Derivadasa d(c) dt = 0 du(t) d cos u(t) = − sen u(t) dt dt d(cu(t)) du(t) = c dt dt d[u(t)]n dt d tan u(t) du(t) = sec2 u(t) dt dt du(t) = n[u(t)]n−1 dt u(t) du(t) dv(t) v(t) dt − u(t) dt v(t) = dt [v(t)]2 la funciones exponencial y logaritmo natural. Nótese como una función es d ln u(t) du(t) = 1 dt dt u(t) el reflejo de la otra a través de la recta y = x. f (k) (h) k f 00 (h) 2 x + ... + x + ... 2 k! 2 4 6 cos x = 1 − x2! + x4! − x6! + . . . 2 3 4 ex = 1 + x + x2! + x3! + x4! + . . . Ejemplos du R z }| { du(t) dt = dt u(t)n+1 [u(t)]n du = n + 1 + C R (3t + 5)3 dt = 31 Rz du(t) dt dt u(t) 4 (3t + 5) (3t + 5)3 3dt = 13 +C 4 }| { z}|{ du(t) dt dt du R 1 du = ln |u(t)| + C u(t) R Rz }| { cos 2t(2dt) cot 2tdt = 12 = 12 ln | sen 2t| + C sen | {z2t} u(t) R [c1 f1 (t) + . . . + cn fn (t)] dt = R [v0 + at] dt = v0 t + 21 at2 + C R c1 f1 (t)dt + . . . + cn fn (t)dt du R z }| { du(t) sen u(t) dt = dt R sen u(t)du = − cos u(t)+C R t sen t2 dt = 12 R u(t) z }| { cos u(t) du(t) dt = dt R cos u(t)du = sen u(t) + C du R z }| { eu(t) a du(t) dt = dt R 1 cos ωtdt = ω R sen t eu(t) du = eu(t) + C c es una constante R dt 2tdt = − 12 cos t2 + C 2 u(t) du(t) dt dt 1 sen ωt + C cos ωt ωdt = ω z}|{ z}|{ u(t) R du(t) dt z}|{ z}|{ du R 6 Figura 1. Representación gráfica de Integralesa 1 du(t) dt = u(t) dt 4 -2 deu(t) = eu(t) du(t) dt dt Por ejemplo: 3 5 7 sen x = x − x3! + x5! − x7! + . . . z }| { 2 t c es una constante [u(t)]n 0 du(t) d csc u(t) = − csc u(t) cot u(t) dt dt f (x + h) = f (h) + f 0 (h)x + R ln x -2 Series de Taylor R 2 d sec u(t) du(t) = sec u(t) cot u(t) dt dt d sen u(t) du(t) = cos u(t) dt dt R y=x 0 dv(t) du(t) d(u(t)v(t)) = u(t) dt + v(t) dt dt a ex 4 du(t) d cot u(t) = − csc2 u(t) dt dt d(u(t) + v(t)) du(t) dv(t) = dt + dt dt d 6 R z }| { du(t) dt dt 2 z }| { 2 1 e−at −2atdt = − 1 e−at2 + C te−at dt = − 2a 2a