Planning of the National Electric System Oliver Ulises Flores Parra Bravo General Director of Generation and Transmission of Electricity Energy Secretariat (SENER), Mexico Background: Electricity Sector in Mexico 19.2% 19.1% California a Imperial Valley Sistema (SDG&E, IID) San Luis Mexicali Río Colorado 62MW Cetys La Rosita Abr-16 P. I. 489MW Sn. Luis Sn. Luis Rey Lomas Op. 161 kV Puerto Peñasco 2 Santa Ana San Simón Nacozari Puerto Libertad 632MW Bahía de los Angeles Hermosillo III Hermosillo IV Guerrero Negro II 25MW 11MW Abr-Jun-16 8MW San Bahía Ignacio Asunción FV Solar 1MW Op. 230 Nuevo Casas Grandes Op. 230 kV Quevedo Cuauhtémoc Huites 422MW Op.230 kV Op. 230 kV Villa Constitución Agustín Olachea 104MW Bledales CE Pesquería 949MW Oct-16 Escobedo San Nicolás a lo Saltil Hylsa Villa de García a San Jerónimo Potencia mos Ra e izp Ar ncia te Po Monterrey Potencia 5 El Palmar CD Los Cabos 85MW El Habal San José del Cabo 10 6 Monterrey 17 Zacatecas Mazatlán 616MW PE La Bufa 180MW Dic-16 Cabo San Lucas Tamazunchale 1,135MW Potrerillos 23 Guadalajara Irapuato Las Fresas Solar s. cia a Ag ten Po Ixtlahuacán Guadalajara I San Martín Guadalajara II Transmisión Subestación Guadalajara Industrial Línea de Transmisión a Salamanca Estación Convertidora CA/CD 115 kV Morelos Yautepec Lázaro Cárdenas Op . 23 0 kV Centro 668MW Ene-16 Caracol 600MW Zihuatanejo 35 Chilpancingo Dic-16 II Manlio Fabio Orizaba Altamirano 37 Temascal II Temascal I 354MW Idesa Braskem 170MW Abr-16 Chontalpa Comalcalco Potencia Balam 43 Valladolid 820MW Los Ríos PS Lázaro Cárdenas Dzitnup 30MW Oct-16 Cancún Nizuc Riviera Maya 45 Cozumel Campeche 41 44 Escárcega Xpujil Chetumal Campeche 252MW a Buena Vista Villahermosa 38 Coatzacoalcos Juile Km 20 36 Peñitas 420MW Cerro de Oro Papaloapan Belice Tabasco Malpaso 1,080MW Ixtepec Potencia La Ciénega 40 a Ocotlá n Huatulco Op.115 kV Op. 115 kV Minatitlán II Abr-16 Oaxaca Acapulco Ene-16 Puerto Real Veracruz Dos Bocas 452MW 33 Ene-16 Húmeros Puebla 27MW Abr-16 Tecali Lerma 113MW Champotón Laguna Verde 1,510MW 110MW Jul-16 Jalapa 34 San Lorenzo Infiernillo 1,200MW 29 Poza Rica CC 117MW 240MW Jul-16 Tlaxcala Valle de México 382MW Petacalco 2,778MW Papantla Acatlán Maz itla am Fecha de Entrada de Proyecto a Adiciones de Red de Transmisión XXX-XX Man za nillo 230 kV Capacidad Instalada MW a 400 kV Op.: Operación Inicial uzmán a Cd.G Expansión 2016 Nivel de Tensión 161 kV, 138 kV y < 34.5 kV a Man zanillo Atequiza Tula 31 Azufres 245MW 42 Ticul II Golfo de México Poza Rica 32 Mazatepec 220MW Teziutlán Op. 230 kV Atequiza Enlace Submarino Enlace Asíncrono Morelia Mérida II 198MW Mérida III 484MW Tuxpan 2,100MW Tres Estrellas 1,973MW San Juan del Río Zimapán 292MW Salamanca 932MW Querétaro 28 Caucel Kanasín El Sáuz 591MW Uruapan La Villita 320MW Ag uas a Po ca te lie nci n a tes Colón Nucleoeléctrica Turbogás Sep-16 Carapan Zapotlanejo Niños Agua Héroes Azul Guadalajara Oriente Álamos Zapopan Hidroeléctrica Purépecha Colima Tapeixtles Guadalajara Norte Geotermoeléctrica 500 kV 27 Manzanillo 2,754MW PE Chacabal 30MW PE Chacabal II 30MW Jul-16 Jul-16 PS Polyuc Motul 30MW Oct-16 Tizimín Norte c tepe a Yau Morelos kV Agua Prieta 240MW Tuzanía Cogeneración Eficiente Termoeléctrica Convencional Mazamitla a La Yesca Blan co Iztapalapa 5 11 Ce rro Tesistán Eólica Ayotla Abr-16 Chalco Santa Cruz . a Combustión Interna Dual Cd. Guzmán Zona Metropolitana de Guadalajara Generación Carboeléctrica Ciclo Combinado La Paz Jamaica Op Simbologí a 30 Celaya 26 an a Zocac 20 Bajío 495MW La Yesca 750MW Tepic Vallarta xp Tu Topilejo Tampico San Luis de la Paz León El Cajón 750MW 22 Altamira 500MW a Texcoco a San Mart a San Lorenzo ín Dic-16 Esmeralda Villa de Reyes 700MW 24 Nuevo Vallarta Puerto Altamira 2,652MW a Tres Estrellas Valle de México 999MW Vallejo Cerro Gordo Remedios El Cerrillo Totoltepec Toluca Estadio Atenco Deportiva San Bernabé Tianguistenco Volcán Gordo Agustín Millan II a Zapata Aguascalientes Océano Pacífico a Lajas Tecnológico Teotihuacán Victoria 19 PE México 2 50MW Sep-16 Km 110 Chimalpa Dos Oct-16 Nopala Almoloya La Venta III 103MW La Venta II Oaxaca I 83MW 102MW Oaxaca II 102MW Oaxaca IV 102MW Oaxaca III 102MW Golfo de Tehuantepec Necaxa 109MW Irolo Tizayuca El Vidrio Donato Guerra era a Pitir Tamos Valles PE Palo Alto 129MW Dic-16 Aguamilpa 960MW Aer a opu erto 18 Energía del Valle de México 94MW Feb-16 Apasco Atlacomulco PE Las Mesas 50MW Abr-16 21 25 Cañada Parque Ind. Reforma Jasso Op. 230 KV Nochistongo Jilotepec Potencia Jorobas La Manga Anáhuac 1,490MW Lajas Güémez PE Dominica 100MW PE Cd. El Salero Victoria 50MW May-16 Primero Abr-16 PS de Mayo Matehuala Champayán Zacatecas I 300MW Dic-16 Anáhuac San Luis Potosí Potencia PE Vientos del Altiplano 70MW Jun-16 JCM Comedero Durango Jerónimo 100MW 150MW Ortiz Nov-16 La Higuera Santiago 52 Torreón Cog. Ramos 50MW Ene-16 a 15 14 May-16 Saltillo PE Coahuila 248MW 200MW Oct-16 a Dañu 300 MW Juchitán II a Conejos Rica II a Poza Tula 2,094MW H. Carranz a a Querétaro Maniobras a Rail Road (SU) a Military Highway (AEP) Río Bravo a Brownsville (AEP) 511MW Guerreño Matamoros Gómez Palacio 738MW Lerdo 320MW Norte Canatlán II 450MW Abr-16 Culiacán Tres Culiacán Durango Potencia El Triunfo Regiomontano Abr-16 Plaza 16 a Planta Frontera (AEP) a Falcón (AEP) Falcón 32MW Reynosa Ventika I, II 252MW 11 Bacurato 92MW Humaya 90MW Coromuel 163MW 49MW Jun-16 Olas Altas Grupo Tech 25MW Jun-16 CE Dulces Huinalá Nombres II 1,476MW 303MW Mar-16 a Fr on tera 51 Ae ro pu er to Las Glorias 4 Guamúchil 13 135MW Ene-16 ro za as Lá en a rd Cá a a Lampazos Punta Prieta 156MW Zona Metropolitana del Valle de México a Nuevo Laredo Lampazos Altos Hornos Monclova Los Mochis Topolobampo 320MW 33MW La Paz a Juile Ixtepec Potencia Carbón II 1,400MW 12 Nueva Rosita Minera Hércules Santiago Abr-16 El Fuerte 59MW 50 El Fraile Hércules Potencia Camargo Mar-16 Pueblo Nuevo Santo Domingo Insurgentes a Juile Matías Romero Potencia Piedras Negras Mesteñas El Encino 619MW El Encino II 433MW Francisco Villa 300MW San Pedro Parques eólicos en el Istmo de Tehuantepec a Eagle Pass (AEP) 36 MW 100 MW a Laredo (AEP) 9 El Mayo Zona Metropolitana de Monterrey Río Escondido 1,200MW Chihuahua Abr-16 3 Mulegé Acuña Piedras Negras Potencia Hermosillo V 227MW Loreto a Monclova Texas Op. 138 kV La Amistad 66MW Laguna Encinillas El Novillo 135MW Guaymas Cereso Guaymas 484MW Tres Cahuisori Vírgenes Pot. 10MW Op. 230 kV Mezquital Santa Rosalía Bácum Cd. Obregón 8MW 2MW Nov-16 Punta Abreojos 8 kV Moctezuma Op. 230 kV Loma Hermosillo CC 250MW 53 Terranova Samalayuca Sur Op. 230 kV Op. 230 kV Parador Nacional 2016 Valle de Juárez Cd. Juárez 7 Samalayuca 1,097MW Naco-Nogales 258MW Ascensión II Cananea 1 Seis de Abril San Felipe Eléctrico Nuevo México Reforma Paso del Norte Agua Prieta II 404MW Feb-16 Ejido Agua Prieta Santa Cruz Industrial Caborca 47 Cañón a Azcárate (EPECO) a Diablo (EPECO) Arizona Nogales Sasabe Ciprés 27MW Ensenada a Citizen Utilities (UNSES) a Three Points (TECI) 49 Cerro Prieto 570MW . 11 5 kV 48 46 Op a Otay Mesa (SDG&E) Tijuana Presidente Juárez 1,438MW La Jovita 294MW Ago-16 Guerrero Negro I 23,641 27,543 56,851 683,226 CFE PPA Private Punta Eugenia Grid (km-c) 400 kV 230 kV Subtransmission (≥ 69 kV) Distribution CFE 61.7% kV 24,043 13,291 5,378 4,904 1,163 12,489 2,805 926 56 1,510 760 583 7 67,913 .1 38 Generation Capacity (MW) Combined Cycle Steam (Fuel Oil and Gas) Coal Simple Cycle Internal Combustion Hydro Wind Geothermal Solar Nuclear Biomass Efficient Cogeneration Other Total Op Clean 19 GW Conventional 48 GW Generation by ownership Op. 115 kV Istmo de Tehuantepec Juchitán II Jun-16 Chicoasén 2,400MW Tuxtla Tehuantepec INFORMACIÓN RESERVADA DE ACUERDO CON LA LEY FEDERAL DE TRANSPARENCIA Y ACCESO A LA INFORMACIÓN PÚBLICA GUBERNAMENTAL 39 Angostura 900MW Tapachula Guatemala 2 a Los Brillantes Honduras New scheme for the electricity sector Retailing Generation Consumption System Control and Power Market Generation I Generation II Generartion III Generation IV Generation PPA Generation CIL Private Parties Short Term Transactions SPOT Market Qualified Users Qualified Unregulated Supply Long Term Contracts Auctions Basic Services Users Basic Services Regulated Supply Transmission Distribution + Contracts PPA: Power Purchase Agreement CIL: Legacy Interconexion Contracts + Contracts Why Planning? The features of electricity may cause productive inefficiencies. Electricity Characteristics Characteristics • Funible good • Volatility Homogeneous good with heterogeneous sources of supply Continuous flow • • • • Description Electricity is not stored on a large scale, which involves maintaining a continuous and instantaneous balance between production and consumption to avoid a failure in the electric system. Electricity demand presents hourly swings, this involves having an efficient management of the electric system, depending on the relationship between demand and installed capacity. Electricity is a uniform good which doesn´t allow to identify their origin and destination. There is a complex diversity of electricity production technologies that are not technically and economically homogeneous (scale, maturity and costs). Capability constraints network. Coordination in planning network to promote scale economies and allow continuos flow between adjacent regions. The main task of having electric-planning tools is: 1. Send signal to project developers with the best system information, for decision making. 2. Define the infrastructure needed to allow efficiently the energy flow. 4 Why Planning? Countries design planning instruments for electric systems base on technical tools and prospective analysis of variables that impact in the generation and transmission expansion, and electricity supply, like: 45,000 40,000 35,000 30,000 • Energy demand • Generation units economic assessment 25,000 20,000 15,000 • Options and new trends of power generation technologies • Electric System reliability • Available resources and environmental considerations • Generation and transmission technical constraints • Other constraints for electric system planning 5 Electric system planning Electric system planning encompasses a broad collection of activities spanning several time horizons and can be divided into categories of analysis such as demand, generation, transmission and distribution. Each category of analysis may be carried out for a short time, a medium time or a long time frame. Long-term planning addresses the economic selection of generation and transmission addition necessary to meet projected load requirements. Examples (generation): Short-time frame: optimum for the system is often to add low capital cost vs high operating cost options. Long-time frame: units with higher capital costs but lower operating costs become more likely to enter the optimum solution 6 Electric system planning Long-term generation expansion planning problem Minimize the total present discounted value of investment and operation costs among the expansion plans which satisfy a given reliability level. Questions to be answered: What capacities to install to ensure an appropriate level of reliability? How to pick the best combination among the different technologies at hand now and later on? Where to locate this new equipment? When is the proper time to incorporate them into the system? 7 Before the Energy Reform Electricity Public Service Law (LSPEE)* LSPEE Supply of Electricity as a Public Service The public service included… The Planning of the National Electric System (SEN) Generation, transmission, transformation, distribution and sale of electricity. The performance of the works and installations required for the planning, execution, operation and maintenance of the national electric system. * Abrogated 11 august 2014 8 Development Program of the National Electric System (PRODESEN) Electricity Industry Law (LIE)* LIE Lead the planning of the National Electric System and elaborate PRODESEN Programa de Desarrollo del Sistema Eléctrico Nacional: encompasses the plan for the National Electricity System and gathers the relevant elements of the indicative Programs for the commission and decommission of power plants as well as the enlargement and upgrade Programs for the national transmission grid and the general distribution networks. * DOF 11 de agosto de 2014 ** Art. 27 ... “Corresponde exclusivamente a la Nación la planeación y el control del sistema eléctrico nacional;…” DOF 20 diciembre 2013 9 PRODESEN…What is it? Development Program of the National Electric System PRODESEN 2016-2030 (updated yearly) Electricity master plan Certainty for industry participants Indicative programs for the commission and decommission of power plants, as well as expansion and modernization programs for the national transmission grid and the general distribution networks. Timely information Next 15 years EFFICIENCY, QUALITY, RELIABILITY, CONTINUITY, SECURITY AND SUSTAINABILITY Competition in commercialization generation and Private investment through publicprivate partnership to upgrade national transmission grid. Planning Process PRODESEN Private Consultants 2 Economic Policy Criteria 1 Fuel Price Criteria Distributors 8 Expansion and 3 Economic Growth Forecast 4 Fuel Price 5 Electricity 6 Electricity Demand Forecast modernization programs for the National Transmission Grid (RNT) Forecast Comsumption Forecast 7 Indicative programs for the commission and decommission of power plants (PIIRCE) 9 Expansion and modernization programs for the General Distribution Networks (RGD) Sectorial Econometric Model of Electricity Consumption 𝑬𝑪𝑴 = 𝒇 𝑹𝒄, 𝑪𝒄, 𝑺𝒍, 𝑺𝒔, 𝑪𝒆, 𝑨𝒑 Where the variables used by region 𝒊 = 𝟏, … , 𝟏𝟎 and NES to the next 15 years: 𝑹𝒄 Residential consumption C𝒄 Commercial consumption 𝑺𝒍 Street lighting 𝑺𝒔 Sewage and safe drinking waterpumping 𝑪𝒆 Consumption of medium and large industry 𝑨𝒑 Agricultural pumping 12 Peak Load Mathematical Forecasting Model 𝑷𝑳 = 𝒇 𝑬𝑪, 𝑳𝒇, 𝑯𝒍 Where the variables used to forecast the next 15 years: 𝑬𝑪 Electricity Consumption by region 𝒊 = 𝟏, … , 𝟏𝟎 and NES 𝑳𝒇 Load Factor by sector 𝒊 = 𝟏, … , 𝟔 𝑯𝒍 Hourly Load Factor Profile by region 𝒊 = 𝟏, … , 𝟏𝟎 and NES Asumption: 𝑳𝒇 ∆ Load Factor by sector i = 1, … , 6 = to the next 15 year 𝜵 13 Indicative programs for the commission and decommission of power plants (PIIRCE) Problem description Generation expansion planning (GEP) is modeled as a Mixed-Integer Linear Programming (MILP), where the optimization problem aims to determine the new generation plants in terms of when to be available, what type and capacity they should be and where to allocate so that an objective function is optimized and various constraints are met. It may be of static type in which the solution is found only for a specified stage (typically, year) or a dynamic type, in which, the solution is found for several stages in a specified period Constraints functions Objective functions 14 Indicative programs for the commission and decommission of power plants (PIIRCE) Model Minimize 𝑪 Investment + 𝑪 O&M + 𝑪 ENS donde: 𝑪 Investment : present discounted value of investment cost. 𝑪 O&M : present discounted value of operation and maintenance cost. 𝑪ENS :present discounted value of the cost of energy not served. Decision variables: Number of units of the generator (g) built in year (y); Number of units of the generator (g) decomission in year (y); Input data Variable cost (g), fixed cost (g), capital investment cost (overnight cost) (g), cost of energy not serve , minimum generating capacity (g), maximum generating capacity (g), renewable energy availability (g) (t), (g), fuel cost for (g), discount rate. 15 Indicative programs for the commission and decommission of power plants (PIIRCE) Model Minimize 𝑪 Investment + 𝑪 O&M + 𝑪 ENS Constraints: Energy Balance; Reserve capacity; Hydrological conditions; Renewable energy potential; Transmission capacity; Technical constraints; Clean energy generation goals. 16 Indicative programs for the commission and decommission of power plants (PIIRCE) Solution PLEXOS uses the “Branch and Bound” algorithm to solve the MILP problem. • • • • linear programming relaxation: drop integer constraints Branching: enumerate solution of subproblems; Bounding: select the best solution. GAP: solution is reached when the difference between between the best known integer solution and the best known bounding linear solution meets certain value. S x1=0 S0 x2=0 x2=1 S00 S000 S1 Z x2=0 x3=0 x1=1 todas las soluciones S00 x3=1 x3=0 S001 S10 x3=1 S000 x2=1 S001 x3=0 S100 S11 x3=1 S101 x3=0 S110 x3=1 S111 . . . S0… 0 xj=0 xj=1 S0…. S0…1 0 Z* 17 Indicative programs for the commission and decommission of power plants (PIIRCE) PRODESEN 2016-2030 COMMISSION Total 57 mil MW Clean 35.8 mil MW DECOMMISSION 15,937 MW Geotérmica 2% Hidroeléctrica 9% Nuclear 7% Cogeneración Eficiente 12% Térmicas 2% Solar 12% Eólica 21% Ciclo Combinado 35% 18 Indicative programs for the commission and decommission of power plants (PIIRCE) • Of all the power plants to be decommissioned, 64% will be removed form service over the next 5 years. • PIIRCE includes the decommissioning of the least efficient power plants. • Conventional thermoelectric plants represent 69% of the removed capacity, in terms of capacity. 4,295 3,367 1,710 1,377 1,222 808 668 410 140 57 2016 2017 2018 2019 1,346 2020 2021 2022 2023 14 2024 *Preliminary data PIIRCE 2016-2030 2025 193 2026 330 2027 2028 2029 Method to Solve the Power Flow Model 𝑷𝑭𝑴 = 𝒇 𝑰𝒔, 𝑰𝒕, 𝑹𝒑, 𝑳𝒐, 𝑨𝒑, 𝑮𝒗, 𝑳𝒑 Where modeling elements, which are constant values: 𝑰𝒔 Impedance and shunt admittance 𝑰𝒕 Impedance and transformation ratio on transformers 𝑨𝒔 Admittance shunt elements, capacitors and reactors 𝑳𝒐 Load connected to each node 𝑨𝒑 Active power output of each generator 𝑮𝒗 Generation voltage or reactive power of each generator 𝑳𝒑 The limits of reactive power output of each generator 20 THANK YOU Oliver Ulises Flores Parra Bravo General Director of Generation and Transmission of Electricity Insurgentes Sur 890 Piso 9 Col. Del Valle Tel: +52 55 5000 6000 Ext. 1210 Correo electrónico: [email protected]