Tabla de Transformadas Zeta Definición ∞ X F (z) = Z x(t) = Z x(kT ) = x(kT )z −k k=0 Funciones más comunes f (t) f (k · T ) o f (k) 1 1 t k·t t2 (k · t)2 t3 (k · t)3 e−at e−akT te−at kT e−akT t2 e−at (kT )2 e−akT 1 a (1 − e−at ) 1 a 1 − e−akT at − 1 + e−at akT − 1 + e−akT sin ωt sin ωkT cos ωt cos ωkT e−at sin ωt e−at sin ωkT e−at cos ωt e−at cos ωkT F (s) = L {f } (s) F (z) 1 1 1−z −1 s 1 T z −1 −1 )2 2 (1−z s 2 T 2 z −1 (1+z −1 ) (1−z −1 )3 s3 6 T 3 z −1 (1+4z −1 +z −2 ) (1−z −1 )4 s4 1 1 1−e−aT z −1 s+a 1 T e−aT z −1 2 (1−e−aT z −1 )2 (s + a) 2 T 2 e−aT (1+e−aT z −1 )z −1 3 (1−e−aT z −1 )3 (s + a) 1 1−e−aT az(1−e−aT z −1 )(1−z −1 ) (s + a) s a2 [(aT −1+e−aT )+(1−e−aT −aT e−aT )z−1 ]z−1 (1−e−aT z −1 )(1−z −1 )2 (s + a) s2 ω z −1 sin ωT 1−2z −1 cos ωT +z −2 2 2 s +ω s 1−z −1 cos ωT 1−2z −1 cos ωT +z −2 2 2 s +ω ω e−at z −1 sin ωT −at z −1 cos ωT +e−2at z −2 2 1−2e (s + a) + ω 2 s+a 1−e−at z −1 cos ωT 2 1−2e−at z −1 cos ωT +e−2at z −2 2 (s + a) + ω