ISSN -0325-4011 Lat. am. j. heat mass. transf. References le, edited by S. Angus, B. Arms· Rev. latinoam. transf. cal. mat. 6: 181-190 (1982) Lat. am. j. heat mass. transf. COMMUNICATION COMUNICACION unic properties near the critical :biger thermodynamischer. Zusg.-Wes. 45 Nr. 1 (1979). 0 2 im 2 • Phasen-Gebiet", theoReceived: July 7, 1982 Accepted: July 28, 1982 DISPERSION DE RADIACION Y TRANSFERENCIA DE CALOR EN ESPUMAS PLASTICAS: CONDUCTIVIDADES TERMICAS A PARTIR DE ESPECTROS INFRARROJOS RADIATION SCATTERING AND HEAT TRANSFER IN CELLULAR PLASTICS: THERMAL CONDUCTIVITIES FROM INFRARED SPECTRA VALENTIN T. AMOREBIETA, AGUSTIN J. COLUSSI Departamento de Quimica, Universidad de Mar del Plata, 7600 Mar del Plata, Argentina Resumen Abstract El mecanismo de flujo de calor radiante en materiales celulares es analizado en terminos de sus propiedades espectrales en la zona de infrarrojo. Especificamente, se encontro que espumas comerciales de poliestireno con diametros de celda de alrededor de 100-150 µm se comportan como medios dispersantes 6pticamente densos hasta cerca de 8 µm. A longitudes de onda mas largas, es decir, en la region donde los cuerpos negros presentan la maxima potencia emisiva a temperatura ambiente, el coeficiente de dispersion disminuye marcadamente y el material se vuelve casi transparente por encima de 50 µm. El comportamiento de a en esta region critica no sigue una ley simple del tipo .,_ - n, indicando que el proceso debe clasificarse como dispersion de Mie. Se muestra como a partir de esta informaci6n, codificada en la forma de Ull coeficiente efectiVO de dispersion, la COn· ductividad termica neta se puede calcular mediante tecnicas usuales ya desarrolladas. Las bases fisicas que relacionan la estructura celular y el flujo neto de calor en estos materiales quedan as{ establecidas. The mechanism of radiative heat flow in cellular materials is analyzed in terms of their spectral properties in the infrared region. Specifically, it was found that commercial polystyrene foan1s having average cell diameters of 100-150 µm behave as optically dense scattering media up to about 8 µm. At longer wavelengths, i.e. in the region where black bodies display their maximum emissive power at ambient temperatures, the scattering coefficient a markedly decreases and the material becomes almost transparent above 50 µm, The behavior of a in thls critical region does "not follow a simple .,.. - n law,· revealing that the process should be classified as Mie scattering. It is shown that from this infonnation, encoded as an effective scattering coefficient, overall thermal conductivities can be actually derived by means of standard techniques dealing with energy transfer in scattering media. The physical basis for relating cellular structure . and net heat flow in plastic foams is thereby established. lntroducci6n Introducction Las espumas plasticas r{gidas proveen aislaci6n termica eficiente a temperatura ambiente y subambiente. Por esta raz6n se estima que su demanda llegara al 35 % del mercado de poliestireno y poliuretano hacia 1985 debido a costos de energ{a crecientes. Parece as{ justificado retomar la investigaci6n del mecanismo de flujo de calor en estos materiales. Rigid plastic foams provide highly efficient thermal insulation at ambient and subambient temperatures. For this reason it is expected that their demand will increase up to a 35 % share of the polystyrene and polyurethane markets by 1985 due to rising energy costs (Chem. Eng. News, 1980). Thus further research on the mechanism of heat flow in these materials seems entirely justified. 181 Rev. latinoam. transf. cal. mat. Lat. am. j. heat mass. transf. Las espumas comerciales consisten en celdas de gas de tamafio uniforme distribuidas regularmente en una matriz homogenea y continua de polimero. Los tamafios corrientes de celda y de pared de celda varian entre 100-380 µm y 1-5 µm, respectivamente. El sistema compuesto se puede caracterizar por su densidad neta y el valor de Xg. Esencialmente, los linicos mo dos que deben ser considerados en la transferencia de energia son conducci6n y radiaci6n, dado que se puede demostrar que la convecci6h dentro de las burbujas es despreciable para los tamafios de celda usuales. Suponiendo, ademas, que los dos modos se<pueden tratar separadamente y considerando que la conducci6n por el s6lido es despreciable, resulta evidente que los dos procesos a tratar son conducci6n gaseosa y transferencia de radiaci6n a traves de todo el material. La estimaci6n de conductividades termicas de plasticos celulares se reduce al problema de predecir sus propiedades 6pticas en el infrarroj o. Dado que un solido finamente dividido en particulas de tamafios comparables a la longitud de onda de la radiacion incidente se comporta de modo muy diferente a la del material compacto, es preciso considerar no solo la absorci6n de radiacion sino tambien su dispersion. Las correlaciones empmcas corrientes que vinculan k con p no logran incorporar la transferencia por radiacion, y por consiguiente fallan al ser extendidas a temperaturas elevadas, es decir, a las condiciones que prevalecen en el procesado de pol{meros. Un modelo reciente propone una distribucion regular de pianos semitransparentes para explicar la transferencia de radiacion, pero no incorpora la dependencia espectral de los parametros 6pticos. En este trabajo relacionamos cuantitativamente la transmision de capas delgadas de espuma de poliestireno en la region del infrarro. jo con sus propiedades termicas. Este enfoque lleva a la conclusion especifica que las propiedades aislantes se pueden mejorar significativamente reduciendo la transparencia por encima de 8 µm. Estamos investigando c6mo lograr este objetivo. Commercial foams consist of uniformly seized discrete gas filled cells imbedded in a homogeneous, continuous polymer matrix, Average cell diameters Xg and cell wall thicknesses x 8 vary between 100-380 µm and 1-5 µm 1 respectively. The composite system is usually characterized by its overall density Pf and Xg values.. . Essentially, conduction and radiation are the only modes to be considered in thermal energy transfer through- the solid and gas phases, since convection within the gas bubbles is negligible in the rage of Xg values normally available (Progelhof et al., 1976; Eckert and Drake, 1972). Assuming that the two effective modes can be treated separately (Siegel and Howell, 1972) and considering that solid conduction only amounts to a small fraction · of the combined heat flow, it follows that the dominant processes are simply gas conduction · and radiation transfer through the entire material. Thus, estimation of thermal conductivi· ties for cellular plastics reduces to the basic problem of predicting their transmission properties in the infrared region. Since a finely divided solid in the form of small particles whose seizes are comparable to the wavelength of incident radiation behave very differently from the same material in the bulk form, absorption as well as radiation scattering must be considered in general. Current empirical correlations between ther· mal conductivities and foam density overlook the role of radiative transfer (Progelhof, 1976) and therefore they can hardly be extended to · higher temperatures, i.e. the conditions prevailing in polymer processing (Progelhof and' Throne, 1975). A recently proposed geometrical model of a foam deals explicitly with radiation transfer without incorporating the spectral dependence of the optical parameters (Marciano et al. 1980). In this communication we are able to quantitatively relate the infrared transmission spectra of thin layers of polystyrene foams with experimental data on thermal conductivi· ties ..This approach leads to the specific con· clusion that insulating properties can be sig· nificantly improved by reducing transparency above 8 µm. The ways to achieve this goal are being investigated. 182 Parte experimental Una muestra comerc forma de espuma inflad:1 pleado como material de da en todos los experime · El material era de tex nes de densidad en pore sultado muy reproducib , La examinacion microsc de 0,5 mm de espesor de panal muy unifom1e angosta de tamafios Xg celulas) Y Xs = 4 µm. La conductividad te pianos (30 X 3 cm) fue Los discos se mantuvie, de acero termostatizad<1 axial de 20 K hasta qu, estado estacionario. El V<• X 10- 2 W m- 1 K- 1 cc literatura para materiales . Los espectros infram das de espuma se registr1 fotometro Perkin-Elmer:: Las muestras fueron con mo manual y montadas cuado. Con el objeto Ci error introducido por · p1 transmitancia de las mue plicados. Para minintizar . cion de propagaci6n del secciones de los haces de l por un factor diez sin ei ficos absorbancia vs. espes coeficientes de extincion mos se presentan en la tab TABLA 1 TABLE A. (µm) (a+ a) cm * Coeficie• cia (A.)/ S * Extinctioi Lat. am. j. heat mass. transf. foams consist of unifonnly as filled cells imbedded in a :ontinuous polymer matrix; neters Xg and cell wall thicketween 100-380 µm and 1-5 fhe composite system is usual. by its overall density Pf and mduction and radiation are to be considered in thennal rough- the solid and gas phases, within the gas bubbles is rage of Xg values normally 10f et al., 1976; Eckert and suming that the ·two effective reated separately (Siegel and and considering that solid amounts to a small fraction heat flow, it follows that the es are simply gas conduction · nsfer through the entire ma. nation of thermal conductiviplastics reduces to the basic icting their transmission profrared region. Since a finely the form of small particles :omparable to the wavelength ltion behave very differently 1aterial in the bulk form, abs radiation scattering must be ~ral. cal correlations between thers and foam density overlook ive transfer (Progelhof, 1976) y can hardly be extended to ·es, i.e. the conditions prevail· processing (Progelhof and >posed geometrical model of licitly with radiation transfer 1ting the spectral dependence >arameters (Marciano et al. mnication we are able to 1te the infrared transmission .ayers of polystyrene foams l data on thermal conductivi· )h leads to the specific con· lating properties can be sig· ed by reducing transparency ways to achieve this goal are VALENTIN T. AMOREBIETA, AGUSTIN J. COLUS.SI Parte experimental Experimental Una muestra comercial de poliestireno en forma de espuma inflada con aire del tipo empleado como material de empaque fue empleada en todos los experirnentos. . A sample of commercial air-filled polystyrene foam used as packing material was selected. Its density Pf> microscopic structure, apparent thermal conductivity and infrared spectra were determined. El material era de textura pareja y medicioThe material was evenly textured and densines de densidad en porciones diferentes un re- · ty measurements from different portions were sultado muy reproducible Pf = 19 $ Kg m- 3 • quite reproducible yielding a value of Pf = La examinaci6n microsc6pica de una hojuela 19 .8 Kg m - 3 • Microscopic examination of a de 0 ,5 mm de espesor reve16 una estructura 0 .5 mm thick sheet revealed an uniform honeyde panal muy uniforme con una distribuci6n comb structure and a rather narrow size disangosta de tamafios Xg = 160 ± 40 µm (10 tribution with cell diameters Xg = 160 ± 40 µm (10 cells) and a wall thickness· Xs = 4 µm. celulas) Y Xs = 4 µm. La conductividad termica neta de discos The overall thermal conductivity of flat planos (30 X 3 cm) fue determinada a 310 K. (30 X 3 cm) discs was determined at 310 K. Los discos se mantuvieron entre dos placas The discs were kept between two thermostatde acero termostatizadas bajo un gradiente ted steel plates under a 20 K gradient until the axial de 20 K hasta que el equipo alcanzara insulated assembly reached steady state. The estado estacionario. El valor medido ka = 4$3 measured value ka = 4.83 X 10- 2 W m- 1 K-1 X 10- 2 W m - 1 K - 1 concuerda con datos de agrees well with literature data for materials of literatura para materiales analogos. similar density, within experimental error (15%). The infrared spectra of thin sheets, 0.25 to Los espectros infrarrojos de 13minas delgadas de espuma se registraron con un espectro- 1 5 mm thick were recorded with a doublefot6metro Perkin-Elmer 599 entre 2,5 y 50 µm. beam Perkin-Elmer 599 spectrophotometer Las muestras fueron cortadas con un micr6to- from 2.5 to 50 µm. The samples were sliced mo manual y montadas sobre un soporte ade- with a manual microtome and mounted on a cuado. Con el objeto de eliminar el posible liquid cell holder assembly. To eliminate the error introducido por · poros minusculos en la possible error introduced by small pore. irp.transmitancia de las muestras se corrieron du- perfections on the effective light transmission, plicados. Para minimizar dispersion en la direc- duplicate runs of different sheets were taken. ci6n de propagaci6n del haz se redujeron las In order to eliminate forward scattering, the secciones de los haces de prueba y de referencia sample and reference beam cross sections were por un factor diez sin efecto apreciable. Gra- reduced by a factor of ten without appreciable ficos absorbancia vs. espesor fueron lineales; los effect on the spectra. Linear plots of absorbcoeficientes de extinci6n derivados de los mis- ence vs. sample thickness were obtained at all wavelengths. The derived extinction coefmos se presentan en la tabla 1. ficients are pressented in table 1. TABLA 1.- Coeficiente de extincion de espumas de polietireno a 300 K* TABLE 1.-Extinction coefficients of polystyrene foams at JOO K* A. (µm) (a+ a) cm· 1 5 10 15 20 25 36.8 29.8 21.2 15.8 10.7 * 30 35 40 45 50 8.0 5.9 4.4 3.9 3.4 Coeficientes de extinci6n obtenidos como (a+ a)A. = 2.303 Absorbancia (A.)/ R,. * Extinction coefficients obtained as (a + a)A. = 2.303 Absorbance (A.)/ R, 183 Lat. am. j. heat mass. transf. Rev. latinoam. transf. cal. mat. Resultados y discusi6n Results and discussion El mecanismo de transmision de calor por radiaci6n The mechanism of radiation heat transfer La radiaci6n tennica que incide sobre una lamina de espuma de poliestireno es parcialmente absorbida pero otra parte se deflecta por dispersi6n (fig. 1). Los detalles discretos del espectro de la figura 1 corresponden a vibraciones moleculares de poliestireno. Sin embargo, la mayor parte de la radiaci6n se elimina por dis· persi6n, como queda evidenciado por la dependencia inversa del fondo continuo con X. Una representaci6n del material como un conjunto uniforme polidisperso de prismas chatos dis· puestos al azar, las paredes de las celdas, con dimensiones promedio de 50 X 50 X 4-µm es consistente con dichas observaciones. Ademas, las part{culas dispersoras irregulares se pueden considerar para este efecto como equivalentes a esferas con un diametro medio de D "' 25 µm; por consiguiente, la relaci6n per{metro-longitud de onda (7T D/X) var{a entre 1,7 y 34.ElHmite inferior que se alcanza en el limite rojo del espectro es todav{a mayor que el requerido para la dispersi6n de Rayleigh. Por otro lado, para valores superiores a 10 la interacci6n se puede describir simplemente como un proceso de reflexi6n y difracci6n no selectivo. El rango que cubre la mayor parte de la curva de emisi6n de un cuerpo negro a 300 K corresponde al domi· nio de la teoria de la dispersion de Mie. Thermal radiation impinging upon a layer of polystyrene foam is partly removed by absorption and in part redirected by scattering (fig. 1). The discrete features of the spectrum in figure 1 correspond to molecular vibrations of polystyrene. However, most of the radil!,tion is indeed removed by scattering, as evidenced by the inverse dependence of the continuous background with X. A picture of the material as an uniform polydisperse arrangement of randomly oriented flat prisms, the cell faces, with average dimensions of 50 X 50 X 4 µm is consistent with the above observations. Moreover, the irregular scattering particles can be justifiably considered equivalent to spheres (Chandrasekhar; 1960) with a mean diameter D ,..., 25 µm and therefore the perimeter to waveJength ratio (7T D/X) varies between 1.7 and 34. The lower limit, achieved at the long wavelength end of the spectrum is still larger than the onset for Rayleigh scattering. On the other hand, for values of (tr /DX) > 10 the interaction may be simply described as a nonselective reflection and difraction process. The range, which overlaps most of the emission curve of a black body at 300 K (fig. 1) falls within the scope of Mie scattering theozy (van de Hulst, 1957). Claramente, este fen, delar adecuadamente pianos macrosc6picos luz sufre reflexiones 1 {ndice de refracci6n n . valor constante de n = 1 un modelo tal predecir misi6n constantes, a dff Procederemos ahor~ pueden derivar cuantitw des tennicas a partir de cedentes. Es preciso enf: que siguen tienen com, tal confirmar el meca11 de calor mas que prop, calculo. La ecuaci6n de transfere; La ecuaci6n de tran~ si6n de la ley de Beer q ci6n de la emisi6n espo hacia adelante por el mr Esto es particularmente 6pticamente densos en incidente se atenua casi reunimos brevemente la Un tratamiento complete Siegel y Howell (1972). La intensidad local se . absorbida y dispersada y si6n espontanea y la <lisp recci6n considerada. Para ca elastica queda: 1.0 30 y OJ u c 20 co .0 '- iii .0 co E u ~ 0.5 T=300 K · donde a es el albedo y K defmimos la funci6n fuc de los terminos positivo~. derecha, (1) se puede escr 3000 2000 1500 1000 500 Fig. 1.- Absorbancia vs. numero de onda para una hoja de poliestireno de 0,4 mm de espesor (ordenada iz· quierda). Potencia emisiva de un cuerpo negro vs. n(1mero de onda (ordenada derecha). (Absorbance vs. wavenumber for 0.4 mm thick polystyrene sheet (left ordinate). Blackbody emissive power vs. wavenumber (right ordinate)). 184 * Se puede obt!)ner a partir rencia producidas por un liestireno de 50 µm de e hart, 1974). VALENTIN T. AMOREBIETA, AGUSTIN J, COLUSSI Lat. am. j. heat mass. transf. ion radiation heat transfer ion impinging upon a layer 1am is partly removed by 1 part redirected by scat1e discrete features of the 1 correspond to molecular 'styrene. However, most of deed removed by scattering, te inverse dependence of the ound with A.. A picture of tniform polydisperse arrange. oriented flat prisms, the cell dimensions of 50 X 50 X 4 rith the above observations. ~ar scattering particles can idered equivalent to spheres ~60) with a mean diameter therefore the perimeter to :rr D(A.) varies between 1.7 · limit, achieved at the long · the spectrum is still larger Rayleigh scattering. On the 1.lues of (rr /Df...) ;;;.. 10 the : simply described as a non· 1 and difraction process. 1verlaps most of the emission 1ody at 300 K (fig. 1) falls f Mie scattering theory (van Claramente, este fen6meno no se puede mo~ delar adecuadamente por una red regular de pianos macrosc6picos paralelos en los que la luz sufre reflexiones multiples. Dado que el fndice de refracci6n n de poliestireno tiene un valor constante de n = 1,60 entre 2 ,5 y 5 0 µ.m *, un modelo tal predeciria reflectividad y trans· misi6n constantes, a.diferencia de lo observado. Procederemos ahora a mostrar c6mo se pueden derivar cuantitativamente conductividades termicas a partir de las observaciones precedentes. Es preciso enfatizar que las secciones que siguen tienen como prop6sito fundamental confirmar el mecanismo de transferencia de calor mas que proporcionar una rutina de calculo. La ecuaci6n de transferencia Clearly, this phenomenon can not be ade· quately modelled by a regular array of macroscopic parallel planes in which light undergoes multiple reflections. Since the refractive index n of polystyrene has a constant value· of n = 1.60 between 2.5 and 50 µm*, such a model would predict wavelength independent reflectivity and transmission, at variance with observations. We will proceed now to show how to quantitatively derive overall thermal conductivities from the above observations. We wish to emphasize that the main thrust of the following sections is to confirm the basic mechanism of heat flow rather than to provide a calculational routine. The equation of transfer La ecuaci6n de transferencia es una extenThe equation of transfer is an extension of sion de la ley de Beer que incluye la contrlbu- Beer's· law to include the contribution of ci6n de la emisi6n espontanea y la dispersion . spontaneous emission and forward scattering hacia adelante por el medio a lo largo del haz. by the medium into the beam path. This is Esto es particularmente importante en medios particularly important for optically dense 6pticamente densos en los cuales la radiaci6n media in which the incident radiation is almost incidente se atemia casi completamente. Aqu{ completely attenuated. A brief survey of the reunimos brevemente las expresiones basicas. basic expressions will be given here (Siegel and Un tratamiento completo se puede encontrar en Howell, 1972). Siegel y Howell (1972). The local intensity ir.. (x) will be attenuated La intensidad local se atenua por la radiaci6n absorbida y dispersada y se refuerza por la emi· by radiation absorbed and scattered out and si6n espontanea y la dispersi6n dirigida en la di· will be enhanced by spontaneous emission and recci6n considerada. Para la dispersi6n isotr6pi- radiation scattered into the direction being considered. For elastic isotropic scattering: ca elastica queda: ddxi'A 30 . + ar,. -. = - ( a'A + a'A) l"A. + a'A l"Ab l"As y 20 E u dir.. = - lr,. . +·(1 -dK'A. i. . + a: a:) lr,.b l"A.s. • (1) donde a: es el albedo y " la densidad 6ptica. Si definimos la funci6n fuente Ii\. como la suma de los terminos positivos en el miembro de la derecha, (1) se puede escribir asi: where a:= a"Af(ar.. + ar._) and Ki\.~ (ai\. + ai\.)x. Defining the source function Ii\. as the sum of the positive terms in the RHS, (1) can be written as: * * 500 ),4 mm de espesor (ordenada izordenada derecha). (Absorbance 1. Blackbody emissive power vs. Se puede obtener a partir de las bandas de interferencia producidas por un film transparente de poliestireno de SO µm de espesor (Hannah y Swinehart, 1974). n can be obtained from the evenly spaced interference fringe pattern produced by a clear polystyrene film SO µm thick (Hannah and Swinehart, 1974). 185 Lat. am. j. heat mass. transf. Rev. latinoam. transf. cal. mat. (1') Integration of (1 ') in the interval 0 :s;;; x :s;;; Q, yields: La integraci6n de (1') en el intervalo 0 :s;;; x :s;;; ,Q,lleva a: (2) where KA= KA (Ji,) and K~ =KA (x). Clearly, the intensity at optical depth KA is composed of two terms. The first is the attenuated incident radiation arriving at x = JI, and the second is the intensity resulting from emission and scattering in the KA direction by all elements along the path and reduced by exponential attenuation between the point of emission K ~ and KA . Notice that the integral in donde KA= KA (.Q,) Y K~ =KA (x). Claramente, la intensidad a la densidad 6ptica KA se compone de dos terminos. El primero es la radiaci6n incidente atenuada que llega a x = JI, y el segundo es la intensidad que resulta de la emisi6n y la redispersi6n en la direcci6n KA por todos los elementos a lo largo del camino 6ptico y reducidos por atenuaci6n exponencial entre el punto de emisi6n K~ y KA. N6tese que la integral en (2) se puede escribir asimismo como (2) can also be written as J;A IA (KV exp (- KV d K~ tornado el El coeficiente media efect La transferencia de rac en medios 6pticamente (: problema formidable, dad espectral de la radiaci6n ii to tiene un caracter local. terial gris la ecuaci6n (1) sc Para una capa unidime radiante requiere ademas c dispersada que incide en c asBT4 Irr y, por consiguien la ecuaci6n (4) es directa: i(Ji,) = IA (KV exp 0 origen en KA. Cuando la (mica fuente significativa de radiaci6n es la que se origina en el haz incidente, como sucede en el registro de un espectro de una muestra delgada y fr{a (fig. 1), (2) se reduce a la ley de Beer. Para poder derivar el flujo neto de energ{a en el caso mas simple de una capa unidimensional entre dos placas grises infinitas y paralelas a T 1 y T2 separadas por la distancia JI, es necesario escribir la ecuaci6n de transferencia (2) para los caminos 1 -+ 2 y 2 -+ 1, integrarlas sobre 'A y restarlas una de otra. En general, uno debe obtener primero la distribuci6n estacionaria de temperatura dentro de la capa ya que la emisi· vidad del cuerpo negro es una funci6n de T. En este caso el albedo es pnicticamente uno y las propiedades 6pticas son practicamente independientes de la temperatura de modo que h se desacopla de T (KV. Sin embargo, se puede demostrar que el formalismo se preserva para todos los valores de ex, es decir desde absorci6n pura a dispersi6n pura. Para una capa gris KA = K y la soluci6n adopta una expresi6n simple: . Jf'"A \ (-KV dK~ by taking the origin at KA. When the only significant intensity source is that arising from the incident beam as in recording the spectrum of a cold thin sample (fig.1),(2) reduces to Beer's law. De acuerdo a la ecuaci6r a la intensidad direccional mento (x, x + dx) es: In order to derive the net energy flux in the simplest case of a one dimensional layer conta· ined between two infinite parallel gray plates at T 1 and T2 separated by the distance JI,, it is necessary to write down the transfer equations (2) for the paths 1 -+ 2 and 2 -+ 1, integrate them over 'A and substract one from the other, In general, one must first obta)n the steady state temperature distribution within the layer as iAb, the blackbody emissivity, is a function of T. In this case since the albedo ex ,.,, 1 and the optical properties are nearly independent of temperature, the source function IA becomes decoupled from T (KV. However, it can be shown that the formalism is preserved for all values of ex, i.e. from pure absorption (ex= 0) to pure scattering (ex = 1). For a gray layer KA = (aA + aA) JI, = K and the solution takes a simple expression: Un coeficiente efectivc homogeneo, isotermico qu. preservar la forma de (6): asB (Ti - Ti) '11 di (Q,) =ib (x) (a+ a)e exr Integrando los segundos nos de (7) con respecto ax (1 - ib [ 1 - exp {- 1 . A partir de (7) y (8) obt< una expresi6n para el coeficie (a+a)e(1 = 1 + '11 (€11 +s21 - 2) donde '11 (K) es una funci6n integral que ha sido where w (1<) qR tabulada. Varia entre w (0,1) = 0,916 y = 1,333 (1,421 +Kt1 paraK>1. w(K) is an integral function which has been tabulated. It varies between '11 (0.1) == 1 0916 and '11(K)=1.333 (1.421 + Kt for K > 1. (Siegel and Howell, 1972; Heaslett and Warming, 1965). 186 Esta representa una exten persores del coeficiente de Lat. am. j. heat mass. transf. (l') (1 ') in the interval 0 is;;; x is;;; JI, (2) ~)and K~ 1tensity at optical depth K-,,, is o teims. The first is the att radiation arriving at x = JI, s the intensity resulting from ttering in the K-,,, direction by ~ the path and reduced by exation between the point of "-,,, . Notice that the integral in f:"" h El coeficiente media efectivo The effective mean coefficient La transferencia de radiaci6n policromatica en medios 6pticamente densos representa un problema formidable, dado que la distribuci6n espectral de la radiaci6n incidente en cada punto tiene un caracter local. En el caso de un material gris la ecuaci6n (1) se transforma en: Polychromatic radiation transfer in optically thick media represents a formidable problem since the spectral distribution of incident radiation at each point has a local character. In the case of a gray material a-,,, =a and a-,,, = a for all A. and (1) transforms into: -di = - i + (1 - = K-,,, (x). written as VALENTIN T. AMOREBIETA, AGUSTIN J. COLUSSI dK Para una capa unidimensional, el equilibrio radiante requiere ademas que la radiaci6n total dispersada que incide en cada punto Ts = ib = asB T4 /rr y, por consiguiente, la integraci6n de la ecuaci6n ( 4) es directa: i(.R.)=ib(O)exp(-K)+ (KV exp De acuerdo a la ecuaci6n (5) la contribuci6n a la intensidad direccional i (JI,) desde un elemento (x, x + dx) es: rive the net energy flux in the one dimensional layer conta· 'O infinite parallel gray plates 1arated by the distance JI, , it is e down the transfer equations 1 1 ~ 2 and 2 ~ 1, integrate substract one from the other, must first obt~in the steady ) distribution within the layer body emissivity, is a function e since the albedo ex "" 1 and rties are nearly independent of source function 1-,,, becomes T (KV. However, it can be formalism is preserved for all from pure absorption (ex= 0) 1g (ex = 1). For a gray layer Q, = K and the solution takes a Un coeficiente efectivo para un material homogeneo, isotermico que no sea gris debe preservar la forma de ( 6): i (4) • For a one dimensional layer, radiative equilibrium also requires that the total incident scattered radiation Ts = ib = asB T 4 /~ and therefore integration of ( 4) becomes straightforward: J: :aking the origin at K-,,,. When :ant intensity source is that incident beam as in recording i cold thin sample (fig.1),(2) law. di(.R.) ex) ib +ex i 8 ib(K*)exp(-K*)dK*. According to (5) the contribution to the directional intensity i (JI,) from an element at (x, x + dx) is: = ib (x) (a+ a) exp [- K (x)] dx. Integrando los segundos y terceros tenni· nos de (7) con respecto ax donde 0 hasta JI, da: - ib [ 1 - exp {- (a+ a)e JI,}] =[ J: A partir de (7) y (8) obtenemos finalmente una expresi6n para el coeficiente efectivo: (a+ a)e (JI,)= [ (6) An effective coefficient for a nongray, homogeneous, isothermal material (i.e. a and a independent of x) must preserve the form of (6): =): di (.R.) = ib (x) (a+ a)e exp [-(a+ a)e x] dx (5) i"Ab (a+ ah exp [-(a+ a)A x] dx d'A. (7) Integrating the second and third terms of (7) with respect to x from 0 to JI, gives: i"Ab exp - {(a + ah JI,} d A]- ib . (8) From (7) and (8) we finally obtain an expression for the effective coefficient: ~: i-,,,b (a+ a)-,,, exp {-(a+ ah JI,} dA.] X 1 n integral function which has [t varies between '11 (0 .1) == 1 I = 1.333 (1.421 + Kt for and Howell, 1972; Heaslett 55). [~:i-,,,bexp{-(a+a)A.R.}dA.]- • Esta representa una extension a medios dispersores del coeficiente de absorci6n medio (9) This represents an extension to scattering media of the so called Patch's effective mean 187 Rev, latinoam. transf. cal. mat. Lat. am, j. heat mass. transf, · efectivo de Patch. El coeficiente medio efecti· vo es ulia aproximaci6n util para materiales no grises y que ha sido probado para medio no dispersores solamente. Sin embargo, cabe se· nalar que la ecuaci6n generalizada de transfe· rencia (l ') incluyendo absorci6n, emisi6n y dispersi6n retiene la misma forma en el caso de absorci6n, emisi6n y dispersi6n, retiene la misma forma en el caso de absorci6n y emisi6n puras y, por lo tanto, las aproximaciones matematicas a las soluciones se aplicaran en ambos casos. absorption coefficient. The effective mean coefficient is an useful approximation for nongray materials that has only been tested for nonscattering media. However, it should be pointed out that the generalized equation of transfer (1 ') including absorption, emission and scattering retains the same form in the case of pure absorption and emission and therefore many of the mathematical approaches to solutions will apply in both cases. (Patch, 1967). La conductividad termica aparente de una espuma The apparent thermal conductivity of a foam Alrededor de dos tercios de la fase s6lida yacen paralelas a la direcci6n de flujo. Se pueden demostrar que la fracci6n de area transversal <fJ cubierta por poliestireno esta dada aproximadamente por About two thirds of the solid phase lie along the direction of heat flow, It can be shown that the fraction of transversal area <fJ covered by polystyrene is approximately given by: En este caso con Pf= 19,8 Kg m- 3 , Pg= 1,189 Kg m- 3 y Ps = 1052,5 Kg m- 3 , </J = 0,0118. La· fracci6n remanente (1 - <P) = 0,9882 esta ocupada por aire pero sobre un camino levemente mas corto i (1 - 0,5 r/>). El flujo de calor a traves de todo el material se puede calcular por la ecuaci6n (11): In this case with Pf= 19.8 Kg m~ 3 , Pg= 1.189 Kg :in- 3 and Ps = 10525 Kg m- 3 4> 0.0118. The remainder ( 1 - q,) = 0 .9882 · occupied by air but over a slightly shorter pa length i ( 1 - 0 5 q,). The heat flow throu the entire material can then be calculated b (11): bajo las suposiciones de conducci6n paralela por las fases s6lidas y gaseosas y de flujo de ra· diaci6n desacoplado. A partir de (11) la con· ductividad tennica aparente o experimental ka se puede calcular mediante (12): under the assumptions of parallel conductio by solid and gas phases and uncoupled radiatio flow. From (11) the experimental or appare thennal conductivity ka can be derived (12): Con los coeficientes de extinci6n de tabla 1, it..b a 300 K a partir de tablas de funciones de cuerpo negro se obtiene por integraci6n numerica de (9) para i = 0,03 m: (a + a)e = 3,34 X 10 2 tj:l- 1 , lo que conduce a una densidad 6ptica efectiva Ke = 10,02 y '11 (Ke)= 0,1165. Suponiendo que las emisividades hemisfericas del acero oxidado con que fueron fabricadas las With the extinction coefficients of table 1 and it..b at 300 K from tables of blackb~d functions we obtain by numerical integratiop. o (9) for i = 0.03 m:(a + a)e = 3.34 X 102 m- 1 which leads to an effective optical depth Ke 10.02 and '11 (Ke)= 0.1165. Assuming fort hemispherical emissivities of the oxidized ste plates employed in the determination of ka 188 placas empleadas en la dt valor de E 1 E2 = 0,8 se puede calcular a partir m - 2 • Finalmente, con el 1 amorfo k 8 = 1,107 X IC valor para aire seco kg = K - 1 calculamo s a partir 10- 2 W m- 1 K- 1 en exc1 valor medido. N6tese qut radiaci6n equivale a un 4 neto en estas condicione sado en las propiedades cuenta de las conductivi1 vadas y provee una met;, ras investigaciones en este = Nomenclatura coeficiente de absorci6n dllimetro de particula intensidad de radiaci6n d gro intensidad promedio salie1 funci6n fuente conductividad termica camino 6ptico indice de refracci6n flujo de energ{a temperatura absoluta coordenada en la direcciz capa plana dilimetro de celda gaseosa espesor de pared Letras griegas albedo emisividad densidad 6ptica longitud de onda densidad coeficiente de dispersi6n constante de Stefan-Boltz1 fracci6n de area transversa flujo adimensional de ener Sub indices aparente cuerpo negro efectiva espuma VALENTIN T. AMOREBIETA, AGUSTIN ,J. COLUSSI Lat. am. j. heat mass. transf, ifficient. The effective mean an useful approximation for ials that has only been tested ng media. However, it should that the generalized equation of :luding absorption, emission and ris the same form in the case of n and emission and therefore 1athematical approaches to solu. y in both cases. (Patch, 1967). iermal conductivity of a foam :hirds of the solid phase lie along f heat flow. It can be shown that 0 transversal area </; covered by .pproximately given by: with Pf= 19.8 Kg m~ 3 , Pg and Ps = 10525 Kg m- 3 .<fl ~mainder (1 - </;) = 0.9882 · r but over a slightly shorter pa 05 </;). The heat flow throu .erial can then be calculated b 1mptions of parallel conducti s phases and uncoupled radiati 1) the experimental or appare ~tivity ka can be derived (12): :tinction coefficients of table O K from tables of blackb~d btain by numerical integratiop. 2 13 m:(a + a)e = 3.34 X 10 m' an effective optical depth Ke :Ke) = 0.1165. Assuming fort emissivities of the oxidized st ~d in the determination of ka = e:2 = 0 .8, the radiation heat flux placas empleadas en la determinaci6n de ka un value of e: 1 valor de e: 1 "= e:2 = 0,8, el flujo de radiaci6n can be calculated from (3): CtR = 14.88 W m-2 • se puede calcular a partir de (3): QR = 14,88 W Finally, with the value for amorphous polysm- 2 • Finahnente, con el valor para poliestireno tyrene ks= 1.107 X 10- 1 W m-1 K-1 and the amorfo ks= 1,107 X 10- 1 W m- 1 K- 1 y el value for dry air kg= 250 X 10-2 W m-1 K-1 valor para aire seco kg= 2,50 X 10-2 W m- 1 we calculate from (12) ka = 4.84 X 10- 2 W K- 1 calculamos a partir de (12) ka = 4,84 X m- 1 K- 1 in excellent ,agreement with the 10- 2 W m- 1 K- 1 en excelente acuerdo con el measured value. Notice that radiation transfer valor medido. N6tese que la transferencia por amounts to about 48% of the net heat flow radiaci6n equivale a un 48 % del flujo de calor under these conditions. This approach, based neto en estas condiciones. Este enfoque ba- on the actual properties of the material is able sado en las propiedades reales del material da to account for the observed thermal conductivicuenta de las conductividades termicas obser- .ties and provides a definite goal for further vadas y provee una meta definida para futu- research in this field. ras investigaciones en este tema. Nomenclatura Nomenclature a coeficiente de absorci6n diametro de particula intensidad de radiaci6n de un cuerpo negro intensidad promedio saliente funci6n fuente conductividad termica camino 6ptico indice de refracci6n flujo de energ{a temperatura absoluta coordenada en la direcci6n paralela a la capa plana dilimetro de celda gaseosa espesor de pared Xs Letras griegas Greek letters albedo emisividad densidad 6ptica longitud de onda densidad coeficiente de dispersion constante de Stefan-Boltzmann fracci6n de area transversal flujo adimensional de energia ex e: Sub indices aparente cuerpo negro efectiva espuma D i I k JI, n q T x Xg " ;\ p a asB </; '11 absorption coefficient particle diameter radiation intensity of a blackbody average outgoing intensity source function thermal conductivity path length refractive index energy flux absolute temperature coordinate direction parallel to plane layer gas cell diameter wall thickness albedo emissivity optical depth wayelength density scattering coefficient Stefan-Boltzmann constant fraction of transversal area dimensionless energy flux Subscripts a apparent b e f 189 blackbody effective foam Rev. latinoam. transf. cal. mat. gas racliante dispersor, dispersado o s6lido espectral Lat. am. j. heat mass. transf. g R s A. Rev. latinoam, transf. cal. mat gas radiant scattered or scattering or solid spectrally dependent REVIEW PA PERS References Referencias Chandrasekhar, S.: "Radiative Transfer", Dover, New York (1960). Chem. Eng. News, June 9, 33 (1980). Eckert, E. R. G. and Drake, R.H.: "Analysis of Heat and Mass Transfer" Mc Graw Hjll,New York (1972). Hannah, R. W. and Swinehart, J. S.: "Experiments in Techniques of Infrared Spectroscopy", Perkin Elmer, Norwalk, Conn. (1974). Heaslett, M. A. and Warming, R. F.: "Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium", Int. J. Heat Mass Transfer, 8: 979, (1965). Marciano, J. H., Rojas, A. J. and Williams, R. J. J.: "A Theoretical Model for the Thermal Conductivity of Plastic Foams", Europ. J. Cellular Plastics 3: 102, (1980). Patch, R. W.: "Effective Absorption Coefficients for Radiant Energy Transport in Nongrey, Nonscattering Gases", J. Quant. Spectrosc. Radiat. Transfer, 7: 611, (1967). Progelhof, R. G. and Throne, J. L.: "Cooling of Structural Foams" J. Cellular Plastics, 11: 152, (1975). Progelhof, R. C., Throne, J. L. and Ruetsch, R. R.: "Methods for Predicting the Thermal Conductivity of Composite Systems: A Review'', Polym. Eng. Science, 16: 615, (1976). Siegel, R. and Howell, J. R.: 'Thermal Radiation Heat Transfer" Mc Graw Hill, New York, chapters 14 and 20. (1972). Van de Hulst, H. C.: "Light Scattering by Small Particles", Wiley, New York (1967). Recibido: Junio 22, 1982 Aceptado: Agosto 6, 1982 Received: June 22, 1982 Accepted; August 6, 1982 NON-CATALYTIC TO COM! INTEc Abstract The main models existing i Using the criterion of gas acct place are classified. The analysi The additional complexity is discussed, The paper particu carbon particle. It reviews the r I. Introduction Non-catalytic gas-solid 1 Regeneration of coked cat are some of their applicatio1 The successful design 01 chemical processes and trar ous heterogeneous and hon the gaseous film surroundir: some anomalous s\tuations For an adequate mathe1 ferential equations with no situation thus established r system of equations under : frequently complicated by t This review work deals Using the criterion of acces two main groups: inaccessil porous structure is modelled Those models considerin quently examined. Accardi * ResearcH fellow of the Nati' ** Institute of Technological L and CONICET. 190