1. δj(x) δj(y) = δ(x − y),S(φ) = R dx R 1 1 2 2 µ ∂ φ∂ φ − 2 m φ ,S(φ) = S(φ0) + 2 µ δS dx δφ(x) | φ0 (φ(x) − φ0(x)) + .... R R δS δφ(x) δφ(x) 2. δφ(y) = dx ∂ µφ∂ µ δφ(y) − m2 φ(x) δφ(y) = dx(∂ µφ∂ µδ(x − y) − m2 φ(x)δ(x − y)) =−∂ µ∂ µφ(y) − m2 φ(y) 3. 4. 5. 1R 2 d x dx ′ j(x)∆F (x−x ′)j(x ′) δZ0(j) Z0(j) = e , δj(y) = R ′ δj(x ) dxdx ′ j(x)∆F (x − x ′) δj(y) = Z0(j) dxj(x)∆F (x − y) δ 2Z0(j) δj(z)δj(y) δZ0(j) R δj(z) R e 1R 2 dx dx ′ j(x)∆F (x−x ′)j(x ′)R dxj(x)∆F (x − y) + Z0(j) dxδ(x − z)∆F (x − y) R R =Z0(j) dxj(x)∆F (x − z) dxj(x)∆F (x − y) + Z0(j)∆F (z − y) = δ 2Z0(j) | = ∆F (z δj(z)δj(y) j =0 6. Li = e µφ − y) 1. <q ′, t ′|q, t > = 2. R q(t ′)= q ′ q(t)=q Dqe Q n=N R dqn n=0 i h R d τL(q,q̇) q m e 2πhiε i PN ε n=1 h q 1 m 2 n+1 − qn ε 2 −V (qn) ,tn > tn−1... ⋗ t0 q(τ1)q(τ2) 3. <q ′, t ′|q̂ (τ1)q̂ (τ2)|q, t > =<q ′, t ′|q̂ (τ1)|q(τ1), τ1 > <q(τ1), τ1|q̂ (τ2)|q, t > = i R R q(t ′)= q ′ d τL(q,q̇) h Dqe q(τ1)q(τ2) si τ1 > τ2 q(t)=q 4. <q ′, t ′|q̂ (τ2)q̂ (τ1)|q, t > = q(t ′)=q ′ q(t)=q R Dqe i h R d τL(q,q̇) q(τ1)q(τ2), si τ1 < τ2 5. T q̂ (τ1)q̂ (τ2) = θ(τ1 − τ2)q̂ (τ1)q̂ (τ2) + θ(τ2 − τ1)q̂ (τ2)q̂ (τ1) 6. <q ′, t ′|T q̂ (τ1)q̂ (τ2)|q, t > = R ∂ψ q(t ′)=q ′ q(t)= q 7. ψ(t) = U (t, t ′)ψ(t ′), i ∂t = HI (t)ψ,i ′ 8. U (t, t ) = P n n=0 9. U (1)(t, t ′) = −i R λ U t t′ (n) (t, t Dqe i h ∂U (t, t ′) ∂t ∂U (n+1)(t, t ′) ),i ∂t ′ R dτL(q,q̇ ) q(τ1)q(τ2) = λĤI (t)U (t, t ′) = ĤI (t)U (n)(t, t ′) dt1ĤI (t1) R t2 R (2) ′ 2 t 10. U (t, t ) = (−i) t ′ dt2ĤI (t2) t ′ dt1ĤI (t1) R t ′ 11. U (t, t ) = T exp −i t ′ dt1ĤI (t1) 1. i3 j(x1)∆F (x1 − 3! y1)j(x2)∆F (x2 − y2)j(x3)∆F (x3 − y3)κ(3)(y1, y2, y3) = W (3) (3) 2. Gc (x1, x2, x3) = ∆F (x1 − y1)∆F (x2 − y2)∆F (x3 − y3)κ(3)(y1, y2, y3) 3. φ(3) c (x) = δW (3)[j] i δj(x) i2 = 2! ∆F (x − y1)j(x2)∆F (x2 − y2)j(x3)∆F (x3 − y3)κ(3)(y1,2, y3) Parámetros de Feynman: 1 = a d Z ∞ dte −at 0 1 1 = 2 + m2 (k + p)2 + m2 k d (2π) d k 11 = ab Z 0 d ∞ dt1dt2 d k (2π)d Z ∞ dt1dt2 e−(at1 +b t2) 0 e−(at1 +b t2) a = k 2 + m2, b = (k + p)2 + m2 Trazas 1. {γ µ , γ ν } = 2η µν 1 2. 2 (Tr(γ µγν ) + Tr(γνγ µ)) = δ µν Tr(1) = 4δ µν = Tr(γ µγν ) µ ν 3. Tr(γ µγνγαγ β ) = Tr(Sγ µγνγαγ βS −1) = Tr(Sγ µS −1SγνS −1SγαS −1Sγ βS −1) = L−1 µ̄L−1ν̄ α β L−1ᾱL−1 β̄ Tr γ µ̄γ ν̄γ ᾱγ β̄ µ 4. S γ µ S −1 ≡L−1ν γ ν 5. Tr γ µ̄γ ν̄γ ᾱγ β̄ = Aη µνη αβ + Bη µαη νβ + Cη µβη αν = Aη βµη να + Bη βνη µα + Cη βαη νµ, A=C 6. Tr(γ µ̄γ ν̄γ αγα) = Aη αµηαν + Bη ανηαµ + A4η νµ = Aη µν + Bη µν + 4Aη µν 1 1 7. γ αγα = ηαβγ αγ β = 2 ηαβ {γ α , γ β } = 2 ηαβ 2η αβ = 4 8. Tr(γ µ̄γ ν̄γ αγα) = 4 × 4η µν = (5A + B)η µν , 5A + B = 16 9. µ = ν = α = β = 0,4 = 2A + B,3A = 12,A = 4, B = −4 10. Tr(γ µγ νγ αγ β ) = 4η βµη να − 4η βνη µα + 4η βαη νµ 11. Tr(γ 5 γ µγ νγ αγ β ) = Aǫ µναβ ,γ 5 = iγ 0 γ 1 γ 2 γ 3, Tr(γ 5 γ 0 γ 1 γ 2 γ 3) = −4i = A