UNIDAD II: EQUILIBRIO TERMODINÁMICO El equilibrio

Anuncio
FISICA II 2009
TEMA II
JUAN J CORACE
UNIDAD II: EQUILIBRIO TERMODINÁMICO
El equilibrio termodinámico. Diagramas PV y PT para una sustancia pura. Superficie PVT.
Gases ideales. Leyes de los Gases Ecuaciones de estado. Coeficientes térmicos: de
dilatación volumétrica y compresibilidad isotérmica. Gases Reales. Ecuación de Van der
Waals. Factor de compresibilidad
A menudo los sistemas macroscópicos presentan cierta `memoria' sobre su historia reciente;
pero al cabo de cierto tiempo, el sistema decae a un estado simple (homogéneo, sin
turbulencias, etc.) absolutamente estacionario. A estos estados nos referimos cuando
hablamos de equilibrio termodinámico.
Postulado I: existen estados llamados de equilibrio que pueden caracterizarse
completamente a nivel macroscópico por U, X, ni; donde U representa la energía del
sistema, X alguna variable (P, v, T, etc.) y ni la composición.
Este postulado puede parecer elemental, pero encierra una tautología que hace a la esencia
de esta ciencia: la termodinámica es la ciencia que se ocupa de describir sistemas en
equilibrio, al tiempo que un sistema se encuentra en equilibrio si es descrito correctamente
por la termodinámica.
En esta unidad, las relaciones entre presión, volumen específico y temperatura se
presentarán para una sustancia pura. Una sustancia pura es homogénea. Puede existir en
más de una fase, pero cada fase debe tener la misma composición química. El agua es una
sustancia pura. Las diversas combinaciones de sus tres fases tienen la misma composición
química. El aire, en su fase gaseosa, es una sustancia pura, pero el aire líquido tiene diferente
composición química. El aire no es una sustancia pura si existe en más de una fase. Además,
aquí sólo se considera una sustancia simple compresible (es decir, una sustancia que está
esencialmente libre de efectos de tensión magnética, eléctrica o superficial).
Concepto básico: Durante el cambio de fase de líquido a vapor, la temperatura permanece
constante cuando se agrega calor a presión constante.
LA SUPERFICIE P-V-T
Una sustancia pura
puede existir en tres fases diferentes: sólida, líquida y gaseosa. Si
consideramos el caso en el que un sólido (hielo) está contenido en una máquina con un
pistón y un cilindro, de modo tal que la presión se mantiene a un valor constante. Se agrega
calor al cilindro, de tal manera que la sustancia experimente las tres fases. Nuestro
experimento se muestra en varias etapas en la figura 2.1:
1
FISICA II 2009
TEMA II
JUAN J CORACE
Figura 2.1. Fases sólida, líquida y de vapor de una sustancia.
Si registramos la temperatura y volumen específico durante el experimento, y comenzamos
con el sólido a cierta temperatura baja, por ejemplo el punto A de la figura 2.2; si a
continuación agregamos calor hasta que apenas empieza a derretirse en el punto B; y luego
más calor derretirá por completo el sólido, conservando constante la temperatura hasta
alcanzar el punto C. Una vez que todo el sólido se haya derretido, la temperatura del líquido
sube otra vez hasta que empieza a formarse calor en el punto D, que es el estado líquido
saturado. De nuevo, durante el cambio de fase de líquido a vapor, llamado vaporización, la
temperatura permanece constante cuando se agrega calor. Por último, todo el líquido se
vaporiza y existe entonces el estado de vapor saturado en el punto E, después de lo cual la
temperatura sube otra vez si se agrega calor. Cada volumen específico del sólido y líquido es
mucho menor que el volumen específico del vapor. La escala está exagerada en esta figura
para que las diferencias sean aparentes.
FIGURA 2.2 Diagrama T-v
Si el experimento se repite varias veces y se utilizan diferentes presiones, resulta un diagrama
T-v, como se ve en la figura 2.2.b. A presiones que excedan la presión del punto crítico, el
líquido simplemente cambia a vapor sin un proceso de vaporización a temperatura constante
Los datos obtenidos en un experimento real podrían presentarse como superficie
tridimensional con p = p (v, T). La figura 2.3 muestra un diagrama cualitativo de una
sustancia que se contrae al congelarse. Para una sustancia que se expande al congelarse, la
superficie sólido-líquido estaría a un volumen específico más pequeño que para la superficie
sólida. Las regiones donde sólo existe una fase se marcan como sólido, líquido y vapor.
2
FISICA II 2009
TEMA II
JUAN J CORACE
Donde simultáneamente existen dos fases, las regiones están marcadas como sólido-líquido
(S-L), sólido-vapor (S-V), y líquido-vapor (L-V).
A lo largo de la línea triple, que es una línea de temperatura y presión constantes, coexisten
las tres fases.
Concepto básico:
son necesarias dos
propiedades
para
establecer el estado
de una sustancia
pura
FIGURA 2.3 Diagrama p-v-T de una sustancia que se contrae al congelarse(arriba).
Proyecciones en los planos PV-PT-TV(abajo)
La superficie p-v-T puede proyectarse sobre el plano p-v, y el plano TV, y el p-T, con lo cual se
obtienen los diagramas p-v, T-v y p-T que se ven en la figura 2.4. El proceso de fusión,
vaporización y sublimación (la transformación de un sólido directamente a vapor), se ilustran
en la parte (c).
Se puede observar que cuando la línea triple de la figura 2.3 se ve paralela al eje v, parece ser
un punto, razón por la cual se denomina punto triple. Se muestra una línea de presión
constante en el diagrama T-v y una línea de temperatura constante en el diagrama p-v, que son
los dos diagramas que con frecuencia se trazan en problemas referentes a cambio de fase.
3
FISICA II 2009
TEMA II
JUAN J CORACE
Debemos familiarizarnos muy bien con estos dos diagramas; pues serán muy útiles cuando
se analicen problemas de esta naturaleza.
FIGURA 2.4 Diagramas p-v, T-v y p-T.
El interés práctico principal está en situaciones que comprenden las regiones líquido, líquidovapor y vapor. Un vapor saturado se encuentra sobre la línea de vapor saturado y un líquido
saturado sobre la línea de líquido saturado. La región a la derecha de la línea de vapor
saturado es la región sobrecalentada; la región a la izquierda de la línea de líquido saturado
es la región de líquido comprimido (también llamada región de líquido subenfriada). Se
encuentra un estado supercrítico cuando la presión y temperatura son mayores a los valores
críticos.
REGIÓN LÍQUIDO-VAPOR
En cualquier estado (T, v) entre los puntos saturados f y g, mostrados en la figura 2.5,
líquido y vapor existen como una mezcla en equilibrio.
Representemos por vf
y vg,
respectivamente, los volúmenes específicos de líquido saturado y vapor saturado. Sea m la
masa total de un sistema (como el que se muestra en la figura 2.1c), mf cantidad de masa en
la fase líquida y mg la cantidad de masa en la fase de vapor. Entonces, para un estado del
sistema representado por cualquier (T, v), por ejemplo el estado 1, el volumen total de la
mezcla es la suma del volumen ocupado por el líquido y el ocupado por el vapor, o sea:
V = V f + Vg
o
mv = m f v f + m g v g
[2.1]
La razón entre la masa de vapor saturado y la masa total se
denomina calidad de la mezcla, designada por el símbolo x;
es:
x=
mg
m
[2.2]
FIGURA 2.5 Diagrama T-v que muestra los puntos de líquido saturado y vapor saturado
4
FISICA II 2009
TEMA II
JUAN J CORACE
Con frecuencia nos referimos a la región bajo las líneas de saturación como la región de
calidad, la región de mezcla, o la región húmeda; es la única región donde la calidad x tiene
significado. Si reconocemos que mf = m - mg, podemos escribir la ecuación 2.1, con el uso
de nuestra definición de calidad, como:
v = v f + x (v g − v f )
[2.3]
Como la diferencia en valores de vapor saturado y líquido saturado aparece con frecuencia
en cálculos, regularmente denotamos esta diferencia con el subíndice "fg"; esto es:
v fg = (v g − v f )
[2.4]
v = v f + xv fg
[2.5]
Por lo tanto, la ecuación 2.3 es:
Las palabras gas y vapor a menudo se utilizan como sinónimos y comúnmente a la fase de
vapor de una sustancia se le llama gas cuando su temperatura es más alta que la
temperatura crítica. El vapor normalmente implica un gas que no se encuentra muy alejado
del estado de condensación.
GASES IDEALES y ECUACIÓN DE ESTADO
Cualquier ecuación que relacione la presión, la temperatura y el volumen específico de una
sustancia se denomina ecuación de estado. Las relaciones de propiedades que comprenden
a otras pertenecientes a una sustancia que se halla en estados de equilibrio, también se
conocen como ecuaciones de estado. Hay varias ecuaciones de estado, algunas sencillas y
otras muy complejas: la más sencilla y mejor conocida para sustancias en la fase gaseosa
es la ecuación de estado de gas ideal, la cual predice el comportamiento P-v-T de un gas
con bastante exactitud, dentro de cierta región elegida adecuadamente
Con el termómetro de gas se encuentra experimentalmente que todos los gases, a baja
presión y lejos de la región de la línea de condensación, se comportan de la misma manera
en lo que se refiere al efecto de la temperatura (siempre y cuando no tengan lugar
reacciones químicas).
Si se usa como propiedad termométrica el producto PV de la presión por el volumen de una
masa fija de gas, se apreció que cuando se usan diferentes gases aparecen solamente
diferencias muy pequeñas entre las temperaturas indicadas (en la práctica no se suele usar
el producto PV; o se mantiene constante V y se usa P como propiedad termométrica, o
viceversa).
Por
ejemplo,
un
termómetro
5
de
hidrógeno
y
uno
de
nitrógeno
a
FISICA II 2009
TEMA II
JUAN J CORACE
(aproximadamente) 1 Atm de presión, calibrados de la manera antes relatada, concuerdan
entre sí dentro de un margen de 0.02 ˚C en todo el intervalo de 0 a 100 ˚C.
Esto es ciertamente útil del punto de vista práctico, pero la verdadera importancia del
termómetro de gas se debe a que se puede demostrar que las mediciones que con él se
efectúan, cuando se las extrapola al límite de muy bajas presiones, dan una realización
experimental de la temperatura termodinámica absoluta.
Si partimos de la expresión:
PV
θ
=
P →0 (PV )
θr
r
lim
[2.6]
donde (PV) y (PV)r se refieren a la misma masa de gas a dos diferentes temperaturas, θ y
θr, una de las cuales ha sido elegida arbitrariamente como punto fijo o punto de referencia.
El primer miembro de la ecuación contiene variables que se pueden medir directamente y da
un cociente numérico bien definido. Por lo tanto, si asignamos un número a θr, queda
determinado θ. Luego todas las temperaturas de la escala quedan fijadas asignando un
único número.
Es útil ampliar algo más la fórmula [2.6] y obtener una ecuación de estado para un gas ideal.
Se encuentra experimentalmente que, a temperatura constante, el producto (PV) es (en el
límite P → 0) proporcional a la masa m del gas. Podemos entonces definir una constante K
como:
K = lim
P →0
(PV )r
mθ r
[2.7]
y en dicho límite podemos escribir la [2.6] en la forma:
PV =mKθ
[2.8]
Aquí, si expresamos m en unidades de masa (por ej. kilogramos), K tiene un valor diferente
para cada gas. Podemos conseguir que la constante que figura en la expresión [2.8] sea la
misma para todos los gases (esto es, sea una constante universal) definiendo una nueva
unidad de masa llamada el mol. Por definición, 1 mol de un gas es aquella masa del gas que
tiene el mismo valor de (pV) que el que tienen 32 kg de oxígeno ordinario, a la misma
temperatura y para p → 0. La ecuación de estado de un gas ideal se puede entonces

escribir finalmente en la forma:
PV =nRθ
[2.9]
6
FISICA II 2009
TEMA II
JUAN J CORACE
donde n es el número de moles del gas y R es la constante universal de los gases.
Obsérvese que el valor de R depende de las unidades usadas para p y V, y del particular
valor que se asignó a θr . Es usual elegir:
θr = 273.16 K (Kelvin, o grados absolutos)
[2.10]
como la temperatura a la cual el hielo, el agua líquida y el vapor de agua están en equilibrio
entre sí (el punto triple del agua, que por definición corresponde a 0.01 ˚C).
La razón de tomar como punto fijo de la escala el punto triple es que las tres fases pueden
coexistir en equilibrio solamente para un único valor de la temperatura y la presión. De esta
forma no hay ambigüedades en la definición de la escala. En cambio, la
temperatura de fusión del hielo y la de ebullición del agua (donde coexisten dos fases)
dependen de la presión. Se encuentra entonces experimentalmente que:
8,3143
joule
mol.K
[2.11]
Podemos escribir la ecuación de estado de un gas ideal en una forma equivalente a la
ecuación pV = nRθ, si recordamos que 1 mol contiene:
N0 = 6.02×1023 moléculas
[2.12]
cantidad que se denomina número de Avogadro.
Luego la ecuación de estado de un gas ideal se escribe en la forma:
PV = Nkθ
[2.13]
donde N =nN0 es el número de moléculas presentes en el gas y la constante universal “k”
se denomina constante de Boltzmann
k=
J
R
= 1.38 x10 − 23
K
N0
ESCALA DE TEMPERATURA PRÁCTICA INTERNACIONAL
La determinación exacta de la temperatura por medio del termómetro de gas es engorrosa y
difícil, y se realiza sólo en laboratorios. En consecuencia esos dispositivos solo se suelen
emplear en el trabajo científico, para determinar las propiedades termométricas de otras
clases
más
convenientes
de
termómetros
y
para
determinar
las
temperaturas
termodinámicas de varios puntos fijos de interés, como ser puntos de fusión y ebullición. En
7
FISICA II 2009
TEMA II
JUAN J CORACE
la gran mayoría de los trabajos técnicos y científicos, los patrones de uso corriente son
termómetros calibrados respecto de esos puntos fijos. Las fórmulas de interpolación para
esos patrones prácticos se obtienen midiendo sus propiedades termométricas con
termómetros de gas.
Hay convenciones internacionales acerca de cada tipo particular de termómetro, su diseño,
las temperaturas que se deben asignar a los varios puntos fijos y las correspondientes
fórmulas de interpolación. La escala así definida se denomina escala práctica internacional
de temperatura.
Esta escala se elige de modo que las mediciones efectuadas con instrumentos
correctamente calibrados concuerden con la temperatura termodinámica dentro de un
margen de tolerancia de 0.01 ˚K en la mayoría de los casos. Periódicamente se llevan a
cabo revisiones de esta escala en lo que respecta a procedimientos y valores.
LEYES DE LOS GASES IDEALES
LEY DE BOYLE-MARIOTTE
“A temperatura constante, los volúmenes de una masa gaseosa son inversamente
proporcionales a las presiones que soporta”
P1.V1 = P2V2
→
P1 V2
=
P2 V1
ordenando
P.V = C
FIGURA 2.6 esquema de la ley de Boyle para un gas
FIGURA 2.7 Isoterma. Gráfico PV
8
[2.14]
FISICA II 2009
TEMA II
JUAN J CORACE
LEY DE CHARLES- GAY-LOUSSAC
“a presión constante, los volúmenes de una masa de gas son directamente proporcionales a
las respectivas temperaturas absolutas”, Experimentalmente Gay-Loussac obtuvo:
α=
Vt − V0
V0 .t
α=
1
= 0,003665
273,16
Vt = V0 (1 + α .t )
o bien
V1 V2
=
= cte
T1 T2
T1 V1
=
T2 V2
[2.15]
LEY DE AVOGADRO
“Volúmenes iguales de distintas sustancias gaseosas, medidos en las mismas condiciones
de presión y temperatura, contienen el mismo número de partículas"
La cantidad de material se describe en función del número de moles. Esta unidad de materia
se corresponde a un número de partículas dado por la constante de Avogadro
23
N = 6.022 x 10 mol
-1
[2.16]
Simbólicamente la Ley de Avogadro se describe como:
[2.17]
V∝n
De acuerdo con la Ley de Avogadro, el volumen ocupado por un mol de cualquier gas es el
mismo a una temperatura y presión fijas. Cuando T = 0°C y P = 1 atm, este volumen es de
22.4 litros. Las condiciones antes mencionadas, T = 0°C y P = 1 atm, se denominan
condiciones estándar, y se representa como PTE (presión y temperatura estándar).
El volumen de 1 mol de gas se representa como el volumen molar (Vm). Por lo tanto, la Ley
de Avogadro se representa por la siguiente igualdad:
[2.18]
Vm = 22.4 lts a PTE
Si denominamos n al número de moles de un cierto gas, entonces el volumen ocupado por
esta cantidad será:
[2.19]
V = n.Vm
9
FISICA II 2009
TEMA II
JUAN J CORACE
Al igual que con las otras leyes, la Ley de Avogadro sólo se cumple para un gas poco denso.
CONCLUSIÓN
Las observaciones anteriores generalizan un comportamiento para los gases poco densos.
Estos gases poco densos y que cumplen con las leyes de Boyle, Charles y Avogadro se
denominan gases perfectos.
Combinando las conclusiones de las leyes que describen al gas perfecto:
V∝ 1/P o PV = CTE Ley de Boyle
V ∝ T Ley de Charles
V ∝ n Ley de Avogadro
se puede concluir que
[2.20]
PV ∝ nT
Para poner esta expresión como una igualdad, es necesario definir una constante de
proporcionalidad, que llamaremos constante molar del gas perfecto o, como se la conoce
usualmente, constante de los gases, simbolizada por R. El valor de R es independiente de la
-1
-1
naturaleza del gas, y vale 0.082 L atm mol K .
Con esta definición, llegamos a una ecuación que describe el comportamiento del gas
perfecto:
[2.21]
PV = nRT
Obsérvese que la expresión [2.21] es equivalente a la [2.13]
MEZCLA DE GASES
Dalton describió la mezcla de gases perfectos en función de la presión y su composición.
Consideremos nA moles de un gas A encerrado en un recipiente de volumen V a la
temperatura T. De acuerdo con la ley del gas perfecto, la presión ejercida por ese gas será:
( ) RT
V
PA = n A .
Análogamente, para nB moles de un gas B en las mismas condiciones:
( ) RT
V
PB = nB .
10
FISICA II 2009
TEMA II
JUAN J CORACE
¿Qué sucede cuando en el mismo recipiente, y a la misma temperatura, se mezclan los dos
gases? Dalton concluyó, a partir de sus experimentos, que ambos gases actúan
independientemente sin afectarse mutuamente. Esto es, cada gas ejercerá la presión PA y
PB, de manera que la presión total (PT) del sistema será la suma de ambas presiones:
PT = PA + PB
La presión que ejerce cada gas (PA y PB) se denominan presión parcial. Retomando la
ecuación anterior, y sustituyendo por las definiciones de PA y PB,
RT
RT
+ nB .
V
V
PT = n A
Reordenando
PT = (n A + nB ).
RT
V
Donde (nA + nB) representa el número total de moles gaseosos, nT
PT = (nT ).
RT
V
La cantidad de materia correspondiente a cada una de las sustancias gaseosas se puede
expresar en función de la cantidad total a través de las fracciones molares, x, de acuerdo
con:
xA =
nA
nT
xB =
nB
nT
y
PB = xB .PT
y de donde es viable demostrar que
PA = x A .PT
Generalizando, para una mezcla de “i ” gases, la presión parcial de cada uno de ellos en la
mezcla puede calcularse como:
Pi =
ni
.P = x P
∑ ni T i T
[2.22]
i
La ley de Dalton se cumple para aquellos gases que se comportan como gases perfectos.
Por lo tanto, a la mezcla de gases se le aplica las mismas restricciones que a ellos: es válida
para gases perfectos que forman una mezcla poco densa una vez puestos juntos en un
recipiente.
11
FISICA II 2009
TEMA II
JUAN J CORACE
MODELO MOLECULAR PARA EL GAS PERFECTO
Hasta ahora hemos llegado a establecer un modelo matemático que describe el
comportamiento del gas perfecto. Este modelo nos permite realizar cálculos y realizar
predicciones numéricas para las diferentes propiedades del gas perfecto.
Es conveniente ahora desarrollar un modelo molecular para el gas perfecto. ¿En qué
consiste esto? Un modelo molecular es una “imagen” que nos permite visualizar las
moléculas, y de esta manera facilitar la interpretación de los resultados.
Para el gas perfecto, se ha desarrollado un modelo molecular que se basa en los siguientes
supuestos:
•
el gas se describe como una colección de partículas idénticas de masa m en
movimiento aleatorio continuo
•
se considera que las partículas son como puntos, es decir, no tiene volumen
•
las partículas se mueven sin interactuar unas con otras, excepto por las colisiones
derivadas de su continuo movimiento
•
todas las colisiones (de las partículas entre sí y con el recipiente que las contiene)
son elásticas, es decir, que mantienen su energía traslacional después del choque.
TEORÍA CINÉTICA
Con base al modelo presentado en el apartado anterior, se puede demostrar que la
ecuación del gas perfecto puede representarse de acuerdo con la siguiente ecuación:
[2.23]
PV =
1
N .m.c 2
3
donde N es el número de partículas presentes, m es la masa de cada partícula, c2 es la
velocidad cuadrática media y los otros símbolos tienen su significado frecuente.
Con la definición de número de moles (n), la ecuación anterior puede expresarse también
como:
1
PV = n(PM ).c 2
3
[2.24]
donde PM es la masa molar. De acuerdo con el modelo de gas perfecto empleado, todas
las partículas colisionan a la misma velocidad si la temperatura se mantiene constante, por
lo que corresponde a una expresión del tipo PV = constante, es decir, está de acuerdo con
la Ley de Boyle.
Si comparamos la expresión anterior con la ecuación correspondiente al gas perfecto,
12
FISICA II 2009
TEMA II
JUAN J CORACE
PV = n.R.T, podremos obtener un significado para la velocidad cuadrática media de las
partículas. Igualando ambas expresiones:
1
n( PM ).c 2 = nRT
3
c2 =
3RT
PM
y definiendo la raíz cuadrada de la “velocidad cuadrática media” , velocidad rcm (crcm)
_
c rcm = c 2 =
3RT
PM
[2.25]
llegamos a esta expresión que nos permite sacar algunas conclusiones:
En primer lugar existe una proporcionalidad (no directa) de la raíz cuadrada de la velocidad
cuadrática media con la temperatura: a mayor temperatura, mayor será esta velocidad; y en
segundo lugar, la velocidad rcm tienen una proporcionalidad inversa con la masa de las
partículas, es decir, las partículas con mayor masa se mueven más lentamente que las de
menor masa.
DENSIDAD DE LOS GASES
Una de las características de la materia es su densidad, que se define como la masa de una
sustancia contenida en una unidad de volumen. Es una propiedad macroscópica que refleja
las características microscópicas de la sustancia. Así, los gases, con una separación muy
importante entre sus moléculas, tienen valores de densidad que son unas 1000 veces
menores que la de los líquidos y los sólidos. Las dimensiones de la densidad son:
[ρ] = gmL-1
[2.26]
El cálculo de la densidad de una sustancia requiere de la medida experimental de la
magnitud de su masa y de su volumen. La masa es una magnitud que no depende de
variables externas, pero el volumen es dependiente de la temperatura y de la presión, por lo
que la densidad también dependerá de estas variables, vale decir que la densidad es una
función de la temperatura y la presión.
13
FISICA II 2009
TEMA II
JUAN J CORACE
COEFICIENTES TÉRMICOS EN UN SISTEMA TERMODINÁMICO
En la unidad I habíamos introducido las ecuaciones de estado, que daban una variable
conjugada fuerza generalizada Yi en función de la temperatura y las coordenadas de trabajo
Xi. (Ver unidad I).
Los coeficientes térmicos son derivadas de estas ecuaciones. Así, en un sistema hay una
ecuación de estado, que podemos escribir en la forma:
f (P,V,T) = 0
A partir de aquí pueden definirse seis derivadas parciales (dos para cada variable) de las
que tres son en principio independientes, y son básicamente los siguientes coeficientes:
Coeficiente de dilatación isobárica (o térmica, o cúbica):
αL =
1 ⎛ ∂L ⎞
1 ∆L −1
(Κ )
⎟ ≅
⎜
L ⎝ ∂T ⎠ P L ∆T
bien α V =
o
1 ⎛ ∂V ⎞
1 ∆V
(Κ −1 )
⎟ ≅
⎜
V ⎝ ∂T ⎠ P V ∆T
(El subíndice P indica que la derivada se calcula a presión constante). Es función de T y P,
aunque en sólidos y líquidos es casi constante en intervalos moderados.
Coeficiente de aumento de presión a volumen constante (o coeficiente piezotérmico)
β=
1 ⎛ ∂P ⎞
1 ∆P −1
(Κ )
⎜
⎟ ≅
P ⎝ ∂T ⎠V P ∆T
Es función de T y V, aunque en sólidos y líquidos es casi constante.
Coeficiente de compresibilidad isotérmica, kr:
kT =
1 ⎛ ∂V ⎞
1 ∆V
[ Pa −1 ]
⎟ ≅−
⎜
V ⎝ ∂P ⎠ T
V ∆P
Es función de P y T, aunque en sólidos y líquidos es casi constante (y muy pequeño).
En realidad, estos tres coeficientes no son independientes, sino que hay una relación, en
virtud del teorema de reciprocidad:
α = P.β .kT
[2.27]
Un coeficiente distinto a estos, pero que suele asociarse con ellos, es el coeficiente de
compresibilidad adiabática, kad igual al anterior pero para procesos adiabáticos, en lugar
de isotermos.
Los coeficientes térmicos se miden experimentalmente, y su conocimiento permite
determinar la ecuación térmica de estado, saber la variación de una coordenada
termodinámica en un proceso, calcular el trabajo en procesos cuasiestáticos (pues este
es función del cambio de volumen), etc.
Otro
coeficiente termodinámico, es el del Calor específico a presión constante, que lo
estudiaremos más adelante en la unidad IV .
14
FISICA II 2009
TEMA II
CP =
JUAN J CORACE
[
1 ⎛ ∂Q ⎞
1 Q
⎛ ∂h ⎞
J .kg −1 K −1
⎟ ≅
⎜
⎟ =⎜
m ⎝ ∂T ⎠ P ⎝ ∂T ⎠ P m ∆T
]
En todos los casos vistos los coeficientes termodinámicos son relaciones entre propiedades
termodinámicas. Matemáticamente son derivadas parciales de una variable respecto de
otra.
GASES REALES
Un gas ideal es una sustancia imaginaria que obedece a la relación Pv = RT
Experimentalmente, se ha observado que la relación de gas ideal se aproxima mucho al
comportamiento P-v-T de los gases reales a bajas densidades: ya que bajo condiciones
que implican presiones bajas y temperaturas altas la densidad de un gas disminuye y
se comporta como gas ideal.
En los gases reales las moléculas están sujetas a una interacción mutua, caracterizada por
una cierta energía potencial E(r) función de la distancia intermolecular r.
En general, se puede pensar en la existencia de una ecuación de estado de la forma,
⎛N ⎞
P = f ⎜ , T ⎟ , con
⎝V ⎠
PV
= kT
N / V →0 N
lim
[2.28]
ya que en el campo de densidades muy bajas se tiene que obtener de nuevo la ecuación de
los gases perfectos, por lo que conviene realizar el siguiente desarrollo en serie de
potencias de (N/V):
n
N2
N3
P = kT + a 2 + b 3 + ...
V
V
V
donde los coeficientes a(T), b(T), etc., son los denominados coeficientes del virial que
pueden determinarse experimentalmente.
ECUACIÓN DE VAN DER WAALS
La ecuación de estado que Van der Waals propuso en 1873, tiene dos constantes que se
obtienen del comportamiento de una sustancia en el punto crítico, y está dada por:
(P +
a
).(v − b) = RT
v2
P=
[2.29]
RT
a
− 2
(v − b) v
Recordemos el concepto de punto crítico: Temperatura y presión por encima de la cual no
se puede condensar un gas.
15
FISICA II 2009
TEMA II
JUAN J CORACE
FIGURA 2.8 Punto Triple y Punto Crítico
Van der Waals intentó mejorar la ecuación de estado de gas ideal al incluir dos de los efectos
no considerados en el modelo de gas ideal: las fuerzas de atracción intermoleculares y el
volumen que ocupan las moléculas por sí mismas. El término a/v2 toma en cuenta las fuerzas
intermoleculares y b el volumen que ocupan las moléculas de gas. En una habitación a presión
y temperatura atmosféricas, el volumen que en realidad ocupan las moléculas es de alrededor
de un milésimo del volumen de la habitación. A medida que aumenta la presión, el volumen
ocupado por las moléculas se vuelve una parte cada vez más importante del volumen total.
Van der Waals propuso corregir esto reemplazando v en la relación del gas ideal por v- b,
donde b representa el volumen que ocupan las moléculas de gas por unidad de masa.
La determinación de las dos constantes que aparecen en esta ecuación se basa en la
observación de que la isoterma crítica en un diagrama P-V tiene un punto de inflexión horizontal
en el punto crítico. Así, las derivadas primera y segunda de P con respecto a v en el punto
crítico deben ser cero. Es decir:
(
∂P
∂V
)T
=0
y
(
∂2P
)T = 0
∂V 2
Resolviendo estas derivadas es posible obtener los coeficientes a y b.
Ésta y otras ecuaciones similares se llaman ecuaciones de estado vinales, mientras los
coeficientes a (T), b (T), c (T), etc., que son funciones únicamente de la temperatura se
llaman coeficientes vinales. Éstos sé determinan de forma experimental o teórica a
partir de la mecánica estadística, de donde resulta obvio que a medida que la presión
se aproxima a cero, los coeficientes vinales desaparecerán y la ecuación se reducirá a
la de estado de gas ideal. El comportamiento P-v-T de una sustancia se puede
representar con precisión con la ecuación virial de estado en un ámbito amplio gracias a
la inclusión de suficientes términos. Las ecuaciones de estado analizadas aquí son
16
FISICA II 2009
TEMA II
JUAN J CORACE
aplicables sólo a la fase gaseosa de las sustancias; por lo tanto, no se deben usar para
líquidos o mezclas líquido-vapor.
FACTOR DE COMPRESIBILIDAD
Este factor nos da una medida de la desviación del comportamiento de un gas respecto a un
gas ideal. La ecuación de gas ideal es muy simple, por lo tanto, muy conveniente de usar.
Pero los gases se desvían de manera importante del comportamiento de gas ideal en
estados cercanos a la región de saturación y el punto crítico. Esta desviación a temperatura
y presión específicas se explica con exactitud mediante la introducción de un factor de corrección llamado factor de compresibilidad Z, definido como:
Z=
o bien
PV
RT
[2.30]
donde Z =
PV=ZRT
Vactual
Videal
donde Videal = RT/P. Es evidente que Z = 1 para gases ideales, mientras que para los reales
puede ser mayor o menor que la unidad. Cuanto más lejos se encuentra Z de la unidad,
mayor es la desviación que el gas presenta respecto al comportamiento de gas ideal.
Se ha dicho que los gases siguen la ecuación de gas ideal a bajas presiones y altas
temperaturas, ¿pero qué es exactamente lo que constituye baja presión y alta temperatura?
¿Es - 100°C una temperatura baja?. Definitivamente lo es para muchas sustancias, pero no
para el aire. El aire (o-el nitrógeno) puede tratarse como gas ideal a esta temperatura y a la
presión atmosférica con un error inferior a 1 por ciento. Esto se debe a que el nitrógeno está
por arriba de su temperatura crítica (- 147°C) y lejos de la región de saturación. Sin embargo, a esta temperatura y presión la mayor parte de las sustancias existirían en la fase
sólida. Por consiguiente, la presión o temperatura de una sustancia es alta o baja en
relación con su temperatura o presión críticas.
Los gases se comportan de manera diferente a determinadas temperatura y presión, pero se
comportan de manera muy parecida a temperaturas y presiones normalizadas respecto a
sus temperaturas y presiones críticas. La normalización se efectúa como
PR =
P
Pcrit
y
TR =
T
Tcrit
En la que PR es la presión reducida y TR la temperatura reducida. El factor Z para todos los
gases es aproximadamente el mismo a iguales presión y temperatura reducidas, lo cual
recibe el nombre de principio de estados correspondientes. Al parecer los gases obedecen
bastante bien el principio de estados correspondientes.
17
FISICA II 2009
TEMA II
18
JUAN J CORACE
Descargar