I.E.S. "Fernando de Mena" Departamento de Matemáticas Pedro Castro Ortega Tabla de integrales inmediatas Funciones simples Z Funciones compuestas Z dx = −− 1 dx = x + C Z −− k dx = kx + C Z xn+1 + C ; n 6= −1 x dx = n+1 Z 1 dx = ln x + C x Z ex dx = ex +C Z n Z Z Z Z 1 · ax + C a dx = ln a x Z Z ln x dx = x ln x − x + C Z f 0 (x)f (x)n dx = 1 loga x dx = (x ln x − x) + C ln a Z sen x dx = − cos x + C Z f 0 (x) ef (x) dx = ef (x) +C f 0 (x)af (x) dx = f 0 (x) loga f (x)dx = Z 1 · af (x) + C ln a cos x dx = sen x + C Z 1 (f (x) ln f (x) − f (x)) + C ln a f 0 (x) sen f (x) dx = − cos f (x) + C Z tg x dx = − ln(cos x) + C f 0 (x) dx = ln f (x) + C f (x) f 0 (x) ln f (x) dx = f (x) ln f (x) − f (x) + C Z Z f (x)n+1 + C ; n 6= −1 n+1 f 0 (x) cos f (x) dx = sen f (x) + C f 0 (x) tg f (x) dx = − ln(cos f (x)) + C Z Z Z 1 f 0 (x) 2 0 2 dx = (1 + tg x) dx = tg x + C dx = f (x) 1 + tg f (x) dx = tg f (x) + C cos2 x cos2 f (x) Z Z Z Z 1 f 0 (x) 2 dx = (1 + ctg x) dx = − ctg x + C dx = f 0 (x) 1 + ctg2 f (x) dx = − ctg f (x) + C 2 2 sen x sen f (x) Z Z 1 f 0 (x) √ p dx = arc sen x + C dx = arc sen f (x) + C 1 − x2 1 − f (x)2 Z Z −1 −f 0 (x) √ p dx = arc cos x + C dx = arc cos f (x) + C 1 − x2 1 − f (x)2 Z Z 1 f 0 (x) dx = arc tg x + C dx = arc tg f (x) + C 1 + x2 1 + f (x)2 Z