PPA
Private
Punta
Eugenia
Grid (km-c)
400 kV
230 kV
Subtransmission (≥ 69 kV)
Distribution
CFE
61.7%
kV
24,043
13,291
5,378
4,904
1,163
12,489
2,805
926
56
1,510
760
583
7
67,913
.1
38
Generation Capacity (MW)
Combined Cycle
Steam (Fuel Oil and Gas)
Coal
Simple Cycle
Internal Combustion
Hydro
Wind
Geothermal
Solar
Nuclear
Biomass
Efficient Cogeneration
Other
Total
Op
Clean
19 GW
Conventional
48 GW
Generation by ownership
Op. 115 kV
Istmo de
Tehuantepec
Juchitán II
Jun-16
Chicoasén
2,400MW
Tuxtla
Tehuantepec
INFORMACIÓN RESERVADA DE
ACUERDO CON LA LEY FEDERAL
DE TRANSPARENCIA Y ACCESO A LA
INFORMACIÓN PÚBLICA GUBERNAMENTAL
39
Angostura
900MW
Tapachula
Guatemala
2
a Los Brillantes
Honduras
New scheme for the electricity sector
Retailing
Generation
Consumption
System Control and
Power Market
Generation I
Generation II
Generartion III
Generation IV
Generation PPA
Generation CIL
Private
Parties
Short Term
Transactions
SPOT Market
Qualified
Users
Qualified
Unregulated
Supply
Long Term
Contracts
Auctions
Basic
Services
Users
Basic
Services
Regulated
Supply
Transmission
Distribution
+
Contracts
PPA: Power Purchase Agreement
CIL: Legacy Interconexion Contracts
+
Contracts
Why Planning?
The features of electricity may cause productive inefficiencies.
Electricity Characteristics
Characteristics
•
Funible good
•
Volatility
Homogeneous good with
heterogeneous sources of
supply
Continuous flow
•
•
•
•
Description
Electricity is not stored on a large scale, which involves maintaining a
continuous and instantaneous balance between production and consumption
to avoid a failure in the electric system.
Electricity demand presents hourly swings, this involves having an efficient
management of the electric system, depending on the relationship between
demand and installed capacity.
Electricity is a uniform good which doesn´t allow to identify their origin and
destination.
There is a complex diversity of electricity production technologies that are not
technically and economically homogeneous (scale, maturity and costs).
Capability constraints network.
Coordination in planning network to promote scale economies and allow
continuos flow between adjacent regions.
The main task of having electric-planning tools is:
1. Send signal to project developers with the best system information, for decision
making.
2. Define the infrastructure needed to allow efficiently the energy flow.
4
Why Planning?
Countries design planning instruments for electric systems base on
technical tools and prospective analysis of variables that impact in the
generation and transmission expansion, and electricity supply, like:
45,000
40,000
35,000
30,000
• Energy demand
• Generation units economic assessment
25,000
20,000
15,000
• Options and new trends of power generation technologies
• Electric System reliability
• Available resources and environmental considerations
• Generation and transmission technical constraints
• Other constraints for electric system planning
5
Electric system planning
Electric system planning encompasses a broad collection of activities
spanning several time horizons and can be divided into categories of
analysis such as demand, generation, transmission and distribution.
Each category of analysis may be carried out for a short time, a medium
time or a long time frame.
Long-term planning addresses the economic selection of generation
and transmission addition necessary to meet projected load
requirements.
Examples (generation):
Short-time frame: optimum for the system is often to add low capital
cost vs high operating cost options.
Long-time frame: units with higher capital costs but lower operating
costs become more likely to enter the optimum solution
6
Electric system planning
Long-term generation expansion planning problem
Minimize the total present discounted value of investment and
operation costs among the expansion plans which satisfy a given
reliability level.
Questions to be answered:
 What capacities to install to ensure an appropriate level of
reliability?
 How to pick the best combination among the different technologies
at hand now and later on?
 Where to locate this new equipment?
 When is the proper time to incorporate them into the system?
7
Before the Energy Reform
Electricity Public Service Law (LSPEE)*
LSPEE
Supply of Electricity
as a Public Service
The public service included…
The Planning of the National Electric System (SEN)
Generation, transmission, transformation,
distribution and sale of electricity.
The performance of the works and installations
required for the planning, execution, operation and
maintenance of the national electric system.
* Abrogated 11 august 2014
8
Development Program of the National Electric
System (PRODESEN)
Electricity Industry Law (LIE)*
LIE
Lead the planning of
the National Electric
System and elaborate
PRODESEN
Programa de Desarrollo del Sistema
Eléctrico Nacional: encompasses the plan for
the National Electricity System and gathers
the relevant elements of the indicative
Programs for the commission and
decommission of power plants as well as the
enlargement and upgrade Programs for the
national transmission grid and the general
distribution networks.
* DOF 11 de agosto de 2014
** Art. 27 ... “Corresponde exclusivamente a la Nación la planeación y el control del sistema
eléctrico nacional;…” DOF 20 diciembre 2013
9
PRODESEN…What is it?
Development Program of the National Electric System
PRODESEN 2016-2030 (updated yearly)
Electricity master
plan
Certainty for
industry participants
Indicative programs for the commission and decommission of
power plants, as well as expansion and modernization programs
for the national transmission grid and the general
distribution networks.
Timely
information
Next
15 years
EFFICIENCY, QUALITY, RELIABILITY, CONTINUITY, SECURITY AND SUSTAINABILITY
Competition in
commercialization
generation
and
Private investment through publicprivate partnership to upgrade national
transmission grid.
Planning Process
PRODESEN
Private
Consultants
2 Economic Policy
Criteria
1 Fuel Price
Criteria
Distributors
8 Expansion and
3 Economic
Growth Forecast
4 Fuel Price
5 Electricity
6 Electricity
Demand Forecast
modernization programs for
the National Transmission
Grid (RNT)
Forecast
Comsumption
Forecast
7 Indicative programs for the
commission and decommission of power
plants (PIIRCE)
9 Expansion and
modernization programs for
the General Distribution
Networks (RGD)
Sectorial Econometric Model of Electricity
Consumption
𝑬𝑪𝑴 = 𝒇 𝑹𝒄, 𝑪𝒄, 𝑺𝒍, 𝑺𝒔, 𝑪𝒆, 𝑨𝒑
Where the variables used by region 𝒊 = 𝟏, … , 𝟏𝟎 and NES to the next 15 years:
𝑹𝒄 Residential consumption
C𝒄 Commercial consumption
𝑺𝒍 Street lighting
𝑺𝒔 Sewage and safe drinking waterpumping
𝑪𝒆 Consumption of medium and large industry
𝑨𝒑 Agricultural pumping
12
Peak Load Mathematical Forecasting Model
𝑷𝑳 = 𝒇 𝑬𝑪, 𝑳𝒇, 𝑯𝒍
Where the variables used to forecast the next 15 years:
𝑬𝑪 Electricity Consumption by region 𝒊 = 𝟏, … , 𝟏𝟎 and NES
𝑳𝒇
Load Factor by sector 𝒊 = 𝟏, … , 𝟔
𝑯𝒍 Hourly Load Factor Profile by region 𝒊 = 𝟏, … , 𝟏𝟎 and NES
Asumption:
𝑳𝒇
∆
Load Factor by sector i = 1, … , 6
=
to the next 15 year
𝜵
13
Indicative programs for the commission and decommission
of power plants (PIIRCE)
Problem description
Generation expansion planning (GEP) is modeled as a Mixed-Integer Linear
Programming (MILP), where the optimization problem aims to determine the new
generation plants in terms of when to be available, what type and capacity they
should be and where to allocate so that an objective function is optimized and
various constraints are met. It may be of static type in which the solution is found
only for a specified stage (typically, year) or a dynamic type, in which, the solution
is found for several stages in a specified period
Constraints functions
Objective functions
14
Indicative programs for the commission and decommission
of power plants (PIIRCE)
Model
Minimize 𝑪 Investment + 𝑪 O&M + 𝑪 ENS
donde:
𝑪 Investment : present discounted value of investment cost.
𝑪 O&M : present discounted value of operation and maintenance cost.
𝑪ENS :present discounted value of the cost of energy not served.
Decision variables:
 Number of units of the generator (g) built in year (y);
 Number of units of the generator (g) decomission in year (y);
Input data
Variable cost (g), fixed cost (g), capital investment cost (overnight cost) (g),
cost of energy not serve , minimum generating capacity (g), maximum
generating capacity (g), renewable energy availability (g) (t), (g), fuel cost
for (g), discount rate.
15
Indicative programs for the commission and decommission
of power plants (PIIRCE)
Model
Minimize 𝑪 Investment + 𝑪 O&M + 𝑪 ENS
Constraints:







Energy Balance;
Reserve capacity;
Hydrological conditions;
Renewable energy potential;
Transmission capacity;
Technical constraints;
Clean energy generation goals.
16
Indicative programs for the commission and decommission
of power plants (PIIRCE)
Solution
PLEXOS uses the “Branch and Bound” algorithm to solve the MILP problem.
•
•
•
•
linear programming relaxation: drop integer constraints
Branching: enumerate solution of subproblems;
Bounding: select the best solution.
GAP: solution is reached when the difference between between the best known integer
solution and the best known bounding linear solution meets certain value.
S
x1=0
S0
x2=0
x2=1
S00
S000
S1
Z
x2=0
x3=0
x1=1
todas las
soluciones
S00
x3=1
x3=0
S001
S10
x3=1
S000
x2=1
S001
x3=0
S100
S11
x3=1
S101
x3=0
S110
x3=1
S111
.
.
.
S0…
0
xj=0
xj=1
S0….
S0…1
0
Z*
17
Indicative programs for the commission and
decommission of power plants (PIIRCE)
PRODESEN
2016-2030
COMMISSION
Total
57 mil MW
Clean
35.8 mil MW
DECOMMISSION
15,937 MW
Geotérmica 2%
Hidroeléctrica 9%
Nuclear
7%
Cogeneración
Eficiente 12%
Térmicas 2%
Solar 12%
Eólica 21%
Ciclo Combinado
35%
18
Indicative programs for the commission and
decommission of power plants (PIIRCE)
• Of all the power plants to be decommissioned, 64% will be removed form service
over the next 5 years.
• PIIRCE includes the decommissioning of the least efficient power plants.
• Conventional thermoelectric plants represent 69% of the removed capacity, in
terms of capacity.
4,295
3,367
1,710
1,377
1,222
808
668
410
140
57
2016
2017
2018
2019
1,346
2020
2021
2022
2023
14
2024
*Preliminary data PIIRCE 2016-2030
2025
193
2026
330
2027
2028
2029
Method to Solve the Power Flow Model
𝑷𝑭𝑴 = 𝒇 𝑰𝒔, 𝑰𝒕, 𝑹𝒑, 𝑳𝒐, 𝑨𝒑, 𝑮𝒗, 𝑳𝒑
Where modeling elements, which are constant values:
𝑰𝒔 Impedance and shunt admittance
𝑰𝒕 Impedance and transformation ratio on transformers
𝑨𝒔 Admittance shunt elements, capacitors and reactors
𝑳𝒐 Load connected to each node
𝑨𝒑 Active power output of each generator
𝑮𝒗 Generation voltage or reactive power of each generator
𝑳𝒑 The limits of reactive power output of each generator
20
THANK YOU
Oliver Ulises Flores Parra Bravo
General Director of Generation and Transmission of Electricity
Insurgentes Sur 890 Piso 9
Col. Del Valle
Tel: +52 55 5000 6000 Ext. 1210
Correo electrónico: [email protected]
Descargar