Documento de apoyo para el tema de equilibrio químico Elaboró. Q

Anuncio
Documento de apoyo para el tema de equilibrio químico
Elaboró. Q. Everardo Tapia Mendoza
EJERCICIO TIPO I. YA SE CONOCEN LAS CONCENTRACIONES AL EQUILIBRIO
1. Se ha estudiado el siguiente proceso en equilibrio a 230 ºC
2NO(g) + O2 (g) ↔ 2NO2 (g)
En un experimento se encontró que las concentraciones de equilibrio de las especies reactivas son [NO] =
0.0542 M, [O2] = 0.127 M y [NO2] = 15.5 M. Calcule la Kc y Kp de la reacción a esta temperatura.
RESPUESTA:
La contante de equilibrio está dada por la expresión:
𝐾! =
[𝑁𝑂! ]!
[𝑁𝑂]! [𝑂! ]
Como ya se tienen las concentraciones al equilibrio sólo se debe sustituir en la expresión anterior.
[15.5]!
𝐾! =
= 6.44 𝑥 10!
[0.0542]! [0.127]
¿Qué se puede decir de este valor? Sabemos que a valores grandes de una constante de equilibrio ésta se
encuentra desplazada hacia la formación de productos en el sentido que está escrita.
Es decir, Cuando Keq es mayor a 1 está desplazada a los productos y cuando es menos a uno a los reactivos,
para este ejemplo es una constante muy grande, lo que significa que el equilibrio está desplazado a los
productos.
Finalmente para obtener Kp, si consideramos que se comportan como gases ideales que Kp = Kc(RT) n;
Donde es importante notar que R= 0.0821 Latm/molK
Δ
Kp = Kc((0.0821)(5031) n ; Δn = moles de productos – moles de reactivos
Kp = Kc(41.2963)-1
Kp = (6.44 x 105) (41.2963)-1
Kp = 15594.61
Δ
EJERCICIO TIPO II. YA SE CONOCEN LAS CONCENTRACIONES O PRESIONES DE CASI TODAS
LAS ESPECIES Y LAS CONSTANTES.
2. La constante de equilibrio Kp obtenida para la descomposición del pentacloruro de fósforo en tricloruro de
fósforo y cloro molecular.
PCl5 (g) ↔ PCl3 (g) + Cl2 (g)
es de 1.05 a 250 ºC. Si las presiones parciales en el equilibrio del pentacloruro de fósforo y tricloruro de fósforo
son 0.875 atm y 0.463 atm, respectivamente, ¿Cuál es la presión parcial de equilibrio del cloro diatómico a esta
temperatura?
RESPUESTA
Como me piden una presión parcial, la expresión de la Kp es la que me sirve para obtener dicho valor
1 Recuerda que para transformar de grados Celsius a Kelvin, a los grados Celsius se le deben suma 273. La expresión de la constante Kp es la siguiente:
𝐾! =
𝑃!"#! 𝑃!"!
𝑃!"#!
De la misma forma, al ya tener las presiones al equilibrio podemos sustituir directo en la expresión anterior.
1.05 =
𝑃!"! = 0.463 𝑃!"!
0.875
(1.05)(0.875)
= 1.98 𝑎𝑡𝑚
(0.463)
Aunque el problema no lo pide se calculara la concentración del cloro diatómico, a partir de su presión de
parcial obtenida. Si asumimos un comportamiento ideal, tenemos que P = MRT, por tanto para obtener la
molaridad hay que dividir la presión entre el producto RT.
𝑃
(1.98 𝑎𝑡𝑚)
= 𝑀 = = 0.046 𝑚𝑜𝑙/𝐿
𝑙𝑎𝑡𝑚
𝑅𝑇
(0.0821 𝑚𝑜𝑙𝐾 )(523 𝐾)
EJERCICIO TIPO III. CUANDO SE CONOCE LA CONSTANTE DE EQUILIBRIO Y SE REQUIEREN
CONOCER LAS CONCENTRACIONES AL EQUILIBRIO
3. Una mezcla de 0.5 moles de hidrógeno y 0.5 moles de yodo se coloca en un recipiente de acero inoxidable de
1.0 L a 430 ºC. La constante Kc para la reacción H2 (g) + I2 (g) ↔ 2HI (g) es 54.3 a esta temperatura. Calcule las
concentraciones de todas las especies en el equilibrio.
RESPUESTA.
Primero se deben conocer las concentraciones al inicio
[H2]0 =
!.! !"# !!"#ó!"#$
! !
= 0.5 𝑀
[I2]0 =
!.! !"# !"#"
! !
= 0.5 𝑀
Realizando la tabla de variación de concentraciones
Inicial (M)
Reacciona
Forma
Equilibrio
H2
0.5
x
+
0.5 - x
I2
0.5
x
↔
0.5 -x
La expresión está dada por:
[𝐻𝐼]!
(2𝑥)!
𝐾! =
= 𝐻! [𝐼! ]
(0.5 − 𝑥)!
Realizando el álgebra necesaria se despeja x
2HI
2x (no olvidar que la
estequiometría es 1:2)
2x
𝐾! ( 0.5 ! − 2 0.5 𝑥 + 𝑥 ! ) = 2𝑥 !
0.25Kc -Kcx + Kcx2 = 2x2
x2(Kc-2) – Kcx + 0.25Kc = 0
Utilizando la ecuación de segundo grado:
𝑥 = −𝑏 ± 𝑏 ! − 4𝑎𝑐
2𝑎
Sustituyendo
𝑥 = −(−54.3) ± (−54.3)! − 4(52.3)(13.575) 54.3 ± 10.421
=
2(52.3)
104.6
x1 = 0.4191; x2 = 0.618
Se obtienen dos raíces, dado que la concentración inicial es 0.5 M, no podemos restar una cantidad superior. Las
concentraciones al equilibrio son:
[H2]eq: 0.5 –x = 0.5 -0.4191 = 0.0809 M
[I2]eq: 0.5 –x = 0.5 -0.4191 = 0.0809 M
[HI]eq: 2x = 2(0.4191) = 0.8382 M
4. Suponga que las concentraciones iniciales de H2, I2 y HI son 0.00623 M, 0.00414 M y 0.0224 M,
respectivamente, para la misma temperatura y misma reacción que el ejemplo anterior. Calcule las
concentraciones al equilibrio de cada especie.
RESPUESTA
La diferencia de este problema al anterior es que las concentraciones NO son iguales y se tiene ya al inicio
cierta concentración del producto, lo que debemos hacer es realizar una tabla de variación de concentraciones.
Inicial (M)
Reacciona
Forma
Equilibrio
H2
0.00623
x
0.00623 - x
+
I2
0.00414
x
0.00414 -x
2HI
0.0224
↔
2x (no olvidar que la
estequiometría es 1:2)
0.0224+2x
La expresión está dada por:
[𝐻𝐼]!
(0.0224 + 2𝑥)!
𝐾! =
= 𝐻! [𝐼! ]
(0.00623 − 𝑥)(0.00414 − 𝑥)
Realizando el álgebra necesaria se despeja x
𝐾! = (0.0224 + 2𝑥)!
(2.58 𝑥 10!! − 0.0104𝑥 + 𝑥 ! )
2.58 x 10-5Kc –Kc0.0104x + Kc x2 = 5.02 x 10-4 + 0.0896x + 4x2
Reagrupando términos y usando el valor de Kc = 54.3
50.3x2 -0.654x + 8.98 x 10-4 = 0
De la misma forma que el problema anterior, se obtendrá el valor de x usando la ecuación cuadrática
𝑥 = Sustituyendo
𝑥 = −𝑏 ± 𝑏 ! − 4𝑎𝑐
2𝑎
−(−0.654) ± (−0.654)! − 4(50.3)(8.98 𝑥 10!! ) 0.654 ± 0.4970
0.654 + 0.4970
=
= = 0.0114 2(50.3)
100.6
100.6
Sólo se toma en cuenta la raíz positiva, por que la raíz negativa se obtendría una concentración negativa.
[H2]eq: 0.00623 –x = 0.00623 -0.0114 = 0.00467 M
[I2]eq: 0.00414 –x = 0.00414 -0.0114 = 0.00258 M
[HI]eq: 0.0224 +2x = 0.0224 + 2(0.0114) = 0.0255 M
EJERCICIO TIPO IV. CUANDO SE CONOCE LO QUE REACCIONA Y DEBO CONOCER LA
CONSTANTE DE EQUILIBRIO.
5. En un reactor de 1.50 L a 400 ºC inicialmente había 2.50 moles de NOCl. Una vez que se alcanza el
equilibrio, se encuentra que se disocio 28 % de NOCl:
2NOCl (g) ↔ 2NO(g) + Cl2 (g)
Calcule la constante de equilibrio Kc y Kp de la reacción
RESPUESTA
Como hay que conocer la constante de equilibrio, debo conocer las concentraciones de equilibrio, para ello debo
plantear mi tabla de variación de concentraciones. La concentración inicial del NOCl es 2.50 mol/1.5 L = 1.67
M
2NOCl
2NO
+
Cl2
↔
Inicial (M)
1.67
Reacciona x (Pero sabemos que
se disoció el 28 %
de 1.67, es decir:
0.4676 M)
Forma
0.4676
0.2338 (No
olvidar que es
2:1)
Equilibrio
1.67 – 0.4676
0.4676
0.2338
Escribiendo la constante de equilibrio:
𝐾! =
𝑁𝑂 ! [𝐶𝑙! ]
0.4676 ! 0.2338
=
= 0.0353
𝑁𝑂𝐶𝑙 !
1.2024 !
Y para el cálculo de Kp, tenemos Kp = Kc(RT) n; sustituyendo Kp = (0.0353)(0.0821*673)3-2 = 1.95
Δ
Descargar