CAPITULO 10 SISTEMAS TRIFASICOS 10.1 INTRODUCCION Un sistema equilibrado de corrientes trifásicas es el conjunto de tres corrientes alternas monofásicas de igual frecuencia y amplitud (y, por consiguiente, valor eficaz) que presentan una cierta diferencia de fase entre ellas (120º) y están dadas en un orden determinado. Cada una de las corrientes monofásicas que forman el sistema se designa con el nombre de fase. Un sistema trifásico de tensiones se dice que es equilibrado cuando sus frecuencias y valores eficaces son iguales y están desfasados simétricamente y dados en un cierto orden. Cuando alguna de las condiciones anteriores no se cumple (tensiones diferentes o distintos desfases entre ellas), el sistema de tensiones es desequilibrado. Recibe el nombre de sistema de cargas desequilibradas el conjunto de impedancias distintas que dan lugar a que por el receptor circulen intensidades de fase diferentes, aunque las tensiones del sistema o de la línea sean equilibradas. El sistema trifásico presenta una serie de ventajas como son la sencillez de sus líneas de transporte de energía y de los transformadores utilizados, así como su elevado rendimiento de los receptores (especialmente motores). 10.2. PRODUCCIÓN DE UN SISTEMA TRIFÁSICO DE TENSIONES EQUILIBRADAS Cuando una espira gira en el interior de un campo magnético uniforme con una velocidad w constante se produce en ella una tensión senoidal. Esta tensión también se puede originar si la espira permanece fija (estator) y se hacen girar los polos de un electroimán (rotor) con velocidad constante. Ahora bien, si el estator está constituido por tres bobinas independientes desfasadas 120° entre sí, al girar el rotor se induce en cada una de las bobinas una tensión alterna senoidal, del mismo valor y de la misma frecuencia, pero desfasadas entre sí 1/3 de período; es decir 120°. Este dispositivo, compuesto fundamentalmente por rotor y estator, recibe el nombre de generador trifásico. Las fases se identifican designando con letras mayúsculas o minúsculas (A, B, C; a, b, c; R, S, T...) o números (1, 2, 3...) los terminales de polaridad positiva y con las mismas letras o números con apóstrofo los terminales negativos. Las fuerzas electromotrices o tensiones correspondientes a cada fase se representan vectorialmente con sus correspondientes desfases. 276 10.3. SECUENCIA DE FASES. El orden en que estas tensiones se suceden recibe el nombre de secuencia de fases, que puede ser directa o inversa. a) Si fijamos un eje de referencia que pase por el origen de coordenadas y los vectores representativos de las tensiones, al girar en sentido antihorario, van pasando por dicho eje en el orden 1, 2, 3, se dice que el sistema trifásico es de secuencia directa. b) El sistema será de secuencia inversa si los vectores citados pasan por el eje de referencia en el orden 3, 2, 1. 10.4 CONEXIONES DE FUENTES EN ESTRELLA Y EN TRIÁNGULO Si las corrientes originadas en las tres espiras fuesen independientes, para su transporte hasta los receptores respectivos harían falta seis conductores. Ahora bien, para conseguir la debida dependencia de las fases entre sí y lograr, además, una reducción en el número de conductores necesarios las tres fuentes de tensión se conectan entre sí en estrella o en triángulo. Los receptores también se pueden asociar en estrella y en triángulo. a) Conexión en estrella. (Y) Se obtiene uniendo los terminales a', b' y c' de polaridad de referencia negativa de las tres bobinas en un punto común N, llamado punto neutro, que se suele conectar a tierra, como medida de protección; mientras que los terminales positivos se conectan a los conductores de la línea de distribución. Es frecuente representar esta conexión en estrella en la forma que se indica en la figura b), pues permite la comprensión intuitiva de esta forma de asociación. 277 b) Conexión en triángulo (Δ) Se realiza uniendo el final de una bobina con el comienzo de la siguiente, formando un sistema cerrado. Lógicamente, en este tipo de conexión no existe punto neutro. De los vértices del triángulo parten los conductores correspondientes, que constituyen las fases. Su representación usual es la de la figura b). Conexión de fuentes en triángulo 10.5 TENSIONES E INTENSIDADES DE FASE Y DE LÍNEA: RELACIÓN ENTRE ELLAS EN LOS SISTEMAS EQUILIBRADOS El estudio de los sistemas trifásicos de fuentes de tensión permite establecer las siguientes definiciones: c) Tensión simple hilo terminal o o tensión de fase de y fase el (UF) punto es neutro. la tensión Para las que fases existe a, b entre un c, las fases, es y correspondientes tensiones de fase se simbolizarán de la forma: U a , U b y U c . d) Tensión de línea (U L) es la tensión que existe entre dos decir, entre dos conductores de línea. Se simbolizan de la manera siguiente: Uab = Ua - Ub Ubc = Ub - Uc Uca = Uc - Ua e) Intensidad de línea (I L ) es cada una de las intensidades (l a , Ib , Ic ) que circulan por los conductores que unen el generador y la carga. f) Intensidad de fase (IF) es la intensidad que suministra uno de los generadores o la que consume uno de los 278 receptores de la carga. Para estudiar la relación que existe entre estas magnitudes, consideraremos sucesivamente los casos en que las fuentes estén asociadas en estrella o en triángulo. 10.6 FUENTES EN ESTRELLA En el diagrama de la figura se señalan con su sentido convencional las tensiones de línea y de fase en una conexión de fuentes en estrella y en la figura siguiente aparecen representadas vectorialmente dichas tensiones en el caso de un sistema trifásico equilibrado en secuencia directa. Los valores de las tensiones de línea son √3 veces mayores que los de las tensiones de fase: UL = √3 UF Además, cada una de ellas se encuentra adelantada 30° respecto a la tensión de fase que tiene el mismo origen. En cambio, si la secuencia es inversa la tensión de línea no se encuentra adelantada, sino retrasada 30°. Conexión de fuentes en estrella Diagrama de tensiones en una conexión de fuentes en estrella (sec. Directa) A modo de resumen, tanto en un caso como en otro (y siempre que el sistema sea equilibrado): a) Las tensiones de línea son iguales y están desfasadas 120° entre sí. 279 b) Las tensiones de fase son iguales y están desfasadas 120° entre sí. c) Las tensiones de línea están adelantadas (secuencia directa) o retrasadas (secuencia inversa) 30° respecto de la tensión de fase correspondiente. Por otra parte, como el devanado de cada fase se encuentra en serie con el conductor de línea, las intensidades de línea y de fase serán iguales: IF = IL 10.7 FUENTES EN TRIÁNGULO Como los conductores de línea parten de los vértices del triángulo, y la tensión entre dos vértices viene dada por la de la bobina correspondiente, en este tipo de conexión las tensiones de línea y de fase son iguales: UF = UL Conexión de fuentes en triángulo Diagrama de intensidades en una conexión de fuentes en triángulo (sec. Directa) En lo que respecta a las intensidades, como en este sistema no es asequible ningún punto neutro, el transporte se efectúa por medio de tres conductores. Si las tensiones constituyen un sistema equilibrado de secuencia directa, en un nudo cualquiera de los que forman un conductor de línea y dos devanados, por ejemplo el a, se cumplirá: 280 Ia = Iab – Ica = √3 · Iab – 30º Es decir, las intensidades de línea son √3 veces mayores que las de fase: IL = √3 IF Encontrándose cada una de ellas retrasada 30° respecto de la intensidad de fase del mismo origen de referencia. En cambio, si la secuencia es inversa la intensidad de línea no se encuentra retrasada, sino adelantada 30°. 10.8 CONEXIÓN DE RECEPTORES Dependiendo de la tensión de la red y de la tensión nominal de los receptores, éstos se pueden conectar a un sistema trifásico de dos maneras distintas: a) Entre fase y neutro. b) Entre dos fases. a) Conexión entre fase y neutro (conexión en estrella) Este tipo de conexión se realiza cuando la tensión nominal de los receptores coincide con la tensión de fase de la red. Se trata, como se aprecia en la figura, de una conexión en estrella. Habrá que distinguir dos casos, según que las cargas estén equilibradas o desequilibradas. Conexión entre fase y neutro equivale a una conexión en estrella 1. Cargas equilibradas conectadas en estrella Para que el sistema de cargas esté equilibrado, los tres receptores han de ser idénticos (la misma impedancia y el mismo factor de potencia). Las tensiones de línea guardan con las de fase la misma relación que existe en la conexión de fuentes en estrella: UL = √3 UF De donde resulta: 281 Ua = √ Ub = √ Uc = √ Las intensidades que circulan por cada una de las impedancias (intensidades de fase) son: Ia = Ib = Ic = y como para que el sistema esté equilibrado se ha de cumplir que: Ua = U b = U c Z1 = Z 2 = Z 3 resulta que las intensidades de fase (y, por consiguiente, las de línea) son iguales entre sí y, además, se encuentran igualmente desfasadas: Ia = Ib = I c Por consiguiente, la intensidad del hilo neutro, que es igual a la suma vectorial de las tres intensidades de fase, será nula: IN = Ia +Ib+Ic=0 El punto N' de unión de las tres fases recibe el nombre de punto neutro artificial, y Su tensión es la misma que la del hilo neutro. Cargas equilibradas en estrella 282 Diagrama vectorial de tensiones e intensidades para cargas equilibradas en estrella 2. Cargas desequilibradas conectadas en estrella En este caso, que es el más frecuente en la práctica, resulta fundamental la existencia de hilo neutro, pues al ser las impedancias de cada fase distintas entre sí, las intensidades de fase son también distintas y su suma vectorial no será nula: IN = Ia + Ib + Ic ≠ 0 En efecto, las intensidades que atraviesan las impedancias son las intensidades de línea, que se pueden calcular fácilmente de la forma: Ia = Ib = Ic = Aunque Ua, Ub y Uc sean iguales, como las impedancias son distintas,también serán distintas las intensidades. La resultante de la suma vectorial de todas ellas será precisamente la intensidad que circula por el hilo neutro. Carga desequilibrada en estrella (circula intensidad por el hilo neutro) 283 b) Conexión entre dos fases (conexión en triángulo) Se verifica la conexión en triángulo cuando la tensión nominal de los receptores es igual a la tensión de línea de la red. La conexión de receptores entre dos fases equivale a una conexión en triángulo. 1. Cargas equilibradas conectadas en triángulo En este caso, las tensiones de línea son iguales a las de fase: UF = UL y si la secuencia de tensiones de línea es positiva, las correspondientes intensidades de fase I ab , Ibc e Ica forman con las tensiones respectivas un mismo ángulo φ igual al que forman las impedancias con las tensiones. Las intensidades de línea vienen dadas por: Ia = Iab - Ica Ib = Ibc - Iab Ic = Ica - Ibc O Ia = √3 · Iab-30º Ib = √3 · Ibc-30º Ic = √3 · Ica-30º Cumpliéndose: IL= √3 IF Estando la intensidad de línea retrasada 30° respecto de la intensidad de fase del mismo origen de referencia y de secuencia directa. En cambio, si la secuencia es inversa, las intensidades de línea se encuentran adelantadas 30° respecto a las intensidades de fase. Las ecuaciones anteriores se deducen de forma inmediata del diagrama vectorial de la figura. 284 Por otra parte, si designamos por Z el módulo de cada impedancia, se cumplirá: Carga equilibrada en triángulo Diagrama vectorial de tensiones e intensidades para carga equilibrada en triángulo 2. Cargas desequilibradas conectadas en triángulo En este caso, las impedancias correspondientes a las tres cargas serán diferentes: Z1 ,Z 2 ,Z3 y las intensidades (de fase) que atraviesan cada una de ellas serán: Siendo sus respectivos desfases: 285 Lógicamente diferentes, por serlo las impedancias. Por otra parte, las intensidades de línea vienen dadas por las mismas expresiones que en el caso de los circuitos equilibrados: Ia = Iab - Ica Ib = Ibc - Iab Ic = Ica - Ibc si bien estas intensidades no están equilibradas, como se aprecia en diagrama correspondiente. Carga desequilibrada en triángulo Diagrama vectorial para carga desequilibrada en triángulo 286 10.9 ESTRELLA-TRIÁNGULO EQUIVALENTES EN RECEPTORES Para la resolución de los circuitos con cargas equilibradas o desequilibradas, en ocasiones resulta conveniente trabajar en la conexión estrella, y en otros casos en la conexión triángulo. Las expresiones que permiten transformar un triángulo de cargas en su estrella equivalente son: De modo análogo, una asociación de cargas en estrella se puede transformar en triángulo por medio de las siguientes relaciones: En el caso de cargas equilibradas, al ser iguales los valores de las impedancias, las anteriores expresiones se convierten en: 287 10.10 POTENCIA EN LOS SISTEMAS TRIFÁSICOS EQUILIBRADOS En los sistemas trifásicos desequilibrados, el cálculo de la potencia se lleva a cabo determinando por separado las potencias activa, reactiva y aparente correspondientes a cada fase; es decir: Si el sistema es equilibrado, como las tensiones V F , intensidades IF y ángulos de fase j son iguales, las potencias vendrán dadas por: Resulta conveniente expresar las potencias en función de las tensiones e intensidades de línea en vez de las de fase. Para ello basta recordar que en la conexión en estrella: y en la conexión en triángulo: Teniendo esto en cuenta, las expresiones anteriores para las potencias quedan convertidas en: 288 10.11. MEDIDAS DE POTENCIA EN CORRIENTE ALTERNA TRIFÁSICA. La potencia activa total de un sistema trifásico es igual a la suma de las potencias activas de cada uno de los tres sistemas monofásicos que lo constituyen: La medida de la potencia activa total se reduce a medir las potencias activas correspondientes a cada una de las fases, sumando a continuación las indicaciones obtenidas. A efectos de sistematización, conviene distinguir entre los sistemas equilibrados (aquéllos en que las tensiones de fase, las intensidades y los desfases son iguales entre sí), y los desequilibrados, cuando alguna de las condiciones anteriores no se cumple. También se ha de tener en cuenta si el sistema dispone de tres conductores (tres fases) o cuatro (tres fases y neutro). a) Medida de la potencia activa en corriente alterna trifásica con un vatímetro. En los sistemas trifásicos equilibrados, tanto de cuatro conductores como de tres, la potencia activa se puede medir con un solo vatímetro. 3. En los sistemas trifásicos equilibrados de cuatro conductores (tres fases y neutro), las potencias activas correspondientes a cada una de las tres fases son iguales. Por lo tanto, será suficiente medir la potencia de una de las fases, empleando para ello un vatímetro y multiplicando, a continuación, por tres la lectura correspondiente: Siendo P la potencia activa trifásica y PF la que corresponde a cada fase. 289 En los sistemas no existe conductor la tensión artificial el del (N) de por circuito trifásicos neutro fase, medio voltimétrico equilibrados para pero el de dos del conectar problema resistencias vatímetro. De de la se tres bobina puede cuyo este valor conductores voltimétrica solucionar óhmico modo, del fases) vatímetro creando sea se (tres el verificará un mismo la a neutro que medida del vatímetro de modo análogo al caso de los sistemas de cuatro conductores. b) Medida de la potencia activa en corriente alterna trifásica con tres vatímetros Para medir la potencia activa en los sistemas trifásicos desequilibrados, tanto de cuatro conductores como de tres, se pueden utilizar tres vatímetros, que miden cada uno la potencia correspondiente a una fase. La potencia total se obtendrá sumando las indicaciones de los tres vatímetros. En los sistemas trifásicos desequilibrados de cuatro conductores (tres fases y neutro), los tres vatímetros se conectan como indica la figura, cumpliéndose que: 290 P = Pa + Pb + Pc Siendo Pa + Pb + Pc las potencias indicadas por cada uno de los vatímetros. En los sistemas trifásicos desequilibrados de tres conductores (tres fases) se puede conseguir un neutro artificial siempre que se disponga de tres vatímetros idénticos y se conecten sus circuitos voltimétricos en estrella, según se representa en la figura de la página anterior, quedando, así, sometidos a la tensión de fase. En este caso, también se cumple que: P = Pa + Pb + Pc Sin embargo, en la práctica no se suele emplear este método, pues la medida de la potencia se puede llevar a cabo utilizando solamente dos vatímetros. c) Medida de la potencia en corriente alterna trifásica con dos vatímetros (método de Aron) d) En los sistemas alternos trifásicos, tanto equilibrados como desequilibrados, la potencia activa se puede medir con sólo dos vatímetros. Para lo cual ha de tratarse de un sistema trifásico de tres conductores. La potencia instantánea será: 291 La suma de las indicaciones de ambos representa la potencia activa total. La suma de las lecturas de los dos vatímetros da como resultado la potencia activa del sistema trifásico: P = Pa + Pb La diferencia de las lecturas de los dos vatímetros multiplicada por da como resultado la potencia reactiva del sistema trifásico: Q = √3 · (Pa - Pb) 292 CIRCUITOS TRIFASICOS PROBLEMAS RESUELTOS PROBLEMA N° 01 Determine la lectura de los vatimetros, la potencia activa total, el triángulo de potencias y realice el diagrama fasorial. Datos: VL 440 v a 60 Hz. Motor trifásico de inducción de 20 HP, n = 74.6%, Cos 0.5 Resolución: Tenemos presente lo siguiente: V RS VTS V L I R IT I L 293 Utilizando el Método de Aarón: Cálculo de W1 : W1 VRS .I R .Cos (30 ) Sabemos que: Cos 0.5 60 W1 V L .I L .Cos (30 60) V L .I L.Cos90 W1 0W Cálculo de W2 : W2 VTS .I T .Cos (30 ) 294 W2 VL .I L .Cos(30 60) W2 VL .I L.Cos (30) .................................(1) Cálculo de la potencia trifásica total para obtener P3 W2 : # HP (746) 20(746) n 0.746 P3 20000 W Además sabemos: P3 3.VL .I L .Cos V L .I L V L .I L P3 3.Cos 20000 23094 3 (0.5) .......... .......... .......... .....( 2) Reemplazando (2) en (1): W2 23094.Cos(30) W2 19999.99 20000W Triángulo de Potencias: A continuación se muestra el valor de las Potencias Trifásicas obtenidas: S 3 40000 VA Q3 34641VAR P3 20000 W 295 PROBLEMA N° 02 Se tiene un Motor Trifásico con los siguientes datos de placa: 15HP, 220v, n = 80%, Cos 0.8 en atraso, conexión en triángulo. Se desea mejorar el factor de potencia a 0.95 en atraso. Calcular la capacidad por fase de los condensadores si están conectados en: a). En triángulo b). En estrella Resolución: Cálculo de la Potencia trifásica activa entregada al Motor: P3 # HP (746 ) 15(746 ) n 0 .8 P3 13987 .5 W Inicialmente el factor de potencia es igual a 0.8 en atraso y se quiere corregir a 0.95 en atraso fdp 0.8 1 37 fdp 0.95 2 18 a). Cálculo de la capacidad de los Condensadores cuando están conectados en triángulo: 296 Potencia reactiva para una fase: Los Condensadores están colocados en triángulo entonces: Q VF VL VF2 VL2 XC XC Potencia reactiva para las tres fases. Q3 3.V L2 3.w.C.V L2 XC ..............................(1) Además: Q3 P3 (Tg 1 Tg 2 ) .......... .......... .......... .( 2) De (1) y (2) se obtiene: 3.w.C.VL2 P3 (Tg1 Tg 2 ) C P3 (Tg1 Tg 2 ) 3.w.VL2 297 C 13987 .5(Tg 37 Tg18) 3.(377 ).( 220) 2 C 109 .5 uf ( Valor de cada condensador por fase ) b). Cálculo de la capacidad de los Condensadores cuando están conectados en Estrella: Potencia reactiva para una fase: VF Los Condensadores están colocados en estrella entonces: Q VL 3 V F2 V2 L X C 3. X C Potencia reactiva para las tres fases. Q3 VL2 w.C.VL2 XC ..............................(1) Además: 298 Q3 P3 (Tg 1 Tg 2 ) .......... .......... .......... .( 2) De (1) y (2) se obtiene: w.C.VL2 P3 (Tg1 Tg2 ) C C P3 (Tg1 Tg 2 ) w.VL2 13987 .5(Tg 37 Tg18) (377 ).( 220) 2 C 328 .5 uf ( Valor de cada condensador por fase ) PROBLEMA N° 03 En el circuito trifásico de secuencia positiva se pide: a) La lectura del vatímetro W2 y la tensión de alimentación si la lectura del vatímetro W1 es de 150W. b) La lectura de los vatímetros si se abre el interruptor K. 299 Resolución a) Transformando la carga en delta a estrella, usando propiedad: Entonces: 300 Vab W1 Vab I a cos Ia * ** Vab Vbc Vca Ic Ia I Vab W2 Veb I c cos Ic W2 Vcb I c cos 30º De * y ** W1 W2 , W1 150 W2 150 W Como la carga es resistiva VaN e I a están en fase: W1 Vab I a cos 30º Analizando en una fase: como: VaN I a R; pero R 1 VaN I a Vab 3 VaN V De W1 Vab ab cos 30º 3 Ia V 2 3 W1 ab 3 2 Vab 3 Vab 17.32 voltios b) De lo anterior se tendrá 301 Entonces: Vab W1 Vab I a cos ' I a Vab I a' 1 están en Vab I a' fase 0 W1 Vab I a' W1 Vab2 También: Vcb W2 Vab I c' cos ' I a Vab I c' 1 Vcb I ' están en fase 0º W2 Vcb I c' W2 Vcb2 Como: Vab Vbc Vca Vab Vcb Luego: W1 W2 Vab2 302 PROBLEMA N° 04 En el circuito de la figura se tiene la lectura del W 1= 1829 w los amperímetros marcan 6A ¿Hallar el fdp del motor trifásico de inducción conociendo que la tensión entre línea es de 381V en sentido negativo y el voltaje , además la lectura del vatímetro w2 Resolución: → tenemos las tensiones de fase y de línea SEC(-) V BC 38130 VAB 381 90 W1=1829w VBC 38130 A=6A VCA 381150 V C 381 Utilizando VBN 381 60 3 381 60 3 VAN VCN 381 180 3 W1 : W1 VCA .I C .Cos 1829 381 .( 6).Cos Cos 0.8 37 303 W2 = Vac.Ia cos = (381)(6)Cos97 W2 = 278,6 Y el factor de potencia es: fdp Cos 67 0 0.39 PROBLEMA N° 05 Realice el diagrama fasorial de una carga trifásica conectada en delta a un generador tipo delta de secuencia negativa .Tensiones y corrientes de línea y fase. Resolución: Carga con conexión delta sentido CBA: I A I ba I ac I B I bc I ba I C I ca I bc Sumando : I A I B IC 0 Z Z (inductivo) 304 PROBLEMA N° 06 Dado el sistema trifásico de la figura hallar: a). Diagrama fasorial de las corrientes indicadas en la figura. ' ' ' b). El valor de la Potencia reactiva trifasica de un banco de capacitares colocados en A B C para obtener un fdp 0.95 en atraso en todo el sistema. Datos para el Motor 3 : 10HP, 220v, n = 75%, Referencia: fdp 0.8 V A'B ' 2200 Secuencia ( + ) 305 Resolución: Para el Motor trifásico fdp 0.8 V A'B ' 2200 V A'N 37 (Angulo que adelanta la tensión de fase a la corriente de fase) (Tensión de línea en secuencia “+” ) 220 30 3 V A'N 127 30 (Tensión de fase) …………………………………… (1) Potencia trifásica: P3 # HP (746 ) 10(746 ) 9946 .7W n 0.75 Para una fase: P 3315 .6W .......... .......... .......... .......... ........ .......... .... ( 2) 306 Sabemos también: P V A ' N .I AM .Cos Reemplazando los valores de (1) y (2) I AM Como: P V A' N .Cos 3315.6 32.6 127(0.8) V A'N 127 30 Entonces: I AM 32.6 67 De ello se deduce: I BM 32.6 187 I CM 32.653 Para la carga en triángulo: V A'B ' 2200 La tensión V A'B ' y la corriente I F , están en fase ya que la impedancia es resistiva: V A'B ' 220 5 Z 44 50 IF IF La corriente de línea será: I AR 3.5 30 I AR 8.7 30 De ello se deduce: I BR 8.7 150 307 I CR 8.790 Analizando en una línea: I A I AM I AR I A 32.6 67 8.7 30 I A 40 59.4 Entonces se deduce: I B 40 179.4 I C 4060.6 Diagrama fasorial: 308 b). Potencia activa para el Motor 3 : P3 9946 .7W En la carga resistiva en triángulo (solo tiene potencia activa) 3.VL2 3(220) 2 P R 44 ' 3 P3' 3300W En las líneas solo hay potencia reactiva: QL' 3.I L2 . X L 3(40) 2 .(0.8) Q L' 3840 VAR 309 Triángulo de potencias: 11335 .4 40.5 13246 .7 1 Tg 1 Cálculo de la Potencia Reactiva Capacitiva QC para corregir el factor de potencia a 0.95 en atraso Cos 2 0.95 2 18 QC P3 (Tg 1 Tg 2 ) 13246 .7 (Tg 40.5 Tg18) QC 7009.6 VAR 310 Calculo del banco de condensadores: Potencia reactiva capacitiva para una fase: Los Condensadores están colocados en triángulo entonces: VF VL VF2 VL2 Q XC XC Potencia reactiva para las tres fases. Q3 C C 3.VL2 3.w.C.VL2 XC Q3 3.w.V L2 7009.6 3.(377).(220) 2 C 128 uf (Valor de cada condensador por fase) PROBLEMA N° 07 Una línea trifásica tiene una impedancia de 1 + j3, la línea alimenta una carga balanceada conectada en delta que absorbe una potencia compleja de 12 + j5 kva. Si el voltaje de línea de lado de la carga tiene una magnitud de 240 v. Calcular la magnitud de línea del lado de la fuente. Lo primero que hay que hacer es dividir la carga entre 3, así como el voltaje de línea convertirlo a neutro. Después con la carga y el voltaje sacamos la corriente del monofásico: 311 Sacamos el voltaje de la impedancia y se lo sumamos al voltaje de línea a neutro de lado de la carga. Después ese voltaje lo transformamos a un voltaje de línea. PROBLEMA N° 08 Un circuito trifásico conectado en delta- delta Y. Tiene una fuente con un voltaje de línea de 208v tiene una impedancia de línea de 2 ohmios. La parte de la carga tiene una impedancia en delta de (12-j15) conectada en paralelo con una impedancia Y de (4+j6). Encontrar la corriente de Ia Resolución: Lo primero que hacemos es poner en Y la impedancia en delta y ponerla en paralelo con la impedancia en Y. Después ponemos el voltaje VAB en Van Después calculamos las 3 corrientes del circuito monofásico, y solo la corriente que pasa por las fuente (I1) es la que nos piden. Resolvemos el sistema de ecuaciones. El resultado de corriente I1 es: 312 PROBLEMA N° 09 Un sistema 3 ABC con tres conductores a 100 voltios alimenta a una carga con conexión e impedancia de 2045º . Hallar las intensidades de corriente en las líneas y dibujar el diagrama fasorial. Resolución: Sea la conexión del problema donde se aplica las tensiones compuestas entre líneas de secuencia ABC: Para el sentido de giro indicado con (+) primero pasa V AB , seguido de V BC y finalmente VCA V AB 1000 º , V BC 100 120 º , VCA 100 240 º Las corrientes elegidos son: I AB V AB 1000º 100 120º 5 45º , I BC 5 165º 5195º z 2045º 2045º I CA 100 240º 5 285º 575º 2045º Para obtener las corrientes en las líneas (véase el esquema del circuito) se aplica la 1ra. Ley de Kirchhoff a cada uno de los nudos principales (a, b, c) de la carga, por tanto: 313 Nudo (a): I A I AB I CA 5 45 º 575 º 8.66 165 º I B I BC I AB 5195 º 5 45 º I B 8.66 165 º I C I CA I BC 575º 5195 º I C 8.66 45º PROBLEMA N° 10 Un sistema trifásico de tres conductores, 240 voltios y secuencia CBA alimenta a una carga conectada en en la que z AB 2590 º , z BC 1530 º y z CA 200 º Ohms. Hallar las intensidades de corriente en líneas y la potencia total. Tome como referencia el voltaje VCB. Resolución: Sea el sistema: Aplicando las tensiones compuestas entre líneas de secuencia CBA a la carga conectado en y eligiendo las corrientes de fase como se muestra en el esquema: 314 I CB VCB 2400º 16.0 30º , z BC 1530º I AC I BA VBA 240240º 9.6150º z AB 2590º V AC 240120º 12.0120º zCA 200º Las corrientes en las líneas, aplicando 1ra. Ley de Kirchhoff en los nodos a,b y c tenemos: “a”: I A I BA I AC 9.6150 º 12 120 º 6.06 67 .52 º “b”: I B I BA I CB 9.6150 º 16 30 º 25 .6180 º “c“: I C I CB I AC 16 30 º 12120 º 27.1 42.8º Como era de esperarse, en una carga desequilibrada las corrientes de línea no son iguales. La potencia en cada fase se calcula de la siguiente manera: En z AB 2590 º 0 j 25 WAB = RAB x En 2 I BC IAB = 9.6A , RBC = 13 y IBC = 16A = (13)(16)² = 3330 Watts z CA 20 0 º 20 j 0 WCA = RCA x RAB = 0y = (0) (9.6)² = 0 Watts z BC 1530 º 13 j 7.5 WBC = RBC x En 2 I AB , , RCA = 20 y ICA = 12A 2 I CA 20 12 ² 2880Watts Wt W AB W BC WCA 0 3330 2880 6210 Watts W t = 6210 Watts PROBLEMA N° 11 Tres impedancias idénticas de 12 30 , en ∆, y otros tres idénticos de 5 45 , en y, se unen al mismo sistema trifásico, de tres conductores de 208 voltios y secuencia ABC. Hallar las intensidades de corriente en las líneas y la potencia total 315 Resolución: Como la primera de las cargas está conectada en ∆ , se obtiene su equivalente en estrellas : Z Y Z / 3 12 30 /3= 4 30 Con una tensión compuesta entre líneas de 208 voltios la tensión simple (tensión la fase) es de VL 208 =120 voltios 3 120 3 5 45 12 30 4 30 El circuito equivalente monofásico se puede representar de la siguiente manera; con dos impedancias: 4 30 y 5 45 esta impedancias pueden ser sustituidas por: Z eq 4 30 x5 45 4 30 5 45 2.24 36.6 120 0 4 30 5 45 Con esto la corriente es : IL 120 0 V AN 53.6 36.6 Z eq 2.24 36.6 Bajo la referencia de V AN , la tension V AN en la secuencia ABC tiene un angulo de 0 0 , entonces la corriente de la linea se calculara de la siguiente manera: IA 120 0 V AN 53.6 36.6 Z eq 2.24 36.6 Análogamente para las demás fases se cumple: I B 53.6 156.6 I B 53.6 85.4. 53.6 120 316 La potencia activa será: W 3V L I L cos 3 (208)(53.6) cos 36.6 W 15500 watts PROBLEMA N° 12 En la figura se presenta un sistema trifásico equilibrado de tensiones y en cargas. La carga 1 se alimenta a través de una línea de resistencia R=0.5 y una inductancia de L 1. 2. 10 mH . el voltímetro V2 mide 360v. se pide. Lectura de vatímetros W1; W2;W3. lectura del voltímetro V1 y cos del generador. Resolución: Sabemos que: W1 W2 PG W3 W1 W2 QG 3 Pero: PG P1 P2 PL QG Q1 Q2 QL Donde: 317 PL 3.R.I L2 (3)(0.5)(20) 2 PL 600W . QL 3.w.L.I L2 (3)(100 . IL PL 3.V2 .COS1 10 .10 3 )(20) 2 PL 1200VAR (10.6).(10 3 ) 3.(360).(0.85) I L 20 A. Luego: PG 10.6 8 0.6 PG 19.2 KW . QG (10.6)Tg (arccos(0.85)) (8)Tg (arccos(0.8)) 1.2 QG 13.77.KVAR Por lo tanto se tiene el sistema: W1 W2 19.2 W3 W1 W2 13.77 3 W3 W1 W2 7.95W . La potencia aparente consumida por el conjunto linea-carga 1 es: S P12L Q12L Donde: P1L P1 PL 10.6 0.6 P1L 11.2 KW . Q1L Q1 QL 6.57 1.2 Q1L 7.77 KVAR. Y por tanto: S (11.2) 2 (7.77 ) 2 S 13.63 KVA. Por otra parte: V1 S1L 3 .I 1 (13.63)(10 3 ) 3.( 20) V1 393.5V . Finalmente: COS PG SG PG PG2 QG2 19.2 (19.2) 2 (13.77) 2 COS 0.81. 318 CIRCUITOS TRIFASICOS PROBLEMAS PROPUESTOS PROBLEMA N° 01 Dado el circuito de la figura: a) b) c) d) Encontrar Ī Encontrar Encontrar ¿Esta equilibrado el circuito? Solución: a) Ī = 0 ; b) = 1117.03∠117. 54 ; c) =1909.14∠87. 78 ; d) Desequilibrado PROBLEMA N° 02 Dado el circuito de la figura: a) b) Encontrar ̅ ¿Está equilibrado el circuito? Solución: a)Ī = 4.0037∠82. 64 ; b) Desequilibrado 319 PROBLEMA N° 03 En el circuito de la figura =3.6-j 1.05Ω, =12+j9 Ω y a) Encontrar las corrientes de rama Ī , Ī Ī b) Encontrar las corrientes de línea Ī , Ī Ī c) Encontrar las ramas de corrientes Ī , Ī Ī = 30 +j0 Ω = 176∠16. 26 A; b) Ī ; c)Ī Solución: a) Ī = 182.48∠9. 53 = 176∠16. 26 A PROBLEMA N° 04 La impedancia Z en el circuito de la figura es 100-j75Ω. Encontrar: a) b) c) Ī ,Ī Ī ,Ī Ī ,Ī Solución: a) Ī Ī Ī Ī = 105.60∠36. 87 A; b) Ī = 182.90∠66. 87 A; c) Ī = 105.60∠36. 87 A 320 PROBLEMA N° 05 En el circuito de la figura se muestra una fuente trifásica conectada en triangulo (∆) a) b) Encontrar el equivalente en estrella (Y) Mostrar la equivalencia de ambos en vacío y en corto circuito Solución: a) 0.3 +j1.5Ω = 1200.31∠ − 30 V; = PROBLEMA N° 06 Dado el circuito de la figura: a) Encontrar Ī b) ¿Qué porcentaje de la potencia activa suministrada por la fuente trifásica se disipa en la carga trifásica? c) Solución: a)Ī = 8.22∠ − 71. 57 A; b) 99.76% 321 PROBLEMA N° 07 La tensión de fase en la carga del circuito de la figura es 600V. Con esta tensión la carga está absorbiendo 135kVA con un factor de potencia de 0.96 (receptor inductivo) a) b) Encontrar la corriente de línea Ī Hacer un balance de potencia activa y potencia reactiva. Solución: a)Ī =82.98∠34. 64 A PROBLEMA N° 08 Dado el circuito de la figura, donde a) b) c) = 20∠30 Ω, = 60∠0 Ω y = 40∠−30 Ω, encontrar: Medición del vatímetro 1 Medición del vatímetro 2 Demostrar que la suma de las mediciones de los vatímetros es igual a la potencia activa entregada a la carga trifásica, es decir: + = Solución: a) = 7482.46 ; b) =6621.23 W 322 PROBLEMA N° 09 Dado el circuito de la figura, donde Z=13.44+j46.08Ω, encontrar: a) Medición del vatímetro 1 b) Medición del vatímetro 2 c) Comprobar que + = d) Comprobar que: 3( Solución: a) − = 28156.15W : b) ) =Q = -9256.15 W ; c) P=18900 W ; d) Q= 64800Var 323