(2016) XVIII Seminario Ibérico de Química Marina Alicante (España), 20-22 Julio 2016 2 (2016) Esta publicación debe citarse como: VALLE C, AGUILAR J, ARECHAVALA P, ASENSIO L, BLASCO J, CABRERA R, COBELO A, CORBÍ H, CRAVO A, DELA-OSSA JA, DEL-PILAR Y, FERNÁNDEZ V, FERNÁNDEZ Y, FERRERO LM, FORCADA A, FORJA J, GIMÉNEZ F, GÓMEZ A, GONZÁLEZ JM, IZQUIERDO D, LEÓN V, MARCO C, MARTÍNEZ E, ORTEGA T, RAMOS A, RUBIO E, SÁNCHEZ JL, SÁNCHEZ P, SANTANA M, SANZ C, TOLEDO K, ZUBCOFF JJ (Ed.). 2016. Libro de Resúmenes. XVIII Seminario Ibérico de Química Marina. Universidad de Alicante, Alicante. 114 pp. ISBN: 978-84-16724-18-5. Edita: Universidad de Alicante Departamento de Ciencias del Mar y Biología Aplicada ISBN: 978-84-16724-18-5 Diseño de portada: Imagén de portada: Maquetación: Luis M. Ferrero Pablo Arechavala Luis M. Ferrero, Pablo Arechavala, Reme Cabrera Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional 3 (2016) Comité organizador Abelardo Gómez, Universidad de Cádiz Alexandra Cravo, Universidade do Algarve Antonio Cobelo, Instituto de Investigaciones Marinas, CSIC Jesús Forja, Universidad de Cádiz Julián Blasco, Instituto de Ciencias Marinas de Andalucía, CSIC Magdalena Santana Casiano, Universidad Las Palmas de Gran Canaria Rocío Ponce, Universidad de Cádiz Teodora Ortega, Universidad de Cádiz Victor León, Instituto Español de Oceanografía Comité organizador local Aitor Forcada, Universidad de Alicante Alfonso Ramos, Universidad de Alicante Candela Marco, Universidad de Alicante Carlos Sanz, Universidad de Alicante Carlos Valle, Universidad de Alicante David Izquierdo, Universidad de Alicante Elena Martínez, Universidad de Alicante Esther Rubio, Universidad de Alicante Francisca Giménez, Universidad de Alicante Hugo Corbí, Universidad de Alicante Javier Aguilar, Universidad de Alicante José Antonio de la Ossa, Universidad de Alicante José Jacobo Zubcoff, Universidad de Alicante José Luis Sánchez, Universidad de Alicante José Miguel González, Universidad de Alicante Kilian Toledo, Universidad de Alicante Leticia Asensio, Universidad de Alicante Luis M. Ferrero, Universidad de Alicante Pablo Arechavala, Universidad de Alicante 4 (2016) Pablo Sánchez, Universidad de Alicante Reme Cabrera, Universidad de Cádiz Victoria Fernández, Universidad de Alicante Yoana Del Pilar, Universidad de Alicante Yolanda Fernández, Universidad de Alicante Comité científico Xosé Anton Álvarez Salgado, Instituto de Investigaciones Marinas, CSIC Abelardo Gómez Parra, Universidad de Cádiz Antonio Tovar, Instituto de Ciencias Marinas de Andalucía, CSIC Fiz F. Pérez, Instituto de Investigaciones Marinas, CSIC Guillermo Grindlay, Universidad de Alicante Isidro M. Pastor, Universidad de Alicante Josep M. Gasol, Institut de Ciències del Mar, CSIC Luís Lubián, Instituto de Ciencias Marinas de Andalucía, CSIC María J. Bebianno, Universidade do Algarve Melchor González Dávila, Universidad Las Palmas de Gran Canaria Miguel Caetano, Instituto de Investigacao das Pescas e do Mar Ricardo Prego, Instituto de Investigaciones Marinas, CSIC 5 (2016) Instituciones organizadoras: Universidad de Alicante Universitat de Barcelona Universidad de Cadiz Universidad Católica de Valencia San Vicente Mártir Universidad de Las Palmas de Gran Canaria Universidad de Vigo 6 (2016) AUTOR / Área temática / Tipo de comunicación .......................................................................... # Página ÁLVAREZ-IGLESIAS et al. / Contaminación y ecotoxicología marinas / Póster ............................................ 9 ÁLVAREZ-VÁZQUEZ et al. / Contaminación y ecotoxicología marinas / Póster ......................................... 12 ÁLVAREZ-VÁZQUEZ et al. / Procesos biogeoquímicos / Oral ..................................................................... 14 APARICIO-GONZÁLEZ et al. / Cambio climático / Poster ............................................................................ 17 BAENA-NOGUERAS et al. / Contaminación y ecotoxicología marinas / Oral .............................................. 19 BASALLOTE et al. / Contaminación y ecotoxicología marinas / Oral ......................................................... 21 BASALLOTE et al. / Contaminación y ecotoxicología marinas / Póster ...................................................... 23 BEBIANNO et al. / Conferencia invitada ...................................................................................................... 25 BIEL-MAESO et al. / Contaminación y ecotoxicología marinas / Oral........................................................ 26 BRITO et al. / Procesos biogeoquímicos / Póster ........................................................................................ 28 COBELO-GARCÍA et al. / Contaminación y ecotoxicología marinas / Oral ................................................. 30 CORREIA et al. / Oceanografía / Póster ....................................................................................................... 32 COZAR / Conferencia invitada .................................................................................................................... 35 DÍAZ et al. / Contaminación y ecotoxicología marinas / Póster ................................................................. 38 DURÁ et al. / Procesos biogeoquímicos / Póster......................................................................................... 40 GARCÍA-GUERRA et al. / Contaminación y ecotoxicología marinas / Oral ................................................. 42 GÓMEZ-PARRA et al. / Procesos biogeoquímicos / Oral ............................................................................. 44 GONZALEZ et al. / Procesos biogeoquímicos / Oral.................................................................................... 46 GONZÁLEZ-GARCÍA et al. / Oceanografía / Oral ........................................................................................ 48 GONZÁLEZ-ORTEGÓN et al. / Procesos biogeoquímicos / Póster................................................................ 50 GUERRA et al. / Procesos biogeoquímicos / Póster..................................................................................... 52 JEREZ-MARTEL et al. / Procesos biogeoquímicos / Oral ............................................................................ 54 JIMÉNEZ-LÓPEZ et al. / Cambio climático / Oral ........................................................................................ 56 JIMÉNEZ-LÓPEZ et al. / Cambio climático / Oral ........................................................................................ 58 LEÓN et al. / Contaminación y ecotoxicología marinas / Oral ................................................................... 60 LÓPEZ-SÁNCHEZ et al. / Oceanografía / Póster .......................................................................................... 63 MARTÍNEZ-PÉREZ et al. / Oceanografía / Oral ........................................................................................... 65 MIL-HOMENS et al. / Contaminación y ecotoxicología marinas / Póster.................................................... 67 MORENO-ANDRÉS et al. / Contaminación y ecotoxicología marinas / Oral ............................................... 70 MUÑOZ-LECHUGA et al. / Procesos biogeoquímicos / Póster ..................................................................... 73 ORTEGA et al. / Cambio climático / Oral .................................................................................................... 75 ORTEGA et al. / Procesos biogeoquímicos / Póster ..................................................................................... 77 PÉREZ-ALMEIDA et al. / Oceanografía / Oral .............................................................................................. 79 PINARDI et al. / Conferencia invitada ......................................................................................................... 81 PINTADO-HERRERA et al. / Contaminación y ecotoxicología marinas / Oral ............................................. 82 RAIMUNDO et al. / Contaminación y ecotoxicología marinas / Oral........................................................... 84 RIBEIRO et al. / Contaminación y ecotoxicología marinas / Póster ............................................................ 86 7 (2016) RODRÍGUEZ-ROMERO et al. / Cambio climático / Póster ............................................................................ 89 ROSA et al. / Oceanografía / Oral ............................................................................................................... 91 SAMPER et al. / Contaminación y ecotoxicología marinas / Póster............................................................. 93 SÁNCHEZ-QUILES et al. / Contaminación y ecotoxicología marinas / Oral ................................................ 94 SANTANA-CASIANO / Contaminación y ecotoxicología marinas / Oral ..................................................... 96 SENDRA et al. / Contaminación y ecotoxicología marinas / Oral ............................................................... 99 SIERRA et al. / Cambio climático / Oral.................................................................................................... 102 TOVAR-SÁNCHEZ et al. / Contaminación y ecotoxicología marinas / Póster ............................................ 105 TOVAR-SÁNCHEZ et al. / Contaminación y ecotoxicología marinas / Póster ............................................ 107 TRAVERSO-SOTO et al. / Contaminación y ecotoxicología marinas / Póster............................................ 109 TROMBINI et al. / Conferencia invitada .................................................................................................... 111 8 (2016) Timing of lead sources and bioavailability in sediments from San Simón Bay (NW Spain): core scanners as complementary tools Paula Álvarez-Iglesias1,2, Isabel Rodríguez-Germade1, Belén Rubio1, Daniel Rey1, Begoña Quintana3 & Jorge Millos2 1 Grupo GEOMA, Dpto. de Geociencias Marinas y Ordenación del Territorio, Facultad de Ciencias, Universidade de Vigo, Vigo 36310 Spain 2 Servicio de Seguridad Alimentaria y Desarrollo Sostenible, C.A.C.T.I., Universidade de Vigo, Vigo 36310 Spain 3 Laboratorio de Radiaciones Ionizantes, Dpto. de Física Fundamental, Universidad de Salamanca, Salamanca, 37008 Spain ABSTRACT San Simón Bay (inner Ría de Vigo), a well-known Pb polluted area, was selected for monitoring the historical Pb pollution and its diagenetic evolution based on pore water and sediment analyses on two sediment cores collected close to the main Pb input, a ceramic factory. The age-model was constructed by Pb-210 dating and corroborated by the detection of temporal markers in different cores (Cs-137, Pb maxima inputs). Very high Pb total contents were observed, more than half in the recoverable fraction. Pb stable isotope ratios confirmed the ceramic factory as the main Pb input, even after its closure. Results obtained by conventional and high-resolution XRF techniques (Itrax core scanner) were combined to monitor Pb pollution. The Itrax core scanner provided detailed information on core sediment composition, which could affect radionuclide activities, and metal variability. INTRODUCTION Coastal sedimentary environments are very sensitive to anthropogenic activities and have been the target of numerous pollution studies [1]. In particular, very high Pb levels were detected in San Simón Bay (inner Ría de Vigo, NW Spain), being the main source an ancient ceramic factory located at the NE coast of the Bay [2-3]. Sediments of these bay are characterized by high organic matter contents that fuel early diagenetic processes, which affect to metal speciation [3]. The main aim of this work is to monitor the historical and diagenetic evolution of Pb in the sedimentary record of San Simón Bay by applying a multidisciplinary approach with different analytical techniques including XRF core scanners (Itrax) as useful screening tools that allow obtaining high resolution data. MATERIAL AND METHODS Two cores were collected in the intertidal area of San Simón Bay, close to the ceramic factory, in October 2010: SS10T01 (0.27 m) and its replicate SS10T03 (0.36 m). Once in the laboratory, cores were half-split and pore waters were collected from SS10T01. These pore waters were divided in three aliquots: for determining sulfates (by UV-VIS spectrometry), sulfides (UV-VIS) and trace elements (by ICP-MS). Afterwards, a U-channel was extracted from each core, and analyzed by Itrax core scanner. This allows obtaining the optical and radiographic images of the cores and their qualitative elemental composition by XRF in a few hours (measuring conditions: Mo tube at 30 kV and 55 mA, 10 s exposure time and 500 µm step size). Cores were subsampled each 1 cm. This resolution was selected for analyzing SS10T03, while 2-3 cm was chosen for SS10T01. Grain size distribution was analyzed in both cores by laser diffraction. Core SS10T03 was dedicated to water content determination and radionuclide analyses by γ-ray spectrometry (in particular 214 Pb, 210Pb and 137Cs for dating). The other analyses were performed on core SS10T01. Contents of total carbon (TC), nitrogen (TN), sulfur (TS) and inorganic carbon (TIC) were determined by Elemental Analysis. Total contents of major and trace elements were also determined by conventional XRF. The methods proposed for trace elements by the NWRI (Canada) [4] were used to obtain the bioavailable, recoverable and total fractions of Pb (and Ag, Cr, Cu, Zn). Lead stable isotope ratios were determined on those extracts by ICP-MC-MS. Different mixture models were applied to these ratios to obtain the total anthropogenic component, the isotopic signature of the Pb anthropogenic inputs and the relative contribution of each Pb source [3]. All analytical work was performed at the CACTI of the University of Vigo, except that on radionuclides, that was performed at the LRI of the University of Salamanca. RESULTS AND DISCUSSION 9 (2016) The studied sediments were mostly sandy silts with TOC, TN, TS and TIC contents that are characteristic of the study area. Two facies could be defined in core SS10T01: the upper one (0-13.5 cm) which comprised dark-colored sediments with higher TOC and TS contents than the lower one (13.5-27 cm), with light-colored sediments and higher TIC contents. A similar facies distribution was observed in core SS10T03 (two facies: 0-16.5 cm, and below), but with an additional coarse-sand layer near its bottom (Fig. 1). Sediments are oxic until 2.5 cm, and then, suboxic. No Pb was detected in pore waters (<0.200 µg L-1), where sulfate content decreased with depth and sulfide content were low or non-detectable. Lead total concentration was extremely high, being higher in the upper facies (∼4.9%, coincident with higher TOC contents) than in the lower facies (∼2.1%) of core SS10T01 (Fig. 1). Pb profiles obtained with the Itrax and conventional techniques (ICP-OES and XRF) were very similar, with the advantage of the former in less time consumption and sample pretreatment. Similar high Pb levels were observed for core SS10T03. The highresolution Itrax data shown a high Pb variability in both cores (57,950±22,320 peak area in SS10T01 and 56,500±21,200 p.a. in SS10T03) and also a marked subsurficial maxima (Fig. 1). This maxima is coincident with relatively high Ag, As, Cu and Zn contents. This is probably due to the use of Zn oxide in the ceramic, As in its glaze, and Ag-thread in the decoration of some pieces. a) 0.40 0.80 206 Pb (%) AGS (mm) 0.00 1.20 0.0 2.0 4.0 6.0 8.0 10.0 1.150 Pb/ 207 1.160 Pb 1.170 AGS TOC PbITRAX Pbbioav Pbrecov PbICP 20 ACKNOWLEDGEMENTS 1.0 1.5 2.0 2.5 3.0 3.5 b) 0.00 0 40000 80000 120000 TOC (%) Pb (p.a.) AGS (mm) Pb (p.a.) 0.40 0.80 glazing 10 gypsum Depth (cm) 0 1.20 0 Pbxs (Bq kg-1) 210 40000 80000 120000 0 20 40 60 80 0 AGS Water PbITRAX 137Cs/Fe 210Pb xs 10 Depth (cm) that of total Pb (Fig. 1). Then, high quantities of Pb are adsorbed onto sedimentary particles, forming insoluble salts and organic complexes, which are environmentally available. Profiles of Pb stable ratios for the bioavailable and recoverable fractions and the total Pb content were similar, with a marked minimum at 11 cm (Fig. 1). These ratios were very similar to the characteristic ratios of gypsum from the ceramic factory [3]. The anthropogenic Pb represents 99.8-99.9% of total Pb, the main input being the ceramic industry, with a small contribution from petrol combustion (∼4%). Radionuclide profiles showed a clear grain-size influence, with a marked increase toward the bottom core (Fig. 1) probably due to higher contents of organic matter and finegrained sediments. Due to this the 137Cs specific activity profile was normalized by the Fe content. Three relative maximum were detected (Fig. 1). The first two were considered time-markers (1987 and 1963), the last discarded due to the described matrix-effect. The age model was established by applying the CRS-MV model to the in excess 210Pb specific activity profile [2] and sedimentation rates of ∼7.6 mm a-1 were obtained. When sediment cores from former studies are compared to the studied cores [2,5] it was detected a relative displacement of some characteristic features in the 137Cs specific activity profile and in the total Pb content profile that could be used as time markers, and then, sedimentation rates of the same order (∼5-7 mm a-1) are obtained. According to the corroborated chronology the studied sediments spans the last 60 years. The Pb total profile show the starting of the ceramic industry around 1972, with maximum discharges around the beginning of the 1990s, and the persistence of very high Pb levels in 2010, in spite of the industry closure in 2001. 20 This work was supported by the projects IPT-3100002010-17 and GLC2010-16688 (MICINN) and 10MMA312022PR (XUGA). I. Rodríguez-Germade was funded by a FPU scholarship (MECD) and P. ÁlvarezIglesias by the Ángeles Alvariño program (XUGA). REFERENCES 30 40 0 10 20 30 40 50 Water content (%) 0.0 0.4 0.8 1.2 1.6 (137Cs / Fe)*103 Fig. 1. Depth-wise profiles of: a) average grain size (AGS), TOC, Pb concentration and 206Pb/207Pb in the bioavailable, recoverable and total fractions (by ITRAX and ICP-OES) in core SS10T01; and b) mean grain size, water content, total Pb content (ITRAX), 210Pb in excess and 137Cs Fenormalized specific activities in core SS10T03. Regarding the distribution of these high Pb levels detected, 18% was recovered in the bioavailable fraction and 56% in the recoverable fraction –their respective profiles similar to 1 - Prego R., Cobelo-García, A, 2003. Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula). Environ Pollut, 121: 425-452. 2 - Álvarez-Iglesias P, Quintana B, Rubio B, Pérez-Arlucea M, 2007. Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology. J Environ Radioact 98: 229-250. 3 - Álvarez-Iglesias P, Rubio B, Millos J, 2012. Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ría de Vigo (NW Spain). Sci Tot Environ 437: 22-35. 10 (2016) 4 - Catalogue of National Water Research Institute, 2006. Certified Reference Materials & Quality Assurance Services. Canada Centre for Inland Waters National Laboratory for Environmental Testing Burlington, Ontario, Canada, v 5.7. 11 (2016) 20th century overview of industrial impact through trace elements content in sediments from the Ria of Ferrol (NW Iberian Peninsula) M.A. Álvarez-Vázquez1,2, R. Prego1, P. Álvarez-Iglesias3, M.C. Pedrosa-García4, S. Calvo1, E. De Uña-Álvarez2, B. Quintana4, C. Vale5,6, M. Caetano5,6 1 Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain. Grupo GEAAT, Área de Geografía Física (University of Vigo), 32004 Ourense, Spain. 3 Grupo GEOMA, Faculty of Marine Sciences (University of Vigo), 36310, Vigo, Spain. 4 Laboratorio de Radiaciones Ionizantes (LRI), Faculty of Sciences (University of Salamanca), 37008 Salamanca, Spain. 5 Instituto Português do Mar e da Atmosfera (IPMA), 1449-006 Lisboa, Portugal. 6 Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), 4050-123 Porto, Portugal. 2 ABSTRACT The Ría of Ferrol (Galicia, Spain) has hosted an important shipbuilding activity since the mid-18th century. The release of trace elements to the system is closely related to the history and changes in the industrial sector. To make an assessment of the changing impact, a short sediment core (50 cm depth) was recovered in the intertidal estuarine area of the Grande-de-Xubia River, the main stream draining into the ria. Layers of 2 cm thickness of fine sediments were separated and dried. Contents Al (normalizer element), Cd, Co, Cr, and Cu were determined in each layer. The core was also dated by 210Pb γ-emission. Preindustrial layers were not achieved so, in order to set a baseline, a comparison was made with data from the nearby Ria of Ares (close to a natural state). By using the metal-Al relationships of this second dataset, the enrichment factor (EF), indicative of human pressure, was calculated for each sample. These elements presented different degrees of enrichment and contamination. The increasing order during the 20th century was as follows: negligible contamination for Cr, moderate contamination for Co, severe contamination for Cd, and heavy contamination for Cu. INTRODUCTION Sediments, accumulated in estuaries over the time, are a record of the water quality in the time when materials precipitated. These sediments have a natural component with origin in the rocks and soils within the river drainage basin mainly, also by the activity of living organisms. Since the Industrial revolution it is especially important the input of waste materials from human activities, which have “severely” affected many estuaries [1] being now among the most impacted environments in the World [2] of the Anthropocene. Trace elements (TEs) are naturally present in sediments but, nowadays, their contents were noticeably altered by anthropogenic contributions especially in coastal areas where the human activity is intense, so they can be used as tracers of human impact, by themselves and, also by their association with other kind of contaminants. The study of TEs in sediment cores, coupled with some geochronology technique, allows the reconstruction of the historical relationship between humans and estuaries, being critical to first establish natural background values [3] to make an assessment of the magnitude and evolution of the human impact. This communication presents a quick view of the historical human impact, during the 20th century, in one of the most industrialized areas of Galicia (NW Iberian Peninsula), namely the Ria of Ferrol. The shipyard industry, settled in the shore of this ria in the 18th century, has evolved and reached its peak in the mid-20th century. Fig. 1. Location map. Hydrographic information from Augas-de-Galicia Co. Basemaps ©2014 ESRI. 12 (2016) MATERIAL AND METHODS The sediment core was sampled using a hand-driven Gouge Augers Sampler in July 2012 during low tide. The sampling point was in the estuary of the Grande-de-Xubia River (Ria of Ferrol), in an area without apparent bioturbation. Cores were on site divided into 2 cm layers. Muddy samples were oven-dried. After acid digestion, Al was analysed by Flame Atomic Absorption Spectrometry (Varian SpectrAA 220 FS) in the Marine Biogeochmistry laboratory, IIM-CSIC (Spain); Cadmium, Co, Cr and Cu by Mass Inductively Coupled Plasma (Thermo-Elemental Xseries) in the Environmental Oceanography laboratory, IPMA (Portugal). The cores were also dated by 210Pb γemission in the Ionizing Radiation Laboratory (LRI), University of Salamanca (Spain). All procedures during sampling, processing and analysis were performed using trace metal clean techniques, and analytical results checked by the use of certificate reference materials. RESULTS AND DISCUSSION The TEs contents in the core ranged 0.39-1.26 mgCd·kg-1, 9.9-28.0 mgCo·kg-1, 71-127 mgCr·kg-1 and 72-284 mgCu·kg-1. The highest extremes of the four elements are over the ranges for unpolluted marine sediments [4] and the background for estuaries in the same regional area [5], but the contents of Co are withing the ranges for Galician soils over granitic rocks [6] (dominant lithology in the Grandede-Xubia River basin). In consequence, these TEs are suspicious of being human-enriched but the local lithology may play a critical role in determining the extent of the anthropogenic influence, a local reference is needed. Since the core did not reach a preindustrial layer, in order to compare with local background values, data from the nearby Ria of Ares was used for comparison, because this ria drainage area is composed by a similar lithology and the contents of TEs in the sediments of the Eume River estuary (see Fig. 1) were previously set as close to a natural state (unpublished data). In order to avoid possible differences in particle size, Al was chosen as normalizer element. An enrichment factor (EF) was calculated as the quotient between the TE-Al relationship (TE content divided by the Al content) in each sample of the core from Ferrol and the average TE-Al relationship in the background reference (Ares), according to the following equation: EF = ([TE]/[Al])Ferrol/([TE]/[Al])Reference The calculated EFs for each layer of the core, jointly with the results of the 210Pb dating, which allows building the timeline, are presented in Fig. 2. To evaluate de degree of anthropogenic impact a contamination criteria [7] was used, selected categories in increasing degree of contamination are: EF<1 negligible, 1<EF>2 possible, 2<EF>3 moderate, 3<EF>6 severe, 6<EF>9 very severe and EF>9 heavy. Fig. 2. Time variation of EFs and contamination criteria. The four elements presented the same pattern of enrichment’s heights and troughs, being the highest enrichments around the 1950s when the industry blossoms with the implementation of great oil-tankers building. The EFs also reflects the beginning of modern shipbuilding in 1908 and the industry-decay after the 60s, when the sector fell into crisis. In the 90s the industry was reactivated and EFs rose again. Currently (2012), Cr and Co did not present contamination (EFs were 0.9 and 1.1 respectively), contamination due to Cu was moderate (2.8), and Cu (3.4) remains in the range of severe contamination. ACKNOWLEDGEMENTS This study from the project “Land-sea exchange of trace metals and its importance for marine phytoplankton in an upwelling coast”, ref. CTM2011-28792-C02, was financed by MINECO (http://www.co.ieo.es/proyectos/mitofito/). REFERENCES 1 - Meybeck M, Vörösmarty C, 2005. Fluvial filtering of land-to-ocean fluxes: From natural Holocene variations to Anthropocene. CR Geosci. 337:107-123. 2 - Birch GF, Gunns TJ, & Olmos M, 2015. Sedimentbound metals as indicators of anthropogenic change in estuarine environments. Mar. Poll. Bull. 101(1):243-257. 3 - Álvarez-Iglesias P, Rubio B, & Pérez-Arlucea M, 2006. Reliability of subtidal sediments as “geochemical recorders” of pollution input: San Simón Bay (Ría de Vigo, NW Spain). Estuar. Coas. Shelf. S. 70(3):507-521. 4 - Prego R, & Cobelo-Garcıa A, 2003. Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula). Environ. Poll. 121(3):425-452. 5 - Carballeira A, Carral E, Puente X, & Villares R, 2000. Regional-scale monitoring of coastal contamination. Nutrients and heavy metals in estuarine sediments and organisms on the coast of Galicia (northwest Spain). Int. J. Environ. Pollut. 13(1-6):534-572. 6 - Macías-Vázquez F, & Calvo de Anta R, 2009. Niveles Genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Xunta de Galicia. 7 - Álvarez-Vázquez MA, Bendicho C, & Prego R, 2014. Ultrasonic slurry sampling combined with total reflection X-ray spectrometry for multi-elemental analysis of coastal sediments in a ria system. Microchem. J. 112:172-180. 13 (2016) River-ria fluxes of dissolved trace elements: pristine versus anthropogenic disturbed contributions Miguel Ángel Álvarez-Vázquez1,2, Ricardo Prego1, Miguel Caetano3, Elena De Uña-Álvarez2 1 Instituto de Investigaciones Marinas (CSIC). 36208 Vigo, Spain. Área de Geografía Física, Grupo GEAAT, Campus de Ourense (UVigo). 32004 Ourense, Spain. 3 Instituto Português do Mar e da Atmosfera (IPMA). 1449-006 Lisboa, Portugal. 2 ABSTRACT Little information is available about how the land-sea contributions of pristine small world-rivers may vary in contaminated conditions. Therefore, a comparison of fluvial discharges of dissolved trace elements was performed in the Ria of Cedeira (NW Iberian Peninsula). Along a hydrological year samples were taken in the main streams draining into the ria: the pristine Das-Mestas, the Condomiñas affected by sewage discharges, and the Forcadas having a reservoir for water supply on its course. Daily flow data were provided by “Augas-deGalicia” and EMAVISA. Concentrations of dissolved trace elements were determined by ICP-MS. Clean techniques were used. Precision and accuracy was checked by the analysis of CRM. River-ria fluxes were quantified by a ratio estimator method derived from the Beale’s ratio estimator. Obtained results distinguish three main concentration groups in the three rivers: (a) Al, As, Cr, Fe and Pb presented higher ranges in the Condomiñas and lower in the Forcadas; (b) Cd, Cu and Mn were higher in Condomiñas and Ferreiras,; (c) Co and Ni in Condomiñas were over those in the other two rivers. Mo presented similar ranges but two high outliers in the Condomiñas. Thus, the reservoir influence depicted a river-ria flux decrease while sewage contributions increased the river flux of trace elements. INTRODUCTION The study of the interactions between land and ocean has gained interest in recent decades. This growing interest includes the recommendation of LOICZ program to incorporate the study of river inputs in the assessment of coastal dynamics [1]. These authors state that the construction of dams, deforestation, rising rates of urbanization and overexploitation of water resources have caused a change in river flows and the matter transported by fluvial water. It is also noteworthy the effort and the large number of publications arising from the “Land-Ocean Interaction Study” (LOIS) about rivers draining into the North Sea from the U. K. [2]. More recently, the study of the contributions of trace elements in the marine area is a developing topic, recommended in the international program GEOTRACES. Trace elements in water systems have undergone some monographs and book chapters [3], but it seems a controversial issue about the lack of reliable data on a global scale, particularly in small rivers. The aim of this communication is to perform a fluvial transport comparison of dissolved trace elements (D-TEs) affected by different and paradigmatic types of human pressure. In this way, the Ria of Cedeira (NW Iberian Peninsula; Fig. 1), which presents three drainage basins with similar climate and land use characteristics, was selected. MATERIAL AND MHETODS Samples of water were monthly taken from October 2011 to October 2012 in the Condomiñas River (fluvial basin of 26 km2) affected by sewage discharges, in the pristine DasMestas River (82 km2) and in the Forcadas River (64 km2) having a reservoir for water supply on its course. Temperature, pH and conductivity were in situ measured. 14 (2016) Figure 1: Location map of the Ria of Cedeira, drainage basins and fluvial nets of the three main rivers flowing into it. Sampling points are showed by circles. River water samples were filtered inside a class-100 laminar flow cabinet using 0.45 µm acid-clean polycarbonate filters. Samples were acidified to pH<2 with suprapur 30% HCl. All procedures during sampling, handling and analysis followed trace-metal-clean techniques. Trace metals in the dissolved phase (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) were determined by ICP-MS (Thermo-Elemental X-Series). Iron was analyzed by ETAAS (Varian SpectrAA 220). Precision and accuracy of the procedure was checked by the analysis of certified reference materials (SLRS-4) getting a good agreement between the determined and certified value. Daily flow data of Das-Mestas River was provided by “Augas-de-Galicia” (station 445), Forcadas River from EMAFESA and Condomiñas River using its watershed ratio with the Das-Mestas River. Fluvial loads of dissolved trace elements of each river to the Ria of Cedeira were estimated by a ratio estimator method derived from the Beale’s ratio estimator [4]. The ratio estimator method consists in a load calculation applying a correction factor to minimize bias taking into account all the days with flow data, representing the ratio between mean measured loads and mean current flow [4]. RESULTS The three studied rivers presented the same seasonal flow pattern during the hydrological year Oct. 2011 – Sept. 2012. Annual average flow rates were 0.54 m3·s-1 in the Condomiñas River, 1.68 m3·s-1 in the Das-Mestas River and 0.91 m3·s-1 in the Forcadas River. Average concentrations of D-TEs in the Das-Mestas River were lower than 1 nM for Cd (0.013 nM), Pb (0.041 nM), Co (0.57 nM) and Mo (0.57 nM); in the range between 1 and 10 nM for Cu (2.6 nM), Ni (5.5 nM) and Cr (7.2 nM), from 10 to 100 nM for As (46 nM) and Mn (48 nM); and higher than 100 nM for Al (570 nM) and Fe (1080 nM). Zinc remained under the detection limit (<4.5 nM). Dissolved average concentrations of D-TEs in the Condomiñas River were lower than 1 nM for Cd (0.023 nM), Pb (0.14 nM) and Mo (0.40 nM); in the range between 1 and 10 nM for Co (2.7 nM), Cu (4.6 nM) and Cr (9.6 nM); from 10 to 100 nM for Zn (18 nM), Ni (54 nM) and As (58 nM); and higher than 100 nM for Al (850 nM) and Mn (1800 nM). Average concentration of D-TEs in the Forcadas River were lower than 1 nM for Mo (<0.02 nM), Pb (0.018 nM), Cd (0.037 nM) and Co (0.81 nM); in the range between 1 and 10 nM for Cr (1.5 nM), Cu (4.9 nM) and Ni (6.3 nM); from 10 to 100 nM for As (10 nM), Zn (56 nM) and Mn (93 nM); and higher than 100 nM for Al (280 nM) and Fe (1070 nM). DISCUSSION The average concentrations of D-TEs in the Das-Mestas River is, except for As, within the wide order of magnitude of natural concentrations in the World rivers [3]. In this World context Al, As, Fe and Mn present a similar order, while other metals studied are around 10 times lower than the average of 27 most large world rivers [3]. In consequence, this river can be used as reference level to assess the possible impact of the Codomiñas River, possibly affected by urban sewage, and the Forcadas River, with a water impoundment in its basin. Table 1 presents the estimated annual yield normalized by drainage surface area (km2), an appropriate way to compare rivers of different basin size [5]. Table 1. Annual yield of dissolved trace elements normalized by surface basin area (mol·yr-1·km-2). Condomiñas Al 730±110 As 39±5 Cd 0.018±0.005 Co 2.0±0.5 Cr 8.2±1.2 Cu 3.5±0.4 Fe 1330±340 Mn 339±95 Mo 0.35±0.11 Ni 53±5 Pb 0.094±0.024 Zn 15±3 Das-Mestas 510±130 27±6 0.032±0.021 0.44±0.12 4.9±0.8 7.8±5.0 720±120 33±5 0.40±0.10 5.9±2.3 0.13±0.10 3.1±0.2 Forcadas 182±108 4.7±2.4 0.021±0.015 0.37±0.20 0.55±0.36 3.0±1.7 600±310 95±69 0.011±0.006 3.1±1.7 0.0075±0.0040 53±50 The anthropogenic influence promotes higher concentrations of several D-TEs. So, the urban influences reflect a significant increase in Fe, Mn and Zn loads of the Condomiñas River, while increases of Co, Cr and Ni may be Non due to local lythology [6]. Processes of flocculation and precipitation within the water reservoir presumably resulted in a depletion of D-TEs in the Ferreiras River. In this river, the decrease of D-TEs fluxes was important for Al, As, Cr, Cu, Mo and Pb. ACKNOWLEDGEMENTS This study from the project “Land-sea exchange of trace metals and its importance for marine phytoplankton in an upwelling coast”, ref. CTM2011-28792-C02, was financed by MINECO (http://www.co.ieo.es/proyectos/mitofito/). REFERENCES 1 - Syvitski JP, Vörösmarty CJ, Kettner AJ & Green P, 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308:376-380. 2 - Neal C & Davies H, 2003. Water quality fluxes for eastern UK rivers entering the North Sea: a summary of information from the Land Ocean Interaction Study. Sci Total Environ, 314:821-882. 3 - Gaillardet J, Viers J & Dupré, B, 2003. Trace Elements in River Waters. In: Turekian, K.K., Holland, H.D. (Eds.), Treatise on Geochemistry. Elsevier, pp. 225-272. 4 - Joo M, Raymond MA, McNeil VH, Huggins R, Turner RD & Choy, S, 2012. Estimates of sediment and nutrient loads in 10 major catchments draining to the Great Barrier Reef during 2006–2009. Mar Pollut Bull, 65:150-166. 15 (2016) 5 - Meybeck M, 2009. Fluvial export. Biogeochemistry of Inland Waters. (Likens GE, Ed). Academis Press, 118-130. 6 - Prego R, Caetano M, Ospina-Alvarez N, Raimundo J, & Vale C, 2014. Basin-scale contributions of Cr, Ni and Co from Ortegal Complex to the surrounding coastal environment. Sci Total Environ, 468:495-504. 16 (2016) Flujo de CO2 en la interfase aire-agua de mar durante la campaña RADMED_0216 Alberto Aparicio-González1, Safo Piñeiro1, Mari Carmen García-Martínez2, Marta Alvarez3, Rosa Balbín1, Jose Luís López-Jurado1, Francina Moya2, Rocío Santiago1 1 Instituto Español de Oceanografía. Centro Oceanográfico de Baleares Instituto Español de Oceanografía. Centro Oceanográfico de Málaga 3 Instituto Español de Oceanografía. Centro Oceanográfico de A Coruña 2 RESUMEN Se muestran los resultados del flujo de CO2 en la interfase aire-agua de mar durante la campaña RADMED_0216 desarrollada en el Mediterráneo Occidental utilizando un medidor de pCO2 en continuo y su relación con otras variables oceanográficas. INTRODUCCIÓN El Mediterráneo Occidental es un océano en microescala, en el se desarrollan una gran variedad de procesos físicos que también ocurren a nivel global. En esta campaña se muestrean tanto zonas de mar abierto como costeras incluyendo el delta del rio Ebro, en las que podemos encontrar diversidad de fenómenos. En general, se considera que las zonas costeras son un sumidero de CO2 (dióxido de carbono) (Borges, 2011; Cai, 2011) aunque todavía no están descritos los mecanismos por los qué en algunas ocasiones los sistemas costeros actúan como fuentes de CO2 atmosférico y otras como sumidero (Dai et al, 2013). Lee et al (2011) consideran que el Mediterráneo Occidental es un importante sumidero de CO2 atmosférico. MATERIAL Y MÉTODOS Dentro del proyecto RADMED se está muestreando cada 3 meses la costa mediterránea española. En RADMED_0216 (Febrero del 2016) se han realizado un total de 81 estaciones de muestreo de CTD dispuestas en radiales perpendiculares a la costa (Fig. 1). En la campaña desarrollada a bordo del B/O F.P. Navarro se han realizado medidas en continuo de pCO2 (presión parcial de CO2) en agua de mar de superficie y en atmósfera, SST (temperatura superficial), SSS (salinidad superficial), fluorescencia, presión atmosférica, batimetría y velocidad y dirección del viento. Los análisis de pCO2 se han realizado con un instrumento SUNDANS (Surface UNderway carbon Dioxide partial pressure ANalySer) que incluye un LICOR LI-7000. Se han calculado los flujos de CO2 entre el mar y la atmósfera con las ecuaciones de Wanninkhof (1992) para conocer si el mar está actuando como fuente o sumidero de CO2 en esta época del año. Fig. 1. Estaciones RADMED_0216 de muestreo de CTD en RESULTADOS Y DISCUSIÓN Los resultados preliminares indican que el flujo de CO2 a lo largo de la campaña (Fig. 2) ha sido ligeramente negativo (valores entre 0 y -7 mmol m-2 d-1), excepto en el transecto entre el norte de Menorca y Barcelona, donde se han encontrado valores mucho más negativos, de hasta -30 mmol m-2 d-1. Los valores negativos de FCO2 (flujo de CO2) indican una entrada neta de CO2 desde la atmósfera hacia el mar, por lo que se puede decir que durante todo el muestreo el mar se ha comportado de forma muy 17 (2016) débil como sumidero excepto en la zona más próxima al Golfo de León que ha sido un sumidero mayor. Para conocer cuáles de las variables que hemos medio siguiendo el recorrido del barco son las que influyen en esta distribución, se realizará un Análisis de Componentes Principales. Además, para una mejor interpretación contamos con las medidas realizadas en toda la columna de agua mediante los CTDs ya que así podemos identificar si el flujo pCO2 en el agua del mar puede estar asociado a estructuras oceanográficas que afectan la solubilidad del CO2, (zonas de upwelling, de convección, etc.). REFERENCIAS 1 - Borges, A. V. (2011), Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change, in Oceans and the Atmospheric Carbon Content, edited by P. Duarte, and J. M. Santana-Casiano, chap. 3, pp. 47–77, Springer Science +Business Media B.V. 2 - Cai, W.-J. (2011), Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?, Annu. Rev. Mar. Sci., 3, 123– 145. 3 - Dai, M., Z. Cao, X. Guo, W. Zhai, Z. Liu, Z. Yin, Y. Xu, J. Gan, J. Hu, and C. Du (2013), Why are some marginal seas sources of atmospheric CO2?, Geophys. Res. Lett., 40, 2154–2158, doi:10.1002/grl.50390. 4 - Lee, K., C. L. Sabine, T. Tanhua, T.-W. Kim, R. A. Feely, and H.-C. Kim (2011), Roles of marginal seas in absorbing and storing fossil fuel CO2, Energy Environ. Sci., 4, 1133–1146. 5 - Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97(C5), 7373–7382. DOI: 10.1029/92JC00188 Fig. 2. FCO2 siguiendo el recorrido del barco en RADMED_0216 AGRADECIMIENTOS Este trabajo ha sido parcialmente financiado por el programa Action-MED y el proyecto del Plan Nacional ATHAPOC. 18 (2016) Degradation of pharmaceuticals and personal care products in surface waters: photolysis, hydrolysis and biodegradation kinetics Rosa María Baena-Nogueras1, Eduardo González-Mazo1 and Pablo A. Lara-Martín1 1 Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Campus de Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain. ABSTRACT We have focused this research on comparing the degradation kinetics of a wide number (n = 33) of frequently detected pharmaceuticals and personal care products (PPCPs) considering different types of water, pH and solar irradiation. For those compounds that were susceptible of photodegradation, their rates (k) varied from 0.02 to 30.48 h-1 at pH 7, being the lowest for antihypertensive and psychiatric drugs (t1/2 >1000 h). Modification of the pH turned into faster disappearance of most of the PPCPs (e.g., k = 0.072 and 0.066 h-1 for atenolol and carbamazepine at pH 4, respectively). The strongest decay (k = 0.03-3.73 h-1) was observed for antibiotics (e.g., ciprofloxacin and sulfamethoxazole), which also were hydrolyzed in dark controls (up to 50-60% in 28 days). On the other hand, biodegradation was generally enhanced by marine bacteria, such in the case of mefenamic acid, caffeine and triclosan (k = 0.019, 0.01 and 0.04 h-1, respectively), and was faster for anionic surfactants. Comparing both processes, hydrochlorothiazide was eliminated exclusively by irradiation (t1/2= 0.15-0.43 h), as well as diclofenac (t1/2=0.14-0.17 h), both being not biodegradable. Salicylic acid and phenylbutazone were efficiently photo (t1/2 < 3 h) and biodegraded (t1/2 = 116-158 h), whereas some compounds such as ibuprofen, carbamazepine and atenolol had low degradation rates by any of the processes tested (t1/2 = 23-2310 h), making then susceptible to persist in the aquatic media. INTRODUCTION Significant levels of xenobiotic compounds can be often measured in both freshwater and marine coastal systems adjacent to populated areas [1]. Once in the water column, there are different processes that can affect the concentrations of organic contaminants. Among these processes, we are going to focus in the different ways that chemicals can be degraded. The degradation processes are heavily influenced by a combination of the molecular structures of the xenobiotic compounds and several environmental factors such as bacterial communities, pH, temperature, salinity, and irradiance, among others. In the case of many PPCPs, there are recent studies stating that photodegradation (caused by natural light) is one of the most important processes removing these chemicals from surface waters. It also promotes other degradation reactions such as hydrolysis. Aerobic biodegradation (usually mediated by bacteria that use oxygen as electron acceptor) is also relevant in the removal of most PCPPs in the water column. Recent works on the microbial degradation of selected pharmaceuticals show very different behavior depending on the substance considered, from relatively high degradation speeds for acetaminophen or fluoxetine (t1/2 < 12 days) to persistence of carbamazepine, sulfamethoxazole and trimethoprim (t1/2 >100 days) [2]. Overall, the present study aims to determine and compare the degradation kinetics in water for a wide range of pharmaceutical and personal care products (n = 33) that are often detected in sewage-impacted aquatic systems. More specifically, we have conducted a series of experiments at environmentally relevant concentrations (1-100 µg L-1) to measure the photodegradation and biodegradation rates of selected chemicals and the effect of several environmental factors such as different pH and salinities. The results presented here allow us to classify the different contaminants in several groups depending whether they can be efficiently photodegraded/biodegraded or not in natural waters. MATERIALS AND METHODS Photolysis experiments were carried out following the OECD guidelines Nº 316 for phototransformation of chemicals in water by direct photolysis. Irradiation was provided by a Suntest CPS+ simulator (Madrid, Spain) equipped with a xenon lamp which simulates natural sunlight in a wavelength range of 300-800 nm. Irradiance was maintained constant at 500 W m-2 during all the experiments and the temperature was monitored. The solution employed in the experiments consisted of 250 mL of HPLC grade water spiked to 100 ng mL-1 of target compounds and nineteen sampling times were established over a total exposure time of 24 hours. In order to study the effect of the aqueous pH, it was adjusted to 4, 7 and 9, depending on the experiment, using buffer solutions. 19 (2016) Aerobic biodegradation experiments were carried out following the OECD guidelines Nº 306 to study biodegradability in seawater (July, 1992) using the shake flask method. Freshwater was collected from Arcos de la Frontera water reservoir, situated in Cadiz province (SW Spain), whereas seawater was taken at the end of the tidal creek Sancti Petri Chanel in Cadiz bay. Incubation temperature was 19ºC, the same measured in the sampling areas, and aeration was provided by magnetic agitation (350 rpm). Once samples were acclimated, they were spiked to 1 µg L-1 of each pharmaceutical and personal care product. Sampling was performed by sacrificing two bottles per time at 7 different sampling times over the course of the experiment (28 days). Once measured, the decreasing concentration of target compounds versus time in both types of experiments (photodegradation and biodegradation) was adjusted to a pseudo first-order kinetic model using the equation: Ln (Ct/C0) = -k t The methodology used for both the analysis and determination of PhACs and personal care products in aqueous samples was that described in Baena-Nogueras et al. (2016) [3] using solid phase extraction (SPE) and liquid chromatography coupled to tandem mass spectrometry (UPLC-QqQ-MS/MS) respectively. have half-lives of 159 and 128 h, respectively, in seawater, whereas they are not degraded in freshwater (Fig. 1d). Nevertheless, further investigation is encouraged to elucidate the structure of possible photodegradation and biodegradation products, as well as their persistence and toxicity, for a better understanding of these processes and the final fate of PhACs and personal care products in aquatic systems. RESULTS AND DISCUSSION Rresults differed depending on the compound considered, as can be observed in Figure 1 for some selected chemicals. Aqueous pH played a significant role in the photodegradation processes, as well as the sample origin and salinity for biodegradation. Hydrolysis, on the other hand, was negligible for most compounds and, when observed, was usually slower than the other two degradation processes. Overall, the most recalcitrant compounds were the psychiatric drugs carbamazepine and amitriptyline, and the lipid regulator gemfibrozil, all of them showing no degradation at any conditions tested, except for photolysis in acidic and basic media, where substances were removed up to 75%. Caffeine was only biodegraded in seawater and phototransformed at pH 9. Regarding personal care products, triclosan was sensitive to photodegradation (Fig. 1a) whereas the surfactant SAS showed no degradation by sunlight even when the pH was modified. However, it was the most readily biodegradable compound tested, with a half-life close to 6 h (Fig. 1b). Several different trends were observed within the group of analgesics/anti-inflammatories, which are characterized by diverse physicochemical properties. As an example, there were compounds mostly affected by irradiation such as ketoprofen or diclofenac (k = 30.48 and 4.04 h-1, respectively) (Figs. 1c). One of the major novelties of this work is that there is scarce information available concerning the degradation processes of pharmaceuticals in marine environments. As an example, we have reported for the first time that the antibiotic trimethoprim and the bronchodilator albuterol Fig. 1. Comparative photodegradation and biodegradation curves for: a) triclosan, b) SAS, c) diclofenac, and d) trimethoprim. ACKNOWLEDGMENTS This work has been carried out within a regional research project (RNM 6613) funded by Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía), who also provided a FPI fellowship. REFERENCES 1 – Heberer T, 2012. Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett., 131:5-17. 2 - Benotti, M.J. and Brownawell, B.J., 2007. Distributions of Pharmaceuticals in an Urban Estuary during both dryand wet.weather conditions. Environ. Sci. Technol., 41:5795-5802. 3 - Baena-Nogueras, R.M., 2016. Determination of pharmaceuticals in coastal systems using solid phase extraction (SPE) followed by ultra performance liquid chromatography – tándem mass spectrometry (UPLCMS/MS). Curr. Anal. Chem., 12:1-19. 20 (2016) Effects of simulated CO2 diffuse leakage from sub-seabed storage sites on trace elements mobility, under hydrostatic pressure (30 atm) M. Dolores Basallote1, Karen M. Hammer2, Anders J. Olsen3, Inmaculada Riba1, Murat V. Ardelan4 1 Cátedra UNESCO/UNITWIN WiCop. Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Polígono Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain. 2 SINTEF Materials and Chemistry, Marine Environmental Technology, 7465 Trondheim, Norway 3 Norwegian University of Science and Technology, Department of Biology, 7491 Trondheim, Norway 4 Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway ABSTRACT Storing supercritical CO2 at geological structures below the sub-seabed, at great water depths, has been considered as an option for the reduction of the atmospheric CO2 emission. Two main sources of accidental escape of CO2 have been proposed: from the transport facilities and from the storage areas. However the environmental effects of potential CO2 leaks from the storage sites are still poorly understood. To study the effects of diffusive CO2 seepages on trace elements mobility, marine sediment from the Trondheim Fiord, collected at 250 m depth, was subjected to diffusive CO2 seepage, under pressurized conditions (30 atmospheres), using a 1.4 m3 titanium tank. Solubility and distribution of trace metals in seawater and sediment pore-water were analyzed in DGT samplers which were deployed in the water and the tested sediment during a 9 days-CO2-seepage experiment. The results showed that CO2 leakage affected the solubility, particle reactivity, and transportation rates of the studied elements in sediments. INTRODUCTION The North of Europe and United States are heading the carbon capture and stored (CCS) technology, not only by projects in operation but also by research performed. The Sleipner and Snøhvit projects have stored about 14 and 2 millions tones of carbon, respectively, since the beginning of the activity [1]. Among all the CCS site selection around the world many of them has been selected at offshore areas, at relatively near coastal zone distances. The potential damages in the completion or closure of the reservoir could lead to CO2 leakages that could concern the surrounding environment. Small (but continuous) seepages of CO2, overpassing the sediment barrier to the seabed seawater may be sufficient to cause ecological effects. Additionally, the solubility of CO2 in seawater increases linearly with increasing hydrostatic pressure and reducing temperature [2]. Thus, it is expected the release of CO2 from storage sites may not behave in the same way at seafloor depth that acidification process at ocean surfaces. While the sediments act as a sink for metals disposal, this is not the final repository of metals and it could acts as source of contaminants [3]. The changes in the factors controlling metals bound sediments (i.e. granulometry, redox potential, pH, organic carbon content, and dissolved oxygen) could lead to the transformations to the most available forms of metals for the marine organisms. The presented work intends to describe the mobilization of trace elements and heavy metals from sediments under simulated diffuse seepages from sub-seabed CO2 storage sites. MATERIALS & METHODS A laboratory-scale pressurized titanium tank (1.4 m3) was used to execute a short-term experiment (9 days), under pressurized conditions (30 atm) [4]. The sediments from the Trondheim Fjord, collected at approximately 250 m depth, were placed into the tank and subjected to diffusive CO2 flow (Fig. 1). Several DGT units, both for sediment and water were placed inside the tank to follow the accumulation of DGT labile elements in the tank during the CO2 seepage. The DGTs were later analyzed for element content in the incoming and outflowing seawater of the tank, to determine difference in concentrations of the studied trace elements. The trace metals determinations in eluted DGT fractions were carried out using an InductivelyCoupled Plasma Mass Spectrometry (HR-ICP-MS, Thermo Finnigan Element). RESULTS & DISCUSSION The presented results indicate an increase in the solubility of metals (Fe, Mn, Al, U, Cr, and Cu) because of CO2 seepage. 21 (2016) Furthermore, the increase of concentrations of DGT labile fractions of the studied elements confirms the mobilization and transformation of these elements due to the pH decrease associated with possible CO2 leakage. Nevertheless, these results cannot explain the precise mechanisms responsible for the determined increase of the DGT-labile elements. Fig. 1. Box containing the sediments and the DGT devices placed into the Karl Eric Titanium Tank. REFERENCES 1 - Michael, K., A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharma, and T. Aiken. 2010. Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control 4:659-667. 2 - Koornneef, J., M. Spruijt, M. Molag, A. Ramírez, W. Turkenburg, and A. Faaij. 2010. Quantitative risk assessment of CO2 transport by pipelines—A review of uncertainties and their impacts. Journal of Hazardous Materials 177:12-27. 3 - Blasco, J., T. Gomes, T. García-Barrera, A. RodríguezRomero, M. Gonzalez-Rey, F. Morán-Roldán, C. Trombini, M. Miotk, J.L. Gómez-Ariza, and M. Joao Bebianno. 2010. Trace metal concentrations in sediments from the southwest of the Iberian Peninsula. Scientia Marina 74:99-106. 4 - Ardelan, M.V., K. Sundeng, G.A. Slinde, N.S. Gjøsund, T. Nordtug, A.J. Olsen, E. Steinnes, and T.A. Torp. 2012. Impacts of Possible CO2 Seepage from Sub-Seabed Storage on Trace Elements Mobility and Bacterial Distribution at Sediment-Water Interface. Energy Procedia 23:449-461. ACKNOWLODGEMENTS Thanks to Syverin Lierhagen from Dept of Chemistry, NTNU, for running the ICP-MS-analysis and to Sindre A. Pedersen from Dept of Biology, NTNU, for his help during alkalinity titration. 22 (2016) CO2 leakage simulation; effects of the decreasing pH and the increasing dissolved metals to the fertilization and larval development of Paracentrotus lividus M. Dolores Basallote1,, Araceli Rodríguez-Romero2, Manoela R. De Orte1,a, José M Quiroga, T3. Ángel DelValls1, Inmaculada Riba1 1 Cátedra UNESCO/UNITWIN WiCop. Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Polígono Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain. 2 Departamento de Ecología y Gestión Costera. Instituto de Ciencias Marinas de Andalucía (CSIC). Campus Río San Pedro. 11510 Puerto Real (Cádiz). Spain. 3 Departamento de Tecnología de Medio Ambiente, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Polígono Río San Pedro s/n, 11510 Puerto Real (Cádiz). Spain. ABSTRACT Carbon capture and storage has become a new mitigation option to reduce anthropogenic CO2 emissions. The effects of the CO2 related acidification, associated with unpredictable leaks of CO2 during the operational phases were studied using the Paracentrotus lividus sea urchin liquid phase assays (Fertilization and embryo-larval development tests). The urchin larvae exposed to elutriate of sediments with different metals concentration, which were subjected to various pH treatments resulted in median toxic effect pH ranged from 6.33±0.02 and 6.91±0.01 for the egg fertilization, and between 6.66±0.03 and 7.16±0.01 for the larval development assays. The dissolved metals concentration measured in the elutriates were associated with acidification. For all the sediment elutriates tested the amount of the dissolved Zn increased in parallel with the pH reductions. Although correlated effects of acidification, biological response and the presence of dissolved metals were observed from this work, further research is required to properly explain the mechanisms associated with the increasing sediment toxicity because of CO2 leakage. INTRODUCTION The Carbon Capture and Storage of CO2 (CCS) has the potential to reduce the CO2 emissions from fossil fuel combustion [1]. However, the CO2 must be stored for at least hundreds of years if this technology intends to contribute efficiently to reduce the atmospheric CO2 emissions. To date, 15 large-scale CCS projects are in operation around the world with the capacity to capture up to 28 million tones of CO2 per annum (Mtpa) [2]. The underground storage of CO2 is a relatively young technology; therefore it remains a lack of understanding of the behavior of the CO2 under leaks. The increase of H+ would be the effect of the mix and dissolution of CO2 into seawater, which would lead to pH reductions, resulting in seawater acidification processes. Accumulating on the sediment surface by adsorption and precipitation processes [3], the relevance of metals is related to their toxicity, persistence and potential bioaccumulation in marine organisms [4],[5]. Although metals can be strongly bound to the sediments without posing a threat to marine organisms, the remobilization of the unconsolidated sediments, together with the expected CO2-induced acidification as a consequence of leaks of CO2 could cause important changes to the form in which metals are present naturally in the environment increasing their bioavailability to the marine organisms. The aims of this work were to observe the direct effect of decreasing pH, and whether CO2 related acidification could affect the sediment metals behavior, increasing their toxicity to the sea urchin larvae. To this end, the sea urchin larvae were exposed to elutriates of sediments collected in different littoral areas and subjected to various pH treatments. Moreover, dissolved metal concentrations in the sediment elutriates were measured, intending to correlate sediment elutriates toxicity and pH reductions with the biological responses. MATERIALS & METHODS Test sediments were collected from two littoral areas in the Gulf of Cádiz, along the Southwestern Atlantic Coast of Spain: the Bay of Cádiz and the Ría of Huelva. The sediment sites were selected on the basis of the best available information to represent presumably low and high 23 (2016) levels of metals contamination [6]. Additionally, the subseafloor of the South West part of the Iberian Peninsula has been selected as one of the possible CO2 storage sites in Europe [7]. A laboratory-scale-CO2-injection system, designed to conduct ecotoxicological assays was used to work with sediment elutriates, employing a range of pH treatments [8]. The sediment elutriation procedure was performed according to modifications of the USEPA method (1998) [9] and Environment Canada (1994) [10], in 2 L test vessels. The pH treatments ranged from 8.0 to 6.0 (two replicates per treatment) for each one of the sediment tests. The fertilization tests were adapted from Ghirardini et al. [11] and conducted in 25 mL polyethylene vessels containing 10 mL of the studied sediment elutriates. The embryo-larval development procedure was based on the methods developed by Fernandez and Beiras [12]. The median effect concentration (EC50) was calculated for the toxic effects associated with pH reductions using the linear interpolation method. Statistical differences (p ˂ 0.05, p ˂ 0.01) in fertilization and developmental success between the sediment (MAZ, and ML) elutriates in reference to the TRO sediment (considered the relatively unpolluted sediment) were calculated. A multivariate analysis was conducted using principal component analysis (PCA) as the extraction procedure to describe the distribution of the data with the minimum loss of information. RESULT AND DISCUSSION According to the percentages of fines the sediment from MAZ was classified as muddy sand, while the sediments from TRO and ML sites were classified as sandy mud. The sediments from the Ría of Huelva, MAZ and ML, exhibited the highest metal concentrations. As expected, the highest pCO2 were recorded at pH 6.0, given that the highest amounts of CO2 were injected to reach the lowest pH treatments. A similar pattern of CO32reduction as the pH decreased as well as the saturation states of aragonite (ΩArag) and calcite (ΩCal) were shown in all the elutriates tested. For the presented experiments, CO2 gas was injected in order to modify and control the pH in the aquaria, then the balance between carbon species was altered. Since CO2 concentration alters the TIC ([CO2], [H2CO3], [HCO3-] and [CO32-]) in the system, the bicarbonate ions also vary, leading to an increase of the total alkalinity The EC50 was estimated based on the fertilization failure and the abnormal larval development, for the larvae exposed to the sediment elutriates subjected to the pH treatments. The EC50 ranged from 6.33±0.00 to 6.91±0.01 for the egg fertilization assay. The EC50 calculated for the embryo-larval assay ranged between 6.66±0.03 and 7.16±0.01. According to our results, the acute sea urchin larvae test (egg fertilization) and the chronic test (embryolarval development) are useful tests to study the effects of CO2 induced acidification, with a slightly greater sensitivity observed with regard to acidification in the embryo-larval development assay. Among the metals analyzed, Co, Zn, As, Cu, and Fe exhibited detectable concentrations in the sediment elutriates, passing from the sediment into the liquid phase. The dissolved metals may be easily available to aquatic organisms and therefore they could present more toxicity than particulate metals. ACKNOWLEDGMENTS The Spanish Ministerio de Economía y Competitividad partially supported the research work presented in this document, under grant reference CTM2011-28437-C0202/TECNO and CTM2012-36476-C02-01/TECNO. The authors are grateful to international Grant from Bank Santander/UNESCO Chair UNITWIN/WiCop for funding this work. REFERENCES 1 – IPCC, 2005. Cambridge University Press, Cambridge, New York 2 - Global CCS Institute, 2015. Global CCS Institute, Canberra, Australia. (Global CCS Institute 2015) 3 - Atkinson, C.A., Jolley, D.F. and Simpson, S.L., 2007. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69(9), 1428-1437 4 - Tam N, Wong Y,2000. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution 110 (2):195-205 5 - Allen HE., 1993. The significance of trace metal speciation for water, sediment and soil quality criteria and standards. Science of The Total Environment 134, Supplement 1:23-45 6 - Riba I, Forja JM, Gómez-Parra A, DelValls TÁ, 2004. Sediment quality in littoral regions of the Gulf of Cádiz: a triad approach to address the influence of mining activities. Environmental Pollution 132 (2):341-353 7 – GeoCapacity, 2009. Assessing European Capacity for Geological Storage of Carbon Dioxide. D16. WP2 Report Storage Capacity 8 - Basallote M, Rodríguez-Romero A, Blasco J, DelValls A, Riba I, 2012. Lethal effects on different marine organisms, associated with sediment–seawater acidification deriving from CO2 leakage. Environmental Science and Pollution Research 19 (7):2550-2560 9 – USEPA, 1998. Evaluation of Dredged Material Proposed For Discharge in Waters of the U.S. - Testing Manual. vol EPA/823/B/98-004. US Army Corps of Engineers. United State Environmental Protection Agency 10 - Environment Canada, 1994. Guidance Document on Collection and Preparation of Sediments for Physicochemical Characterization and Biological Testing. Environmental Protetion Services. 11 - Volpi Ghirardini A, Arizzi Novelli A, Tagliapietra D (2005) Sediment toxicity assessment in the Lagoon of Venice (Italy) using Paracentrotus lividus (Echinodermata: Echinoidea) fertilization and embryo bioassays. Environment International 31 (7):10651077 12 - Fernández N, Beiras R, 2001. Combined Toxicity of Dissolved Mercury With Copper, Lead and Cadmium on Embryogenesis and Early Larval Growth of the Paracentrotus Lividus Sea-Urchin 24 (2016) Ecotoxic effects of Deep-Sea Mining M. J. Bebianno, N.C. Mestre and the MIDAS consortium CIMA, University of Algarve. Campus de Gambelas, 800-139 Faro, Portugal ABSTRACT In the last decades there was an increasing knowledge about deep-sea non-living resources and of their commercial interest for being exploited namely polymetallic sulphides, manganese nodules, cobalt-rich ferromanganese crusts, methane hydrates and rare earth elements. The future exploitation of deep-sea mineral and energy resources will inevitably release toxic compounds that might have significant impact on deep-sea fauna and on their biodiversity. For this reason there is an urgent need to identify the appropriate environmental guidelines and develop the environmental practices to ensure that industry will exploit those resources under the best environmental practices. Because the data currently available on the ecotoxicological risks of the potential release of toxic mixtures from deep-sea mining is scarce the project MIDAS addresses these issues. In this presentation results will be presented on ecotoxicological information relevant to be used in the future guidelines for deep-sea mining. This work was developed under the MIDAS project, funded by the European Commission 7th Framework Programme under the theme “Sustainable management of Europe’s deep sea and sub-seafloor resources” (Grant Agreement 603418). 25 (2016) Presencia, distribución y riesgo ambiental de productos farmacéuticos en el Golfo de Cádiz (SO, España) Miriam Biel-Maeso1, Rosa María Baena-Nogueras1, Carmen Corada-Fernández1 y Pablo A. Lara-Martín1 1 Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Campus de Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain. RESUMEN Se han analizado más de 80 fármacos diferentes (incluyendo antiinflamatorios, reguladores de lípidos, antihipertensivos, antidepresivos, antibióticos,…) en aguas del Golfo de Cádiz mediante extracción en fase sólida (SPE) seguido de cromatografía líquida de ultra resolución – espectrometría de masas en tándem (LC-MS/MS). Destaca por hallarse en mayor concentración sustancias antimicrobianas (>50%) (ej.: triclosán), seguidos de los analgésicos y antiinflamatorios (>20%). Algunas familias como los antihipertensivos y reguladores lipídicos fueron halladas en porcentajes muy bajos (<3%). Las mayores concentraciones de fármacos se midieron en el interior de la Bahía de Cádiz (1000-4000 ng L-1) y las más bajas en el área oceánica (50-150 ng L-1), siendo el transecto más contaminado el localizado en el estuario del Río Guadalete. En este área además, se ha observado la existencia de un comportamiento conservativo para algunos compuestos persistentes tales como carbamazepina y atenolol. Un análisis de riesgo medioambiental revela que no se prevén efectos negativos para la mayoría de los compuestos detectados, a excepción de dos antibióticos de la familia de las fluoroquinolonas (ciprofloxacino y ofloxacino) en la zona del Caño de Sancti Petri y una sulfonamida (sulfametoxazol) y el antimicrobiano (triclosán) hallados en el estuario del Río Guadalete, presentando coeficientes de riesgo (HQ) entre 3.04 y 351. INTRODUCCIÓN El estudio del destino de los contaminantes emergentes en el medio ambiente es crucial para realizar una buena gestión de los recursos hídricos. Su calidad se ve seriamente afectada por la creciente presión urbana y agrícola. Entre los contaminantes emergentes presentes en las aguas cabe destacar fármacos, productos de higiene y cuidado personal, compuestos perfluorados y hormonas. La principal fuente de entrada de estos compuestos en el medio ambiente acuático son las aguas residuales, aunque también cabe destacar el papel de la agricultura y ganadería como fuentes de contaminación difusa de pesticidas y antibióticos, respectivamente. En la mayoría de los casos su eliminación en las estaciones depuradoras de agua residual convencionales (E.D.A.R.) no es completa e incluso puede afectar a la producción de agua potable [1]. El principal objetivo de este trabajo es llevar a cabo el primer estudio sobre las fuentes, distribución y el impacto de un gran número de productos farmacéuticos (> 80) en el Golfo de Cádiz. Con el fin de evaluar el estado del medio ambiente acuático de la zona se realizaron 6 transectos de monitorización espacial entre las aguas costeras de la Bahía de Cádiz que comprendió tres ríos afectados por las descargas de efluentes procedentes de E.D.A.R. cercanas (Río Guadalete, Caño de Sancti-Petri y Río San Pedro) y tres transectos oceánicos que partieron desde Cabo Trafalgar, Caño de Sancti-Petri y desembocadura del Río Guadalquivir (Fig. 1). Posteriormente se realizó un análisis del riesgo ambiental utilizando las concentraciones determinadas y bibliografía disponible sobre la toxicidad de fármacos en especies acuáticas. Bahía de Cádiz GOLFO DE CÁDIZ Guadalquivir Sancti-Petri Cabo Trafalgar BAHÍA DE CÁDIZ Río Guadalete Río San Pedro Caño Sancti-Petri Fig. 1. Área de muestreo en el Golfo de Cádiz. 26 (2016) Las campañas se realizaron en verano de 2015 en 6 transectos localizados en el Golfo de Cádiz (Fig. 1). Las muestras de agua fueron recogidas en botellas ámbar de 1L previamente lavadas, filtradas por 0.45 micras y almacenadas a 4ºC hasta su procesamiento en el laboratorio. La metodología utilizada para el análisis de 83 compuestos farmacéuticos se realizó por la técnica de extracción en fase sólida (SPE), seguida de cromatografía líquida de ultra resolución conectado a un detector de espectrometría de masas (UPLC-QqQ-MS/MS) [2]. Respecto al análisis ambiental, se consideraron las concentraciones más altas como el peor escenario posible (PECs) y aquellos valores límite a partir de los cuáles ya no se producen efectos según estudios toxicológicos (PNECs). Ambos valores permiten establecer un ratio PEC/PNEC que se corresponde con el coeficiente de riesgo (HQ) y por el cuál se define la existencia de cierto riesgo ecológico en caso de encontrarse por encima de 1. Para el área más contaminada, el estuario del Río Guadalete, se observa que la relación entre la concentración de algunos fármacos y la salinidad era generalmente lineal (Fig. 4). Tal relación se debe a la mezcla longitudinal de las aguas residuales procedentes de la E.D.A.R. de Jerez de la Frontera que se van mezclando con el agua salina a lo largo del recorrido del transecto y ve mermada su concentración, surgiendo un comportamiento conservativo como consecuencia de su baja capacidad de adsorción y degradación [3]. Además, se hallaron algunos de los mayores valores de riesgo ambiental (HQ), siendo máximos para sulfametoxazol y triclosán. Concentración [ng L-1] MATERIAL Y MÉTODOS Carbamazepina 40 y = -0.7523x + 27.203 R² = 0.9727 30 20 10 0 0 10 20 Salinidad (‰) RESULTADOS Y DISCUSIÓN Como puede observarse en la Fig. 2, los transectos con mayor concentración por fármacos están localizados en el interior de la Bahía de Cádiz, siendo el transecto del Río Guadalete el que posee mayor contaminación con valores que oscilan entre 1000-4000 ng L-1. Por otra parte, se detectaron valores inferiores en los transectos oceánicos del Golfo de Cádiz, encontrándose la media de éstos en un rango de 50-150 ng L-1. Log [PhACs] (ng L-1) Primer cuartil 10000 Valor más bajo Mediana Valor más alto y = -3.1955x + 116.62 R² = 0.9583 100 50 0 0 10 20 Salinidad (‰) 30 40 Fig. 4. Relación entre la concentración y la salinidad para los productos farmacéuticos seleccionados. AGRADECIMIENTOS 100 10 Transectos Bahía de Cadíz Guadalete Caño SP Transectos oceánicos San Pedro Guadalquivir Sancti-Petri Trafalgar Fig. 2. Diagramas de cajas que muestra la concentración hallada en los 6 transectos de estudio. Entre las familias de fármacos encontradas en el área de estudio cabe destacar los antimicrobianos, seguido de antiinflamatorios, antidepresivos y estimulantes (Fig. 3). 1% 21% 57% 40 Tercer cuartil 1000 1 Concentración [ng L-1] Atenolol 150 30 2% 9% 10% Analgésicos y antiinflamatorios Antihipertensivos y reguladores lipídicos Antidepresivos y estimulantes Antibióticos Antimicrobianos Otros fármacos Fig. 3. Porcentaje de las familias de fármacos encontradas en el área de estudio. Este trabajo ha sido llevado a cabo como parte del proyecto RNM-6613 financiado por la Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía y por el Plan de Campaña Oceanográfica STOCA 201509 en el B/O Angeles Alvariño coordinado por Instituto Español de Oceanografía (IEO). REFERENCIAS 1 - Heberer T, 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment. Toxicol. Lett. 131 (1-2): 5-17. 2 - Baena-Nogueras RM, Pintado-Herrera MG, GonzálezMazo E. & Lara-Martín PA. 2015. Determination of Pharmaceuticals in Coastal Systems Using Solid Phase Extraction (SPE) Followed by Ultra Performance Liquid Chromatography – tandem Mass Spectrometry (UPLCMS/MS). Curr. Anal. Chem., 11 (4): 1-19. 3 - Lara-Martín PA., González-Mazo E., Petrovic M., Barceló D., Brownawell BJ. 2014. Occurrence, distribution and partitioning of nonionic surfactants and pharmaceuticals in the urbanized Long Island Sound Estuary (NY). Mar. Pollut. Bull., 85 (2): 710-719. 27 (2016) Distribution of rare earth elements in estuarine sediments from the Tagus Estuary (Portugal): Evidence of anthropogenic contamination Pedro Brito1,2, Isabel Caçador2, Ricardo Prego3, Mário Mil-Homens1, Miguel Caetano1 1 IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal FCUL - Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal 3 CSIC-IIM - Marine Research Institute (CSIC), Av. Eduardo Cabello, 6. E-36208 Vigo, Spain 2 ABSTRACT Concentration and fractionation patterns of rare earth elements (REE) have been studied in sediments from the Tagus estuary. The spatial distribution pattern of REE and PAAS-normalized ratios shows two distinct areas: 1) the upper estuary and, 2) the middle and lower estuary. The upper estuary is marked by coarse-grain sediment, with lower ΣREE concentrations. The PAAS-normalized ratios profile shows slight Light REE (LREE)enrichment and a positive Eu anomaly. The middle and lower estuarine sediments are mainly composed by silt and clay with higher ΣREE concentrations and a clear Medium-REE (MREE)-enrichment relative to LREE and Heavy-REE (HREE). Concentrations of REE in Tagus were mainly ruled by sediment nature and anthropogenic sources. INTRODUCTIÓN The rare earth elements (REE) have been intensively studied as natural tracers of biogeochemical processes [1]. Due to their consistent behaviour the REE are widely used as tracers of sources and processes controlling trace element distribution in marine sediments [2, 3, 4, 5]. The REE distribution in sediments is largely controlled by scavenging processes [6, 7, 8, 9], by redox conditions of the overlying water column [10], by composition of the terrigenous source [11] and by potential anthropogenic inputs [12]. Different works reported on anomalous REE concentrations in river and marine sediments [12, 13, 14, 15, 16] caused by unnatural liquid or solid inputs derived from human activities (e.g. industrial plants, acid mine drainage, agricultural activities). The Tagus Estuary, one of the largest in Europe (320 km2 total area) has been contaminated mainly by two industrial areas located in the north and south margins [17, 18], and domestic effluents from the metropolitan area of Lisbon [19]. High levels of metals (As, Pb, Zn, Cu and Hg) have been reported in surface sediments and sediment cores [17, 18, 20], in suspended particulate matter near the sources and of the lower estuary [17, 21, 22]. The aim of this work was to study the REE distribution and frationating in surface sediments from the Tagus estuary and to assess rule of urban and industrial activities as sources of anomalous REE concentrations. MATERIAL AND METHODS Surface sediments (0-5 cm layer) were sampled in the Tagus estuary using a Van Veen grab sampler and dried at 40° C, sieved through a 2-mm mesh and grounded with an agate mortar. Samples were completely mineralized and analysed by inductively-coupled plasma mass spectrometry (ICP-MS) using a Thermo Elemental, X-Series, following [23]. The precision and accuracy of the analytical procedures was controlled through repeated analysis of the studied elements in certified reference materials: AGV-1 and MAG-1 (USGS). RESULTS AND DISCUSSION Total REE concentrations (ΣREE) ranged between 30 and 145 mg.kg-1. The lowest ΣREE concentrations were found in the coarse-grained sediments sampled in T8, T9 and T10 (upper estuary), with values of 30, 35 and 39 mg.kg-1, respectively. Conversely, middle and lower estuary sediments, mainly composed of silt and clay, showed higher ΣREE concentrations, varying from 103 to 145 mg.kg-1. These results suggest the relevance of sediment particle nature in the transport of REE, assuming that contents in terrigenous sediments increase in the sand-siltclay series [24]. Light REE (LREE) concentrations are higher than Heavy REE (HREE) for all surface sediments studied in the estuary. The REE concentrations were normalized to post-Arcaen Australian Shales (PAAS) [25] to allow one to identify within the typical sedimentary REE patterns, an enrichment or deficiency of a single element or group of elements [26]. PAAS-normalized ratios show two distinct REE fractionation patterns. The first pattern was observed in the upper estuary (T8, T9 and T10), with a slight enrichment of LREE relative to HREE. The (La/Yb)PAAS values vary from 1.32 to 1.61, as expected in normal estuaries with mixing 28 (2016) between neutral and/or slightly basic waters, where REE through salinity-induced precipitation are removed in the following order LREE>MREE>HREE [27]. A positive Europium anomaly ([Eu/Eu*]) ranging from 1.57 to 2.10, indicate a significant Eu anomaly in these sediments. Such high anomaly is not common in sedimentary environments suggesting changes in the redox cycle of this element and/or anthropogenic input [28]. A second REE fractionation pattern was observed in sediments from the middle and lower estuary (T1-T7), revealing clearly a MREE-enrichment profile. The (La/Gd)PAAS values, varying from 0.68 to 0.73, suggest a different input of particles with a distinct origin. In this section of the estuary has been previously reported an hotspot for many contaminants [29] related to the existence of old chemical and metallurgic activities, namely those using mineral pyrite ores as raw material. 1,20 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 1,00 REE/PAAS 0,80 0,60 0,40 0,20 0,00 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Fig. 1. PAAS-Normalized REE patterns for surface sediments collected in the Tagus estuary. ACKNOWLEDGEMENTS The current work is part of the FCT project PTDC/QEQEPR/1249/2014. REFERENCES 1 - Oliveri, E., Neri, R., Bellanca, A., Riding, R., 2010. Sedimentology, 57: 142–161. 2 - Piper, D.Z., 1974. Chem. Geol., 14: 285–304. 3 - Sholkovitz, E.R., 1990. Chem. Geol., 88: 333–347. 4 - Murray, R.W., Buchholtzten Brink, M.R., Gerlach, D.C., Russ, G.P., Jones, D.L., 1991. Geochim. Cosmochim. Acta, 55: 1875–1895. 5 - Censi, P., Incarbona, A., Oliveri, E., Bonomo, S., Tranchida, G., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology, 292, (1-2): 201–210. 6 - Elderfield, H., Greaves, M.J., 1982. Nature, 296: 214– 219. 7 - Whitfield, M., Turner, D.R., 1987. In: Stumm, W. (Ed.), Aquatic Surface Chemistry. Wiley, New York, pp. 457– 493. 8 - Elderfield, H., 1988. Philos. Trans. Roy. Soc. Lond. Ser. A, 325: 105–126. 9 - Haley, B.A., Klinkhammer, G.P., McManus, J., 2004. Geochim. Cosmochim. Acta, 68: 1265–1279. 10 - Liu, Y.-G., Miah, M.R.U., Schmitt, R.A., 1988. Geochim. Cosmochim. Acta, 52: 1361–1371. 11 - Taylor, S.R., McLennan, S.M., 1985. Blackwell Scientific Publications, Oxford. 12 - Olmez, I., Sholkovitz, E.R., Hermann, D., Eganhouse, R.P., 1991. Environ. Sci. Technol., 25: 310–316. 13 - Ravichandran, M., 1996. Mar. Poll. Bull., 32: 719– 726. 14 - Borrego, J., López-González, N., Carro, B., LozanoSoria, O., 2004. Mar. Poll. Bull., 49: 1045–1053. 15 - Oliveira, S.M.B., Silva, P.S.C., Mazzilli, B.P., Favaro, D.I.T., Saueia, C.H., 2007. Appl. Geochem., 22: 837–850. 16 - Oliveira, M.L.S., Ward, C.R., Izquierdo, M., Sampaio, C.H., de Brum, I.A.S., Kautzmann, R.M., Sabedot, S., Querol, X., Silva, L.F.O., 2012. Sci. Total Environ., 430: 34–47. 17 - Vale, C., 1990. Sci. Total Environ., 97 (98): 137–154. 18 - Canário, J., Vale, C., Caetano, M., 2005. Marine Pollution Bulletin, 50: 1142–1145. 19 - Canário, J., Vale, C., 2007. Scientific Report, IPIMAR, June 2007, p. 78. 20 - Caçador, I., Vale, C., Catarino, F., 1996. Estuarine Coastal Shelf Science, 42 (3): 393–403. 21 - Vale, C., Ferreira, A., Micaelo, A., Caetano, M., Pereira, E., Madureira, M., Ramalhosa, E., 1998. Water Science Technology, 37: 25–31. 22 - Canário, J., Vale, C., Nogueira, M., 2008. Applied Geochemistry, 23: 519–528. 23 - Prego, R., Caetano, M., Bernardez, P., Brito, P., Ospina-Alvarez, N., & Vale, C., 2012. Continental Shelf Research, 35: 75–85. 24 - Sholkovitz, E.R., 1988. Am. J. Sci., 288: 236–281. 25 - McLennan, S.M., 1989. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Rev. Min., 21: 169–200. 26 - Henderson, P., 1984. Elsevier, New York, pp. 1–32. 27 - Sholkovitz, E.R., Szymczak, R., 2000. Earth and Planetary Science Letters, 179: 299–309. 28 - Sverjensky, D. A, 1984. Earth Plant. Science Lett., 67: 70-78. 29 - Vale, C., J. Canário, M. Caetano, J. Lavrado e P. Brito, 2008. Mar. Pol. Bull., 56:1364-1367. 29 (2016) Historical Record of Trace Elements (1983-2007) in Scales from Atlantic Salmon (Salmo salar): Study of Past Metal Contamination from a Copper Mine (Ulla River and Estuary, NW Iberian Peninsula) Antonio Cobelo-García1, Paloma Morán2, Clara Almécija1 & Pablo Caballero3 1 Instituto de Investigacións Mariñas de Vigo (IIM-CSIC) Universidade de Vigo 3 Servizo de Conservación da Natureza de Pontevedra, Xunta de Galicia 2 ABSTRACT The Ulla river and its estuary was impacted by the Cu mine of Touro which was in operation from 1973 until it closure in 1988 due to decreasing quality of the mineral and drop of the copper prices. In the present work, we studied the historical metal contamination in this watershed (1983-2007) by means of the analysis of trace metals in scales of salmon (Salmo salar). This approach has been widely used for the reconstruction of the environmental conditions, since scales are permanent records of the influence of exogenous factors. Results indicate the presence of a significant contamination for several metals (here are given the examples for Cu, Zn, Au and Ag) during the 1980’s. Concentrations of Cu in salmon scales during the operation of the mine were 7-15 higher than current values. Since the metal concentration in the scale is proportional to the concentration in water, we may estimate that concentrations up to 75 nM were typical during the 1980’s. Such concentrations have been shown to produce adverse sensory and behavioral effects to salmonids. Also important was the contamination recorded for Au, with concentrations 15-fold higher than in the recent times. This metal, which is not normally included in environmental monitoring programs, should be taken into account in future studies. INTRODUCTIÓN Mining is one of the main causes of environmental pollution by heavy metals that pose serious risks to many aquatic organisms causing mortalities and disrupting behavior [1]. Touro mine was an open pit in Galicia, Northwest Spain located in the River Brandelos, tributary of the Ulla (8° 20′ 12.06″ W 42° 52′ 46.18″ N). Copper was extracted from 1973 and 1988. This activity led to a profound degradation of the environment [2]. The copper extracted at this mine was in the form of pyrite, pyrrhotine and calcopyrite included in granitic amphibolite. The rock is rich in iron (Fe) and copper (Cu) sulphides. The heavy metals existing in the rock (principally Cu and Fe) increase its solubility at low pH, and the dissolved metals thus pass into the drainage water. The run-off water was very acidic and contained high concentrations of sulphates, chlorides and heavy metals in solution [3]. In 1988 the mine was closed due to the decreasing quality of the mineral and falling copper prices throughout the world. Restoration measures started at the beginning of 2003 with the addition of tech-nosols, soils of technical origin constituted by human-made material. Atlantic salmon (Salmo salar) is a migratory specie inhabiting river Ulla. They grow in the river for a period of one-two years after that they undergo smoltification and emigrate from the river to the sea. Salmon scales have been used for the reconstruction of the environmental conditions of their habitat, as they are permanent records of the influence of endogenous and exogenous factors on their apatite–protein structure [4]. The aim of this study is, therefore, to reconstruct the historical metal contamination in the River Ulla (19832007) and its estuary due to the exploitation of the Touro mine, by means of the metal analysis of salmon scales. MATERIAL AND METHODS Stored, dry scales with non-regenerated nucleus were selected for analysis. Scales were digested with concentrated ultra-pure HNO3 (Merck Suprapur). Before digestion, scales were intensively scrubbed and soaked in MQ water in order to remove surface contamination. Several scales amounting up to 50-100 mg were selected for each digestion. Analysis of trace metals in the sample digests were carried out by means of ICPMS (X Series, Thermo Elemental), whereas for major elements ICP-OES (Perkin Elmer Optima 4300DV) was used. RESULTS AND DISCUSSION 30 (2016) These findings indicate the existence of a previous significant contamination in the River Ulla and its estuary by several trace metals due to the presence of a Cu mine. A severe contamination was observed for a metal (Au) which is not normally included in current environmental monitoring studies and should be taken into account in future studies. 50 40 Au (ng g-1) Fish scales consist of a distal layer composed of an organic framework impregnated with hydroxyapatite, Ca5(PO4)3(OH), and a proximal layer that is an uncalcified fibrillary plate [5]. In this study, Ca (9.4 ± 1.0 %, w/w) and P (6.6 ± 0.7 %, w/w) analysis of the salmon scales indicate that, roughly, only about 25% of the scale is composed of hydroxyapatite being the rest organic material. The influence of the Cu mine during its operation on metal concentrations in the salmon scale is clearly observed in the temporal trend of this metal; accordingly, the Cu concentrations in the 1980’s (15-30 µg/g) exceed about 715 times the values found in the recent years (~ 2 µg/g). Given that metal concentrations in scales are proportional to the water concentrations [6], and taking a ‘pristine’ value of dissolved Cu of 1-5 nM in the present days, we may estimate copper concentrations up to 75 nM (4.8 ppb) for this river in the 1980’s. Such concentrations have been shown to produce adverse sensory and behavioral effects to salmonids [7]. Importantly, this contamination from the Cu mine was also significant for other metals, such as Zn (Figure 1), Au and Ag (Figure 2). 30 20 10 0 1980 1985 1990 1995 2000 2005 2010 2000 2005 2010 Year 30 25 Ag (ng g-1) 30 Cu ( g g-1) 25 20 20 15 10 15 5 10 0 1980 5 1985 1990 1995 Year 0 1980 1985 1990 1995 2000 2005 2010 Year 160 ACKNOWLEDGEMENTS The technical assistance of S. Calvo (IIM-CSIC) during the analysis of metals in scales is greatly acknowledged. 140 Zn ( g g-1) Fig. 2. Temporal variation of Au and Ag concentrations in salmon scale from the Ulla River 120 REFERENCES 100 1 Scott, G. R. & Sloman, K. A. (2004). Aquatic toxicology, 68, 369-392. 2 Otero, X. L., et al (2012). Journal of Geochemical Exploration, 112, 84-92. 3 Fernandez, J. A., et al (2006). Environmental Pollution, 139, 21-31. 4 Farrell, A.P., et al (2000). Archives of Environmental Contamination and Toxicology, 39, 515-522. 5 Flem, B., et al (2005). Applied Spectroscopy, 59, 245251. 6 Sauer, G.R., Watabe, N. (1984). Aquatic Toxicology, 5, 51-66. 7 Hecht, S.A., et al (2007). NOAA Technical Memorandum NMFS-NWFSC-83 80 60 1980 1985 1990 1995 2000 2005 2010 Year Fig. 1. Temporal variation of Cu and Zn concentrations in salmon scale from the Ulla River For example, the average Au values for the period 19831990 was 31 ± 12 ng/g, whereas for the more recent years (1995-2007) it was 2.1 ± 1.2 ng/g, indicating a 15-fold increase during the 1980’s with respect to current values. 31 (2016) Behaviour of Arade Estuary, south of Portugal during summer conditions longitudinal, vertical and horizontal patterns Cátia Correia1, Alexandra Cravo1 & José Jacob1 1 CIMA, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro. [email protected] ABSTRACT Arade River is the second most important river in the Algarve coast, depicting a high anthropogenic pressure mainly during the summer season. This work aims at a better understanding the behaviour of the (lower) Arade Estuary during summer conditions regarding its physical-chemical characteristics (temperature, salinity, pH, dissolved oxygen saturation, nutrients, chlorophyll a and suspended solids). A longitudinal transect from the mouth to 7 km upstream was carried out during a spring tidal cycle together with the sampling of vertical profiles taken along a cross-section of the lower estuary. Data analysis reveals that only nitrate and silicate have a conservative behaviour along the estuary, while phosphate and ammonium showed departures from the mixing line particularly close to a station near the sewage treatment plant in the Portimão margin. Moreover, these data reveal that the river is contaminated by nitrate since there, high concentration (~200 µM) were reached. Across the section, vertically there was no stratification of the waters while horizontally the Portimão margin show to have the highest nutrients and suspended solids concentrations, particularly during the ebb to low tide. During this campaign chlorophyll a was relatively high, reaching ~2 µg L-1. The evaluation of mass exchanges trough the cross section reveals that the Arade Estuary may supply chlorophyll a, suspended solids and nutrients to the coast, contributing to increase its biological productivity. Estuaries are areas of high scientific, ecologic and economic values. These systems are recognized as productive systems, providing important habitats for local wild life and protection for a large number of species. However, these are also highly affected by anthropogenic pressure. Estuaries are transition zones where freshwater meets salty, sea waters, exhibiting strong physical and chemical gradients [1]. The quantity of fresh water that enters the estuary through the river influences the ecology of the system, promoting gradients and fluctuations throughout its extension, particularly at the level of salinity, temperature, oxygen and nutrients [2]. Monitoring these systems is essential for determining its environmental quality and understanding how these interplay with the adjacent coastal areas [3]. Arade estuary [4] is one of the most important coastal systems in the south of Portugal, where the chemical variability is poorly studied, and programs of water quality monitoring are scarce. The Arade river has ~ 75 km extension and has a drainage basin of 966 km2 [5]. It shows a mesotidal regime, where the salt water intrusion comes up 16 km upstream of the mouth, with a mean depth of 6 m and a maximum depth of 10 m in the mouth, near the city of Portimão [6]. lower estuary, from Portimão to Parchal margins (250 m), along a tidal cycle, to understand and characterize the vertical and horizontal fields of nutrients. The chemical parameters selected, temperature, salinity, pH and O2 (dissolved and saturation percentage), were measured in situ with a YSI 6820 multi-parametric probe) and water samples were collected for suspended solids, chlorophyll a and nutrients (ammonium, nitrate, phosphate and silicate) analyses. The water column depth of the section varied from < 1.5 m at low tide to 6 m at high tide, greatest at the central area. At the laboratory, the samples for the determination of suspended solids were filtered through a membrane filter (0.45 µm) previously decontaminated and weighted, and then dried to 100ºC 105ºC for an hour. The filtered water was frozen to -20 ºC for posterior analysis of nutrients. Samples for chlorophyll a concentration were filtered through GF/F glass fiber filters (0.7 µm), frozen to -20ºC before analysis. For the determination of nutrients and chlorophyll a the spectrophotometric methods described by [7] and [8] were applied, respectively, and for the SS determination the gravimetric method described by [9] was applied. Statistical Analysis Significant differences at a level of 95% confidence were sought vertically and horizontally throughout the section and along the time between samplings. MATERIAL AND METHODS RESULTS AND DISCUSSIÓN To understand the behavior of the nutrients, 8 stations along the lower estuary upstream (7 km) were characterized during the ebb period of a spring tide. Additionally, a crosssection was also sampled on the The longitudinal transect shows that upstream the chlorophyll a concentration is relatively high (~ 2 µg L-1) for a late summer situation. The same was observed at the section in the afternoon period. The theoretical dilution INTRODUCTION 32 (2016) line (TDL) for the nutrients shows that only the nitrates and the silicates have a conservative behavior (Fig. 1), while the phosphates and ammonium display a similar behavior throughout all stations, with departures from the TDL close to the station near the wastewater treatment plant. The application of the TDL also allows the estimation of the concentration of nitrates and silicates where S = 0, showing that while the silicates concentration is typical (~150 µM), for nitrates there is a contamination, as these reached values up to ~200 µM. This fact is due to the anthropogenic pressure that is felt, either by urban or agricultural influence. a b ; r = 0.99 d c ; r = 0.95 Fig. 1. Variation of (a) Ammonium, (b) Nitrate + Nitrite, (c) Phosphate and (d) Silicate concentrations in the 8 stations characterized during the ebb period. Across the section, data show that there is no stratification in the water column (p > 0.05) and, therefore, only the mean is represented for the several variables (Fig. 2). However, in this section, significant temporal fluctuations occurred along the tidal cycle (p < 0.05) for the several parameters measured, as can be seen in Fig. 2, for the extreme conditions of high water (HW) and low water (LW). For the nutrients, an antiphase pattern of variation with the tide due to the dilution effect was observed, occurring during the flood period, when the concentrations were minimum (Fig. 2). a b Fig. 2. Mean variation of Ammonium, Nitrate + Nitrite, Phosphate and Silicate concentrations along three sites selected in the section during: (a) high water and (b) low water. In situ, temperature ranged between 18 ºC (LW) and 22 ºC (HW), and salinity varied between ~30 (LW) and 36 (HW). The oxygen was under-saturated (< 100%) at LW, particularly at the Portimão margin, while at HW it was supersaturated over the entire section (100-105%, not shown). Horizontally, although the gradients were not strikingly evident, it is possible to observe significant differences (p < 0.05) between the two stations closer to the Portimão margin (50-100 m) in relation to the farthest station, in the other margin (250 m), like for temperature, salinity and % of saturation (not shown). For the chlorophyll a, suspended solids and nutrients, despite no significant differences (p > 0.05) occurred, values were higher in the Portimão margin (Fig. 2), associated to a stronger anthropogenic influence along the city of Portimão (as the wastewater treatment plant) leading to these increases. Furthermore, the horizontal heterogeneity of data along the section could be associated to the flow patterns of water, suggesting differences in circulation between the two margins. If it is assumed that this section of the lower estuary has an ebb behaviour, it can be supposed that in this period of the year there was an export of chlorophyll a, suspended solids and nutrients, contributing to the increase of the biological productivity of the adjacent coastal zone. ACKNOWLEGEMENTS The authors would like to thank to APSines – Administração dos Portos de Sines e do Algarve S. A., in particularly to Engª Filipa Duarte for the logistic support provided through the campaign and to all the team that participated in the campaigns. REFERENCES 1 – Statham, P. J., 2012. Nutrients in estuaries – An overview and the potential impacts of climate change. Sci. Total Environ. 434, 213-227. 2 - Fujii, T., 2007. Spatial patterns of benthic macrofauna in relation to environmental variables in an intertidal habitat in the Humber estuary, UK: Developing a tool for estuarine shoreline management. Estuar., Coast. Shelf. Sci. 75, 101-119. 3 – Kramer, K. J. M., 1994. Biomonitoring of coastal waters and estuaries. CRC Press. 4 - Gomes, A. I., 2013. Alterações Ambientais na Costa Algarvia durante o Holocénico: Um Estudo com base em diatomáceas. Universidade do Algarve. 5 – SNIRH, 2013. Sistema Nacional de Informação de Recursos Hídricos (1995 - 2013). Online: http://snirh.pt/ 6 – MARETEC, 2014. Definição do limite jusante dos estuários portugueses. Online:http://www.maretec.mohid.com/Estuarios/MenusE stuarios/Arade_Menu.htm 7 – Grasshof, K., Erkhardt, M., Kremling, K., 1983. Methods of Seawater Analysis. Verlag Chemie, New York. 8 – Lorenzen, C., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equation. Limnol. Oceanogr. 12, 343 – 346. 33 (2016) 9 – American Public Health Association, American Water Works Association Water Environment Federation, 1992. Standard Methods for the Examination of Water and Wastewater. Maryland, USA. 34 (2016) Plástico en mares y océanos: un problema global solucionable. Andrés Cózar1 1 Departamento de Biología, Facultad de Cc. del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), E-11510 Puerto Real, Spain RESUMEN Resulta muy significativo que, con solo unas décadas de uso generalizado de materiales plásticos, el hombre haya inundado con residuos plásticos todos los océanos. La contaminación marina por plásticos es uno de los asuntos que mejor ilustra la capacidad del hombre para modificar la apariencia y composición del planeta. La enormidad de los océanos parecía suficiente para diluir nuestros desechos, pero nos hemos encontrado en poco tiempo con un problema de escala planetaria. El progresivo incremento en la producción global de plástico y nuestra dependencia de este material hacen además pensar que se trata de un problema de difícil solución. Por otra parte, la contaminación marina por plásticos es un asunto que ha conseguido conectar ciencia, medios de comunicación y sociedad como en pocas ocasiones. En las últimas dos décadas, esta comunión se ha reforzado y retroalimentado de tal forma que el número de trabajos de investigación así como el grado de implicación social ha crecido exponencialmente, un movimiento que empieza incluso a influenciar las estrategias del propio sector empresarial del plástico. La contaminación por plástico puede por tanto llegar a convertirse también en un ejemplo de la capacidad del hombre para afrontar y corregir los problemas ambientales que amenazan nuestro planeta. En esta charla, mostraremos una panorámica integral de la problemática de la contaminación marina por plástico, mostrando los avances más recientes y las perspectivas de futuro para su estudio y gestión. INTRODUCCIÓN La acumulación de residuos plásticos en mares y océanos es un problema que genera gran preocupación social debido a los numerosos ejemplos de impactos sobre organismos así como las evidencias científicas que demuestran la escala planetaria de esta contaminación. Se han documentado impactos por ingestión y enredamiento en invertebrados, peces, aves, tortugas, y hasta grandes cetáceos [1,2]. Se han encontrado acumulaciones de residuos plásticos en costas, fondos y aguas de casi todas las regiones del planeta [3, 4]. Existe además gran incertidumbre acerca de los posibles efectos de la contaminación marina por plásticos a nivel ecosistémico [4, 5] o incluso en la salud humana [1]. El escenario descrito unido al incremento exponencial en la producción global de plástico hacen pensar que los esfuerzos por combatir esta contaminación han sido infructuosos, y que este es un problema de difícil solución que puede deparar consecuencias a gran escala [6]. RESULTADOS Y DISCUSIÓN Es sabido que los desechos plásticos marinos se pueden acumular en aguas superficiales e intermedias, costas, fondos, e incluso en la biota. Sin embargo, el único stock de plástico que ha podido ser evaluado a escala global es el la capa superficial del océano, gracias al uso extensivo de redes de arrastre superficial para medir concentraciones de plástico flotante. Análisis de amplia escala espacial y temporal para otros reservorios de plástico son todavía difíciles de abordar. Año tras año se completa el mapa global de residuos plásticos flotantes (Fig. 1). Las zonas de convergencia de cada una de las cinco Giros Subtropicales se han identificado como grandes regiones de acumulación de desechos flotantes. Los modelos de circulación oceánica predicen potenciales de acumulación de plásticos en mares semi-cerrados con alta densidad poblacional, lo que ha sido demostrado recientemente para el caso del Mar Mediterráneo [7]. La posibilidad de acumulación de plástico en las latitudes polares ha sido hasta ahora pasada por alto, aunque una reciente expedición circumpolar ha permitido completar esta parte del mapa global con resultados sorprendentes. En la dimensión temporal, las series históricas de contaminación por plásticos flotantes, disponibles desde los años 80 para algunas regiones [8, 9], convergen en la conclusión de que no aparecen claras tendencias de incremento en el grado de contaminación durante los últimos años, un resultado que no ha sido explorado en profundidad por la comunidad científica. De hecho, existen grandes incógnitas en relación a cuál ha sido 35 (2016) realmente la evolución histórica de la contaminación marina por plástico y cómo las medidas aplicadas para su gestión han incidido en las tendencias históricas. Los desechos plásticos sufren un continuo proceso de fragmentación que hace que se puedan encontrar en el mar desde objetos del orden de metros a partículas de pocas micras. Debido a esta movilidad en la escala de tamaños, las afecciones sobre organismos y ecosistemas pueden llegar a ser muy diversas, actuando a múltiples niveles [12, 5]. Especialmente llamativos son los nano-plásticos (en la escala de micras), capaces de ser incorporados en el tejido de sus consumidores [10], lo que plantea una vía potencial de impacto totalmente desconocida. Estos y otros avances en el conocimiento de la contaminación marina por plásticos han atraído enormemente la atención de medios y ciudadanía a nivel global. Así, numerosas iniciativas sociales se han puesto en marcha para combatir la contaminación marina en los últimos años. La sinergia entre el conocimiento científico y la implicación social crece, existiendo ejemplos de actuaciones preventivas y correctoras a escala regional de enorme éxito. El fenómeno de la contaminación por plástico es un problema inquietante, pero la preocupación y la acción social surgida hacen pensar que esta amenaza global pueda ser solucionable. AGRADECIMIENTOS Esta contribución es el resultado de la colaboración de una larga lista de investigadores en distintos proyectos (Malaspina CSD2008-00077, MedSeA FP7-2010-265103; Programa S. de Madariaga PRX14/00743, Tara Oceans) Fig. 1. Primer mapa de contaminación marina por plásticos flotantes (Fuente: National Geographic, Autores: A. Cózar y J. Hawk). REFERENCIAS 1 - Rochman CM, et al. 2015. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep., 5:14340. 2 - de Stephanis R, et al. 2013. As main meal for sperm whales: Plastics debris. Mar Pollut Bull, 69(1–2):206– 214. 3 - Pham CK, et al. 2014. Marine litter distribution and density in European seas, from the shelves to deep basins. PLOS ONE 9(4): e95839. 4 - Cózar A, et al. 2014. Plastic debris in the open ocean. PNAS 2014 111(28): 10239–10244. 5 - Sussarellu R., et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics. PNAS 113(9): 2430-2435. 6 - Wilcox, C., et al. 2015. Threat of plastic pollution to seabirds is global, pervasive, and increasing. PNAS 112:11899–11904. 7 - Cózar A, et al. 2015. Plastic accumulation in the Mediterranean Sea. PLOS ONE 10(4): e0121762. 8 - Law KL et al. (2010) Plastic accumulation in the North Atlantic Subtropical Gyre. Science 329:1185–1188. 9 - Law KL, et al. (2014) Distribution of surface plastic debris in the eastern pacific ocean from an 11-year data set. Environ Sci Technol 48(9):4732–4738. 36 (2016) 10 - Avio CM, et al. 2015. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut., 198:211-22. 37 (2016) Simulating CO2 leakage from sub-seabed storage to determine metal toxicity in marine bacteria Alejandra Díaz1, Ana R. Borrero-Santiago1*, T. Ángel DelValls1 & Inmaculada Riba1 1 Departamento de Química-Física, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN Wicop, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain RESUMEN La captura y almacenamiento de CO2 (CAC) en formaciones geológicas estables es considerada una de las estrategias más adecuadas para disminuir las emisiones directas de CO2 en la atmósfera. Sin embargo, esta técnica alberga cierta incertidumbre ante un posible riesgo de fuga de CO2. Estudios previos han obtenido resultados adversos en organismos marinos, observándose un aumento de estos efectos cuando se trata de sedimento contaminado por metales, debido a la movilización durante el proceso de acidificación. En este aspecto, las comunidades bacterianas del sedimento han sido poco consideradas. Por tanto, este estudio simuló posibles fugas de CO2 utilizando un sistema de inyección de CO2 asociado a una cámara adaptada para trabajar con microrganismos; y con ello evaluar la toxicidad asociada a la movilidad de metales como el Zn y el Cd en dos poblaciones distintas de bacterias (Roseobacter sp. y Pseudomonas litoralis). Las respuestas de las dos poblaciones se determinaron a partir de variables como el número total de células (células·mL-1), ratios de crecimiento (μ, hora-1), efecto inhibitorio del CO2 (RICO2), y producción de sustancias exopoliméricas (EPS) (μg Glucosa·células-1). De manera general se observó un efecto negativo en todas las variables estudiadas a medida que el pH disminuía. Además se obtuvieron diferencias significativas entre las dos poblaciones en función del metal (Zn y Cd). INTRODUCCIÓN La urgente necesidad de reducir la emisión de CO2 ha llevado a la búsqueda de soluciones innovadoras. Una de las medidas consideradas para este fin es la captura y almacenamiento de CO2 (CAC) en formaciones geológicamente estables1. Este tipo de tecnología puede llevarse a cabo en zona terrestre o marítima2. Sin embargo, existen riesgos potenciales asociados a esta actividad3. En el caso de un posible escape de CO2 procedentes de una zona de almacenaje marina, el paso del gas provocaría un cambio en el equilibrio físico-químico en el agua intersticial del sedimento debido a la acidificación. Estos cambios incluyen la alteración de parámetros como el pH, así como en la movilidad, especiación y, por tanto, biodisponibilidad de metales del sedimento marino al tratarse de sedimentos contaminados por metales4. En este contexto, la combinación de los efectos ante una acidificación y la biodisponibilidad de metales derivados de CAC en poblaciones bacterianas marinas aún no han sido estudiados5. Estudios previos reconocen la tolerancia o las adaptaciones de las bacterias marinas a lugares contaminados. No obstante, hasta ahora no se ha descrito sí esta capacidad podría verse afectada ante un escape de CO2. Este hecho requiere especial atención ya que las comunidades bacterianas del sedimento son las encargadas de los procesos de degradación de la materia orgánica y están asociadas a los ciclos del carbono del océano; y por tanto cambios de pH provocados por una fuga de CO2 podrían comprometer el equilibrio natural. El objetivo principal fue evaluar las respuestas de dos poblaciones bacterianas marinas (Roseobacter sp. y Pseudomonas litoralis) expuestas a distintas inyecciones de CO2 en presencia de concentraciones de Zn y Cd registradas en los sedimentos de la Bahía de Cádiz. Las respuestas de ambas poblaciones se evaluaron en función de los resultados obtenidos en número total de células (células·mL-1) al final del ensayo de toxicidad, ratios de crecimiento (μ, hora-1), efecto inhibitorio del CO2 (RICO2), evolución de las curvas de crecimiento y producción de sustancias exopoliméricas (EPS) (μg Glucosa·células-1) MATERIAL Y MÉTODOS Tanto Roseobacter sp. (CECT 7117) como Pseudomonas litoralis (CECT 7669) fueron obtenidas en forma de ampolla liofilizada de la Colección Española de Cultivos Tipo. El medio de cultivo empleado para llevar a cabo los ensayos de toxicidad fue una dilución del medio Marine Broth 2216 (Difco) diluído en agua de mar (1:10) propuesto por Borrero-Santiago et al. (2016). Las distintas concentraciones de Zn y Cd (204.1 mg·L-1 para Zn and 0.247 mg·L-1 para Cd)6 se obtuvieron por medio de ZnCl2 y CdCl2. Los tratamientos de pH correspondieron con pH 7.8 (sin inyección de CO2 como control), 7, 6.5, 6 y 5.5. Además, un control de pH 7.8 negativo en ausencia de Zn o 38 (2016) Cd; y un control de pH 7.8 positivo en presencia de Zn o Cd. El número de células totales se determinó a través de una recta de calibrado, relacionando el contaje directo de células en microscopio de epifluorescencia mediante la técnica del flourocromo DAPI, con su correspondiente densidad óptica a 660 nm (OD660). La estimación de las curvas de crecimiento se realizó en intervalos de 0, 6, 12, 24, 48 y 72 h. Los ratios de crecimiento (µ) fueron estimados utilizando la ecuación propuesta por Widdle6 y el efecto inhibitorio de CO2 (RI) con la fórmula propuesta por Enfors and Molin7. Los exopolisacáridos (EPS) fueron cuantificados por el método fenol-sulfúrico8 usando glucosa como estándar. RESULTADOS Y DISCUSIÓN Los resultados obtenidos en este estudio mostraron un incremento en la toxicidad de Zn y Cd a medida que decrecía el pH. En general, el crecimiento de Roseobacter sp. y P.litoralis se vio afectado de manera negativa por la combinación de CO2 en presencia de Zn o Cd. Este hecho fue reflejado por incrementos en los tiempos de aclimatación (fase lag), reducción del número de células, así como en los ratios de crecimiento. Además, efectos metabólicos asociados a la producción de EPS mostraron un incremento en la síntesis de EPS como respuesta a la combinación tóxica de metal y CO2. Ambas especies fueron capaces de sintetizar EPS aún viendo inhibido su crecimiento. Por tanto, estos resultados evidencian que la combinación de eventos de acidificación en zonas contaminadas por metales podría afectar a comunidades bacterianas del sedimento que a priori pueden ser resistentes a esas concentraciones. AGRADECIMIENTOS This work was partially supported by the Spanish Ministry of Economy and Competitiveness under grants: CTM201128437- C02-02/TECNO and CTM2012-36476-C02-01 and the international Grant from Bank Santander/UNESCO Chair UNITWIN/WiCop. First author thanks the Erasmus Mundus Programme for the master scholarship (20140693/001-001- EMJD). Ana R. Borrero-Santiago thanks the Spanish Ministery of Science and Education for her F.P.I. fellowship (BES-2012-054950). REFERENCIAS 1 – IPCC, 2013. Climate Change 2013: The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergov. Panel Clim. Chang. Work. Gr. I Contrib. to IPCC Fifth Assess. Rep. (AR5) (Cambridge Univ Press. New York) 1535 2 – Hofmann, M. & Schellnhuber, H.J., 2010. Ocean acidification: a millennial challenge. Energy Environ. Sci. 3, 1883-1896. Doi:10.1039/C000820F 3 – Damen, K. et al., 2006. Health, safety and environmental risks of underground CO2 storage – Overview of mechanisms and current knowledge. Clim. Change 74, 289-318. Doi:10.1007/s10584-005-0425-9 4 – De Orte, M.R. et al., 2014. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Mar. Environ. Res. 96, 136-144. Doi:10.1016/j.marenvres.2013.10.003 5 – Borrero-Santiago, A.R. et al., 2016. Carbon Capture and Storage (CCS): risk assessment focused on marine bacteria. Ecotoxicol. Environ. Saf. (2016), Doi:10.1016/j.ecoenv.2016.040.020 (In press) 6 – Rodríguez-Romero, A. et al., 2013. Several benthic species can be used interchangeably in integrated sediment quality assessment. Ecotox. Environ. Safe. 92, 281–288. Doi: 10.1016/j.ecoenv.2013.02.015 7 – Widdel, F., 2010. Theory and measurement of bacterial growth. In: Di Dalam Grundpraktikum Mikrobiologie, 1– 11. 8 – Enfors, S. O. & Molin, G., 1981. The influence of temperature on the growth inhibitory effect of carbon dioxide on Pseudomonas fragi and Bacillus cereus. Can. J. Microbiol. 27, 15-19. Doi:10.1139/m81-003 9 – Dubois, M. et al., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356. Doi: 10.1021/ac60111a017 10 – Nweke, C. O. et al., 2007. Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. Appl. Ecol. Environ. Res. 5(1), 123–132. 11 – Nielsen, P.H. & Jahn, A., 1999. Extraction of EPS. In: J. Wingender et al. (eds), Microbial Extracellular Polymeric Substances , pp. 49–72. ISBN 978-3-642-601477 39 (2016) Antioxidant activity of eight microalgae strains Adela Durá1, Isabel Guerra1, Milagros Rico1, Argimiro Rivero1 & Juan Luis Gómez Pinchetti2 1 Grupo QUIMA- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain 2 Banco Español de Algas, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain RESUMEN Estudios recientes han demostrado que las microalgas son una fuente rica en moléculas bioactivas de especial valor en los ámbitos de la alimentación y la salud humana. Entre los compuestos más destacables presentes en dichas algas se encuentran los polifenoles, cuya capacidad antioxidante ha suscitado gran interés en los campos citados. Estos, son capaces de inhibir la acción de los radicales libres, causantes de multitud de enfermedades crónicas como son el cáncer, enfermedades cardiovasculares y enfermedades neurodegenerativas. Las últimas investigaciones revelan que algunos antioxidantes sintéticos como el butilhidroxitolueno (BHT) y el butilhidroxianisol (BHA) empleados como conservantes en las industrias de alimentación y farmacéutica podrían presentar efectos carcinógenos, lo cual ha potenciado la búsqueda de nuevos y eficientes conservantes naturales. El objetivo de este estudio consiste en evaluar la capacidad antioxidante que presentan los extractos en metanol, etanol/agua y agua de ocho cepas de microalgas y cianobacterias diferentes, por medio del método de inhibición del radical libre 1,1-difenil-2-picrilhidrazil (DPPH). A continuación, se citan los nombres de las especies de microalgas y cianobacterias seleccionadas y donadas por el Banco Español de Algas (BEA) para esta investigación: Chloroidium saccharophilum, Pseudopediastrum boryanum, Cosmarium blyttii, Cosmarium sp., Pseudopediastrum boryanum, Spyrogyra sp., Ochrosphaera verrucosa y Chloromonas cf. reticulata. Para identificar y cuantificar los polifenoles responsables de dicha actividad se emplea la técnica de cromatografía líquida de alta resolución. Finalmente, con el propósito de valorar su posible aplicabilidad comercial como aditivo alimentario, los resultados obtenidos se comparan con los que ofrecen los antioxidantes sintéticos BHA y BHT. ABSTRACT Recent studies have demonstrated that microalgae are a rich source of bioactive molecules of particular value in the fields of food and human health. One of the most outstanding compounds present in these algae are polyphenols, which have attracted great interest due to their high antioxidant capacity. Phenolic compounds have been reported to be great free-radical inhibitors and thus, they are believed to protect against diseases caused by oxidative stress, such as cancer, cardiovascular diseases and neurodegenerative diseases. Latest data reveal that synthetically produced antioxidants currently used as preservatives in food and pharmaceutical industries such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) could manifest carcinogenic potential. This fact has fuelled research on finding new and efficient natural preservatives. The aim of this study consists in determining antioxidant capacity exhibited by methanol, ethanol/water and water microalgal extracts of eight different species by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. The following microalgae strains were selected and donated by the Spanish Bank of Algae (BEA) for their examination: Chloroidium saccharophilum, Pseudopediastrum boryanum, Cosmarium blyttii, Cosmarium sp., Pseudopediastrum boryanum, Spyrogyra sp., Ochrosphaera verrucosa y Chloromonas cf. reticulata. In addition, the major phenolic constituents present in the extracts were identified and quantified by means of high performance liquid chromatography. Finally, in order to assess their possible commercial applicability as a food additive, results of this assay are compared to those provided by synthetic antioxidants BHA and BHT. AGRADECIMIENTOS Las microalgas y cianobacterias anteriormente citadas fueron recolectadas en Canarias y depositadas en la colección de cultivos del Banco Español de Algas (Taliarte, España). Los autores de este artículo desean expresar su gratitud al Banco Español de Algas por la donación de dichas cepas. 40 (2016) REFERENCIAS 1 – Rico M, Sánchez I, Trujillo C, Pérez N, 2013. Screening of the antioxidant properties of crude extracts of six selected plant species from the Canary Islands (Spain). J. Appl. Bot. Food Qual. 86:217 – 220. 2 – Rodríguez-García I, Guil-Guerrero JL, 2008. Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem. 108:1023–1026. 41 (2016) Determination of UV-filters in seawater samples from Gran Canaria island using fabric phase sorptive extraction (FPSE) coupled to LC-MS/MS Romualdo Bentor García Guerra, Sarah Montesdeoca Esponda, María Esther Torres Padrón, Zoraida Sosa Ferrera, José Juan Santana Rodríguez Grupo de Análisis Químico Medioambiental (AQMA), Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain. *[email protected], Tel.: +34 928 452 915; Fax: +34 928 452 922. ABSTRACT Benzotriazole UV stabilizers (BUVSs) are a group of emerging compounds whose use has increased in the last decades due to the growing concern about the link between sunlight exposure and skin cancer. After be used, BUVSs can reach the environment through recreational activities such as swimming and bathing in oceans, lakes or rivers or after passing throughout wastewater treatment plants without be removed. Fabric phase sorptive extraction (FPSE) is a new reusable extraction technique, which integrates the advantages of sol-gel hybrid inorganic-organic sorbents with fabric substrates, being highly sensitive, efficient and cheap device. After optimize the parameters that affect the procedure (sorbent chemistry, extraction time, sample volume, pH, ionic strength, back-extraction solvent, time and volume), FPSE coupled to Ultra High Performance Liquid Chromatography with tandem mass spectrometry (UHPLC-MS/MS) was employed to analyse six BUVSs in seawater samples from Gran Canaria Island (Spain). The methodology allowed enrichment factors of 25 times with limits of detection (LODs) from 1.06 to 8.96 pg∙mL-1, recoveries in the range 9.30-51.4% and intra and interday RSDs between 3.97 and 20.8% for all compounds. The application of the proposed procedure to thirty-six seawater samples from different beaches of the island allowed detecting and quantifying one of the target compounds in the range from 41.12 to 544.9 pg∙mL-1. INTRODUCTION In the last decades, the increase of the human activity and the rapid industrialization have generated the appearance of a wide variety of chemical contaminants all over the world. Among these emerging compounds, benzotriazole UV stabilisers (BUVSs) added to sunscreen and several cosmetic such as lip gloss, shampoos, hair dyes, makeup, etc., have been described as mutagenic, toxic, pseudopersistent and bioaccumulative [1]. BUVSs have a phenolic group attached to the benzotriazole structure which has a heterocyclic structure containing three nitrogen atoms whose molecular form is C6H5N3 [2]. Its entrance to the environment can be directly through bathing at beaches, lakes or rivers, or indirectly through discharges from wastewater treatment plants (WWTPs) [1], where they are not removed. Fabric phase sorptive extraction (FPSE), developed by Kabir and Furton [3], consists on a flexible and permeable fabric substrate coated with a sol-gel hybrid inorganicorganic sorbent chemically bonded to its surface. It allows the use of large amounts of sorbent inside the cellulose substrate, generating a phenomenal increase in the retention of analytes [4]. FPSE shows advantages such as simple use and minimal solvent consumption; variety of sorbents; high pH stability; ease of increasing the diffusion of the analytes by magnetic stirring or fast analyte. We have optimized all the parameters that could affect the extraction efficiency of six BUVSs (UVP, UV360, UV326, UV327, UV328 and UV329) and then FPSE coupled to ultra-high performance liquid chromatography and mass spectrometry detection (UHPLC-MS/MS) was applied to the analysis of thirty-six samples from different beaches of Gran Canaria Island (Spain). MATERIAL AND METHODS The separation and determination system included an ACQUITY UHPLC equipped with a binary solvent manager, a column manager, an autosampler with a syringe of 25 µL and a tray for 21 HPLC glass vials and a mass spectrometry detector. An ACQUITY UHPLC BEH C18 column (1.7 µm, 2.1 mm×50 mm) was utilised at 40ºC with a methanol with 0.1% of formic acid as mobile phase at a flow rate of 0.5 mL·min−1. Conditions of mass spectrometry detection were: desolvation temperature, 42 (2016) 450ºC, source temperature, 120ºC, capillary votage, 3kV, cone votage, 30V and extractor votage, 3V. The FPSE protocol has been the following: (a) Cleaning of FPSE media in 2 mL of acetonitrile-methanol (50:50) for 5 minutes, (b) Rinsing with 2 mL of distilled water to remove residual organic solvents, (c) Extraction with the FPSE device during the optimum extraction time, stirring the sample with a magnetic bar at 1000 rpm, (d) Desorption in the appropriate volume of organic solvent during the optimum time for complete back-extraction. Then transfer sample in a deactivated HPLC glass vial for determine the BUVSs in the chromatographic system. After finishing the extraction, repetition of the first step, drying the FPSE media to eliminate the solvents and storage in an air-tight glass container for future use. The seawater samples were collected in three different days and from three beaches at southwest of the island: Mogán, Amadores and Puerto Rico. Four samples per beach (two centrals and East and West margins) were collected from the surface layer (< 10 cm) in an area with a depth of approximately 1 m. RESULTS AND DISCUSSION First, three different FPSE media was tested: Sol-gel poly dimethyldiphenylsiloxane (PDMDPS), Sol-gel poly tetrahydrofuran (PTHF) and Sol-gel poly ethylene glycol (PEG). Sol-gel PDMDPS, which has demonstrated greater capacity to extract nonpolar compounds like BUVSs [5], was selected. Second, an experimental design of 24 (four parameters and two levels) was used to study the influence of extraction time, sample volume, ionic strength and pH. Attending to the data obtained, 150 minutes, 25 mL, 5% (m/v) and pH 6 respectively were selected as optimum values. Third, two different back-extraction solvents (methanol and acetonitrile) and a mix of both (50:50) were tested, the best results being obtained with methanol. Then we tested the influence of the back-extraction time, studying values of 5, 10 and 15 min. Highest recoveries of all the compounds was obtained with 10 minutes. Finally, three different volumes were used as back-extraction volume, testing 0.5, 1 and 1.5 mL of methanol. The results demonstrated that using 1 mL we achieve higher values and better shape of the chromatographic peaks (Fig. 1). The validation of the FPSE-LC-MS/MS method was studied in terms of linearity (correlation coefficients over 0.9932), sensitivity (LODs between 1.06 and 8.96 pg∙mL-1 and LOQs between 3.54 and 29. 9 pg∙mL-1) and intra-day and inter-day precision (in the range 3.97-10.0% and 5.7120.8%, respectively). Fig. 1. Chromatograms obtained for each BUVS at 250 ng·mL-1 in the optimised conditions. The procedure provided enrichment factors of 25 times, reaching recoveries between 32.4 and 51.4% for all the studied compounds, except for UV P and UV 329 whose recoveries were in the range of 9.30 and 21.5%. The differences between the obtained recoveries may be due to the different polarities of the target compounds, which affect their interaction with the FPSE media. Once optimised the methodology, we determined one of the studied compounds, UV 360, in nine of the thirty-six analysed seawater samples from three beaches of Gran Canaria Island (Spain), in concentrations between 41.12 and 544.9 pg∙mL-1. REFERENCES 1 - Montesdeoca-Esponda, S., Vega-Morales, T., SosaFerrera, Z. and Santana-Rodríguez, J. J. (2013). Extraction and determination methodologies for benzotriazole UV stabilizers in personal-care products in environmental and biological samples. TrAC Trends in Analytical Chemistry. 51, 23-32. 2 - Herrero, P., Borrull, F., Pocurull, E. and Marcé, R. M. (2014). An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzenesulfonamides in the environment. TrAC Trends in Analytical Chemistry. 62, 46-55. 3 - Kabir, A. and Furton, K. G. (2014). Fabric phase sorptive extractors (FPSE), US Patent Application: 14,216,121 March 17, 2014. 4 - Racamonde, I., Rodil. R., Quintana, J. B., Sieira, B. J., Kabir, A., Furton, K. G. and Cela, R. (2015). Fabric phase sorptive extraction: A new sorptive microextraction technique for the determination of non-steroidal antiinflammatory drugs from environmental water samples. Analytica Chimica Acta. 865, 22-30. 5 - Segro, S. S. and Malik, A. (2008). Solvent-resistant solgel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with highperformance liquid chromatography. Journal of Chromatography A, 1205, 26-35. 43 (2016) Medida de los flujos bentónicos de materia usando cámaras e incubando testigos: algoritmos para corregir el artefacto creado por el muestreo del agua durante su incubación A.Gómez-Parra, T. Ortega, R. Ponce, J.M. Forja 1 Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real (Cádiz) Spain RESUMEN La estimación de los flujos de materia a través de la interfase sedimento-agua usando cámaras bentónicas o incubando “cores” requiere conocer la variación temporal que experimenta la concentración de la sustancia en estudio en el agua incubada con el sedimento, lo que implica para la mayoría de los analitos que a lo largo del tiempo han de extraerse muestras sucesivas para su análisis. Esta operación introduce un importante artefacto ya que, dependiendo como se opere, o bien el volumen del agua incubada no permanece constante durante todo el proceso, o su concentración se altera con cada muestreo. En este trabajo se presentan dos algoritmos desarrollados para la corrección del efecto del muestreo del agua incubada, tanto si las alícuotas extraídas se sustituyen por agua procedente del exterior, como si su volumen es ocupado por la expansión de un globo de compensación. En el segundo caso se utiliza un sistema de recurrencia por ecuaciones en diferencias, lo que permite evitar el error conceptual que supone calcular el flujo a partir de una regresión lineal de la concentración y el tiempo. Para ambos algoritmos se hace un análisis de los errores cometidos sin su uso a partir de una amplia base de datos obtenidos con cámaras bentónicas en la plataforma del golfo de Cádiz y en distintos sistemas litorales de la península Ibérica. INTRODUCCIÓN Los flujos de materia desempeñan un papel relevante dentro del conjunto de procesos biogeoquímicos que tienen lugar en los sistemas litorales debido fundamentalmente a su elevada magnitud [1,2]. Entre estos flujos destacan los provocados por la transferencia de nutrientes y gases del agua intersticial del sedimento a la columna de agua. En el primer caso ya que, con frecuencia, no solo superan los requerimientos nutricionales del fitoplancton en los ecosistemas intralitorales, sino que exportan nutrientes a las zonas oceánicas circundantes contribuyendo con ello al mantenimiento de su productividad primaria [3]. En el segundo, porque pueden presentar un comportamiento inverso al tiene el Océano en su conjunto como receptor de gases con efecto invernadero [4]. La medida directa de los flujos bentónicos se realiza “in situ” (por medio de cámaras bentónicas) o en el laboratorio a partir de testigos de sedimento. En ambos casos se requiere incubar una cierta superficie de sedimento (S, conocida) en contacto con un determinado volumen aislado de agua procedente del fondo (V). El cálculo del flujo (J) se realiza a partir de su propia definición, en la que implíJ= V dC · S dt citamente V se considera constante. La expresión se aplica para t = 0 y usando la siguiente función de la concentración con el tiempo [5]: – k·t C = a – (a – C0)·e Donde a y k son parámetros de ajuste que se obtienen de la represión de C con t y tienen sentido físico: a es la concentración de la especie estudiada en el límite superior del agua intersticial y k es un productorio de constantes de operación, entre las que se encuentra el volumen de agua incubado (V) en la cámara o con el testigo de sedimento. La aplicación de las dos expresiones anteriores puede no ser posible a consecuencia del muestreo que es necesario realizar para conocer la dependencia con el tiempo de la concentración de muchas sustancias que requieren del análisis químico. La dificultad surge porque la retirada de las alícuotas que se requieren para los análisis alteran el el volumen original que se incubaba. Esto podría obviarse sustituyendo los volúmenes extraídos por otros idénticos de agua procedente del exterior. No obstante, operando de esta manera se altera la evolución natural de la concentración del analito con el tiempo. 44 (2016) En este sentido, el objetivo de este trabajo es proponer los algoritmos de cálculo necesarios para corregir el efecto del artefacto creado por el muestreo del agua incubada con de las cámaras bentónicas o con los testigos de sedimento, pudiendo con ello hacer una regresión de C con t conceptualmente correcta MATERIAL Y MÉTODOS El trabajo para la obtención de los flujos que se describe se realizó por medio de cámaras bentónicas. Se utilizaron tres tipos de cámaras de diferente tamaño y grado de automatismo, según las características de las zonas a estudiar. Así, la superficie de sedimento cubierta varió entre 0.18 y 0.50 m2 y el volumen de agua incubada entre 47 y 140 L. misma cuantía que la muestra tomada en cada ocasión, se considera que la tendencia de la curva C(t) varía cada vez que se muestra de manera proporcional al volumen extraído con lo cual se modifica el valor de k. El problema se resuelve recurriendo un nuevo coeficiente de regresión k’ (independiente del volumen) cuyo valor, junto con el de a, permiten obtener el flujo para t = t0, que, al igual que antes, es justo cuando aún no se ha producido ninguna alteración por el muestreo. Los resultados obtenidos muestran que las correcciones a introducir por el muestreo en la medida de los flujos son pequeñas. Cuando los volúmenes de agua extraídos son pequeños los errores cometidos son, en numerosos casos, del mismo orden de magnitud que las desviaciones de los replicados medidos cuando se estiman los flujos. No obstante, a nivel conceptual es importante asumir este hecho, especialmente en aquellos casos en que sea necesario sustituir en el agua incubada volúmenes mayores. AGRADECIMIENTOS Deseamos expresar nuestro agradecimiento al Dr. J.L. Díaz Moreno por sus valiosos comentarios acerca de la expresión de los modelos desarrollados. Este trabajo ha sido financiado por el proyecto CTM2014-59244-C3. REFERENCIAS Fig. 1. Imagen de una de las cámaras Bentónicas utilizadas. Las cámaras utilizadas han sido descrita con detalle en trabajos anteriores [6, 7]. En la figura 1 se muestra una vista de una de ellas que se utilizó en la plataforma del golfo de Cádiz (hasta 50 m de profundidad) a bordo del B/O Mytilus. Las otras, más ligeras, se fondearon desde embarcaciones de pequeño calado en diversos sistemas costeros de la bahía de Cádiz, marismas del Palmones (bahía de Algeciras) y en los estuarios del Tinto-Odiel (Huelva), Oka (Vizcaya) y Asón (Cantabria). RESULTADOS Y DISCUSIÓN Los algoritmos propuestos se refieren a las distintas maneras en que se pretende solucionar la perturbación que introduce en el experimento la toma de muestra para conocer en un instante dado la concentración de la especie química cuyo flujo se pretende conocer. En el primer caso, cuando se sustituye el volumen muestreado por agua del exterior, se produce una dilución del agua incubada. El problema se aborda calculando la el valor de la concentración resultante como la media ponderada de las masa de agua involucradas admitiendo que la tendencia de la curva C(t) no varía con cada muestreo. En el segundo caso, cuando el volumen de la cámara disminuye en la 1 – Jahnke, R., Richards, M., Nelson, J., Robertson, C., Rao, A., Jahnke, D., 2005. Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Cont. Shelf. Res., 25: 1433-1452. 2 – Alongui, D.M., Trott, L.A., Pfitzner, J., 2007. Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northen Great Barrier Reefshelf. Cont. Shelf. Res., 27:2595-2622. 3 - Gómez-Parra, A., Forja, J.M., 1992. Significance of benthic regeneration in nutrient balance in the Bay of Cadiz, south-west Spain (a shallow semi-closed coastal ecosystem). The Science of the Total Environment, Supp.1992: 1079-1086. 4 – Borges, A.V., 2005. Do we have enogh pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries, 28: 3-27. 5 - Forja, J.M., Gómez-Parra, A., 1998. Measuring nutrient fluxes across the sediment-water interface using benthic chambers. Marine Ecology Progress Series. 164: 95-105. 6 - Ferrón, S., Alonso-Pérez, F., Castro, C.G., Ortega, T., Pérez, F.F., Ríos, A. F., Gómez-Parra, A., Forja, J.M., 2008. Hydrodinamic charaterization and performance of an autonomous benthic chamber for use in coastal systems. Limnology and Oceanography: Methods, 6: 558-571. 7 - Forja, J.M., Blasco, J., Gómez-Parra, A., 1994. Spatial and seasonal variation of "in situ" benthic fluxes in the Bay of Cadiz (SW Spain). Estuarine, Coastal and Shelf Science, 39: 127-141. 45 (2016) Fe and Cu organic ligands in natural incubation experiments A.G. Gonzalez1,2, G. Sarthou1,2, F. Chever1,2, F. Quéroué1,2, A. Bowie3, P. van der Merwe3, M. Cheize1,2, M. Sirois5, E. Bucciarelli1,2 1 Université de Bretagne Occidentale, IUEM, 29200 Brest, France LEMAR-UMR 6539, CNRS-UBO-IRD-IFREMER, Place Nicolas Copernic, 29280 Plouzané, France 3Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, Tasmania, Australia 2 ABSTRACT Trace metals, like Fe and Cu, can chemically compete in natural waters both inorganically and organically. This interaction affects the speciation of metals in seawater. Both elements can also biologically compete, because of the replacement in the photosynthetic apparatus of Fe-rich cytochrome C6 by Cu-containing plastocyanin and of the use of the multi-copper oxidase in Fe transport systems of some phytoplankton species. Fe and Cu incubations were carried out in natural seawater during the oceanographic cruise KEOPS 2 in the Southern Ocean, as a part of GEOTRACES program, from 10th October to 20th November 2011 aboard the R.V. Marion Dufresne. Experiments were performed with control experiments (no metal additions), Fe additions (1 nM Fe3+), Cu additions (0.5 nM Cu2+) and Fe+Cu additions (1 nM Fe3+ +0.5 nM Cu2+), at three contrasted stations: The R-2 station, which in the High Nutrient-Low Chrorophyll (HNLC) area, the A3-1 station above the Kerguelen Plateau, and the E-3 station in a permanent meander of the Polar Front, East of the Kerguelen Islands. The following parameters were measured: concentrations of chlorophyll-a (Chl-a), biogenic silica (bSiO2), particulate organic carbon and nitrogen (POC, PON), nitrate (NO3-), orthosilicic acid (Si(OH)4), flow cytometry, microscopy, Fe and Cu organic speciation. A clear gradient in Fe limitation was observed among the three stations, with R-2 showing a strong Fe-limition, E3 a mild-limitation, and A3-1 no limitation. The Cu addition did not show any significant effect in our experiments. INTRODUCTION Fe is an essential micronutrient that limits primary productivity in up to 40% of the global oceans [1]. Recent studies demonstrated the evidence of Cu limitation for the phytoplankton growth, especially under Fe limiting conditions [2]. The interaction of Fe and Cu has been recently studied in terms of redox interaction [3]. This interaction should imply effects on the phytoplankton dynamic and the possible production of organic ligands to control Fe and Cu speciation in seawater. Note that Fe and Cu speciation is dominated by the organic ligands (over 99%), increasing their solubility and making them more bioavailable. Microorganisms can modify the concentration and the type of organic ligands in solution depending to the natural conditions [4]. During the oceanographic cruise KEOPS 2 (PI: S. Blain, Fig. 1) in the Southern Ocean, as part of the GEOTRACES program, the Fe and Cu effects on the phytoplankton dynamic was studied, measuring a number of parameters as of chlorophyll-a (Chl-a), biogenic silica (bSiO2), particulate organic carbon and nitrogen (POC, PON), nitrate (NO3-), orthosilicic acid (Si(OH)4), flow cytometry, microscopy, Fe and Cu organic speciation. These results will help us to improve our knowledge about the natural phytoplankton dynamic under different levels Fe, Cu and Fe+Cu. Fig. 1. Map of stations during KEOPS II. MATERIAL AND METHODS The study area was located at the vicinity of the Kerguelen Islands in the Indian sector of the Southern Ocean where phytoplankton blooms are observed each summer. Experiments were carried out during the KEOPS 2 cruise 46 (2016) from 10 October to 20 November 2011 aboard the R.V. Marion Dufresne II (TAAF/IPEV). Experiments were performed at three stations: R-2 (50.39°S/66.69°E) considered as the reference station of the KEOPS 2 experiment [5], A3-1 (50.63°S/72.08°E) located above the south Kerguelen plateau, and E-3 (48.70°S/71.97°E), located in a recirculation area North East of the Kerguelen Islands (Fig. 1). Samples were collected using a trace metal clean rosette (TMR, model 1018, General Oceanic). Seawater for the incubations was collected in the surface mixed layer. All the samples were manipulated in a clean container. The bottles were acid-cleaned before use following the GEOTRACES recommendations. For each experiment and time point, duplicate bottles were spiked with 1 nmol L-1 FeCl3 (+ Fe), or 0.5 nmol L-1 Cu(NO3)2 (+ Cu), or a combination of both (+ Fe + Cu). A continuous running seawater system supplied water from the sea surface, allowing the maintenance of in situ surface temperature as well as the perpetual motion of the free floating bottles that prevented any settling of material. RESULTS AND DISCUSSION Station R-2 is the reference stations. It is a typical High Nutrient Low Chlorophyll (HNLC) station with low dissolved Fe and Cu, Chl-a, BSi, POC and PON. The concentration of dissolved Fe was higher at E-3 (0.38 nmol L-1) and dissolved Cu was higher at A3-1 (1.93 nmol L-1). The addition of Fe invokes a rapid response of the phytoplankton community, at R-2 and E-3 stations. Chl-a concentrations increase after additions of Fe and Fe+Cu, achieving ~11 µmol L-1 after 14 days and 12 days, respectively. The rest of parameters measured (BSi, POC, PON and nutrients) followed the same trend in both stations, with no significant effect over time for control and +Cu additions, but with clear effect after +Fe and +Fe-Cu treatment. At A3-1, the addition of metals did not represent any significant increase in Chl-a, BSi, POC, PON and nutrients. The flow cytometry results showed that only nanoeukaryotes were sensitive to the presence of Fe and Cu in solution, showing significant increase of cell concentration over incubation time. The most important effect was also measured for stations R-2 and E-3, where nanoeukaryotes increased after +Fe and +Fe-Cu between 2 and 3.5 times, respectively. This dynamic change in stations should reveal effects on the Fe and Cu organic speciation during the incubations. Cu-organic ligands always slightly increased for the control from the initial time and the last day of incubation. The presence of Fe, Cu and Fe-Cu in solution never presented clear trends. The higher Cu-ligand concentration was measured for E-3 after +Fe treatment with 85 ± 2 nmol L-1. However, this concentration was practically constant for all the conditions at station A3-1 (43.8 ± 0.1 nmol L-1). The Cu-ligand concentration increased from 28.2 ± 0.5 nmol L-1 (control) to 68.1 ± 0.3 nmol L-1 (+Fe+Cu) after 14 days of incubations. These ligands can be ranked as weak Culigands according to the log Kcond value that was between 11.0 and 12.8 for most of the incubations. Only A3-1 showed strong ligands in the control and after +Cu and +Fe treatment. The concentration of Fe-ligands (0-3.76 nmol L-1) was always lower compared to that for Cu-ligands (0-85 nmol L-1). However, Fe-ligands increased after +Fe and +Fe+Cu treatment for the stations R-2 (from 1.9 ± 0.3 to 2.5 ± 0.1 nmol L-1) and E-3 (from 1.7 ± 0.3 to 3.8 ± 0.2 nmol L-1). In addition, Fe-ligands always decreased after +Cu additions compared to the control for R-2 and E-3. The Fe-ligands can be ranked as strong ligands, with log Kcond values between 11.1 ± 0.3 and 12.6 ± 0.1. ACKNOLEDGEMENTS This research was supported by the Institut National des Sciences de l’Univers (INSU), the French Polar Institute (Institut Polaire Emile Victor, IPEV), the GIS EUROPOLE MER, and the Agence National de la Recherche (ANR2010-BLAN-614). The PhD fellowship of FQ was cofunded by the University of Tasmania and the University of Brest. We would like to thank the captain and the crew of the R.V. Marion Dufresne, Stephane Blain and Bernard Quéguiner as chief scientist and project coordinator of the KEOPS 2 cruise. REFERENCES 1 – Moore JK, Doney SC & Lindsay K, 2004. Upper ocean ecosystem dynamics and iron cycling in a global threedimensional model. Global bioegeochim. Cycles, 18:GB4028. 2 – Peers G, Quesnel SA & Price NM, 2005. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr., 50:1149-1148. 3 – Gonzalez AG, Perez-Almeida N, Santana-Casiano JM, Millero FJ, Gonzalez-Davila M, 2016. Redox interactions of Fe and Cu in seawater. Mar. Chem., 179:12-22. 4 – Rico M, Lopez A, Santana-Casiano JM, Gonzalez AG, Gonzalez-Davila M, 2013. Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol. Oceanogr., 58:144152. 5 – Blain S, Capparos J, Guéneuguès A, Obernosterer I & Oriol L, 2015. Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean). Biogeosciences, 12:623-635. 47 (2016) Utilización de pigmentos para la caracterización del microfitoplancton el en Golfo de Cádiz (2014-2015) C. González-García 1, 2, *, C. García-Muñoz 2, M.C. González-Cabrera 3, M.P., Jiménez 3, Jesús Forja 1 y L.M. Lubián 2 (1) Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 – Puerto Real, Cádiz, Andalucía, España. (2) Instituto de Ciencias Marinas de Andalucia (CSIC), Campus Universitario Río San Pedro, 11510 – Puerto Real, Cádiz, Andalucia, España. (3) Instituto Español de Oceanografía. Centro Oceanográfico de Cádiz. Puerto Pesquero, Muelle de Levante s/n. Apdo. 2609. E-11006 Cádiz, España *Correo del autor: [email protected] RESUMEN En este trabajo se estudia la evolución de clorofila así como los pigmentos asociados al microfitoplancton en el Golfo de Cádiz durante los años 2014 y 2015. El estudio se basa en los datos obtenidos a lo largo de tres radiales del Golfo de Cádiz, la desembocadura del río Guadalquivir, el caño Sancti Petri y el cabo de Trafalgar. Se observan importantes variaciones estacionales de clorofila, con concentraciones que varían desde máximos de 2.36 µg/L en primavera a mínimos de 0.02 µg/L en los muestreos más invernales. Se han determinados las concentraciones de pigmentos asociados a la clorofila a, observando, también en ellos, una estacionalidad en cuanto cantidad y diversidad. Se han determinado los principales pigmentos del microfitoplancton y se han hecho relaciones con el total de clorofila a mediante el software CHEMTAX, con el cual se ha establecido al grupo de las diatomeas como el más abundante en el Golfo de Cádiz a excepción de fenómenos de bloom y proliferaciones locales. INTRODUCCIÓN El Golfo de Cádiz se encuentra al suroeste de la Península ibérica, entre el cabo San Vicente, en Portugal, y el Estrecho de Gibraltar. Está caracterizado por una plataforma continental ancha, entre 50 y 15 kilómetros, donde tienen lugar los procesos que mayor consecuencia tienen en la abundancia y distribución de las poblaciones fitoplanctónicas, como son los procesos de marea, el aporte de nutrientes desde el continente o el efecto del viento entre otros. Las masas de agua en el Golfo de Cádiz [1] determinan variables físicas como temperatura y salinidad, así como fenómenos de afloramiento y hundimiento. Los mayores niveles de clorofila se dan en las zonas costeras debido al aporte de nutrientes. La zona con mayor concentración de clorofila durante los dos años analizados es la desembocadura del río Guadalquivir, con valores medios de 1.40 µg/L en periodos de mayor abundancia. Los procesos de afloramiento en las cercanías del cabo Trafalgar, producidos por efectos de la entrada de agua mediterránea a través del estrecho [2], producen un levantamiento de la nutriclina en este punto y favore la subida hacía capas fóticas de células microfitoplantónicas así como nutrientes hundidos en el mar Alborán [3]. Este aumento en la disponibilidad de nutrientes tiene como consecuencia un aumento ocasional de microfitoplanctón en esta zona. La determinación de pigmentos asociados a los diferentes grupos del microfitoplancton, permite determinar los grupos mayoritarios en estos procesos de afloramiento, así como conocer los mayores grupos beneficiados de los aportes de nutrientes. La cromatografía liquida de alta eficacia (HPLC) no ha sido solo aplicada para la determinación de la clorofila a, también para clorofilas, xantofilas y carotenoides asociados [4]. El mejor método para analizar los resultados de pigmentos y conocer su contribución al total de clorofila a es el programa informático CHEMTAX [5], pudiendo tener una visión general de como los diferentes grupos de fitoplancton participan en la distribución de clorofila a en la zona. El objetivo de este trabajo es la caracterización de los cambios de distribución, abundancia y biodiversidad de las comunidades fitoplanctónicas en los años 2014 y 2015 en el Golfo de Cádiz. MATERIAL Y MÉTODOS El área de estudio se localiza en el Golfo de Cádiz, al suroeste de la península ibérica. Las muestras han sido tomadas a lo largo de 8 campañas oceanográficas durante 48 (2016) los años 2014 y 2015 dentro del proyecto STOCA (Series Temporales de datos Oceanográficos en el Golfo de Cádiz) que desarrolla el Instituto Español de Oceanografía (IEO). En cada campaña se han realizados 3 transectos con un total de 16 estaciones perpendiculares a la desembocadura del río Guadalquivir y caño Sancti Petri, y al cabo de Trafalgar. Han sido tomadas muestras para clorofila fraccionada mediante un sistema de doble filtración, determinando por fluorimetría la fracción correspondiente al microfitoplancton (>20µm) respecto al total de clorofila. Se han tomado muestras superficiales y en el máximo de fluorescencia profundo (DFM) para el análisis de pigmentos mediante HPLC (Walters Alliance HPLC System, con detector de fluorescencia). Para el procesado de los datos obtenidos para pigmentos se ha utilizado el software informático CHEMTAX que ayuda a comprender que pigmentos pertenecen a cada grupo del microfitoplancton y crear una proporción entre ellos respecto la clorofila a total. Para la interpretación de los datos se han utilizado los resultados de distribución y concentración de nutrientes recogidos durante las campañas en el Golfo de Cádiz. RESULTADOS Y DISCUSIÓN La distribución de la clorofila del rango de tamaño microfitoplanctónico muestra sus máximos en las zonas más costeras de las secciones situadas en el Guadalquivir y en Sancti Petri. Generalmente coinciden con un mínimo en la concentración de nutrientes, debido a su rápido consumo y a la limitación de su entrada desde el fondo por una termoclina permanente situada por debajo de la zona fótica. También se han detectado máximos relativos de clorofila en estaciones de la radial de Trafalgar. Aparecen de forma ocasional, no parecen seguir un patrón estacional y están relacionados con un descenso en la concentración de nutrientes en las capas superficiales. Anteriores trabajos en la zona cercana al estrecho [6, 7] describen este afloramiento marcado por un aumento de la clorofila debido a la mezcla vertical que experimenta las aguas atlántica y mediterránea en el paso por el Umbral de Camarinal. Esta mezcla supone un aporte de nutrientes desde las capas más profundas a las más superficiales. Basándose en trabajos anteriores [4], así como a los pigmentos mayoritarios en las muestras se eligieron cuatro grupos del microfitoplancton para la caracterización del Golfo de Cádiz: haptofitas, dinofitas, prasinofitas y bacilariofitas. Estos grupos tienen pigmentos característicos que no comparten con el resto, por lo que es fácil su identificación y posterior análisis con la herramienta CHEMTAX. Durante las STOCA 2014 y 2015, las bacilariofitas fueron en grupo más importante en todas las estaciones, seguidas de las haptofitas y dinofitas. Las relaciones entre los cuatro grupos varían, viéndose cambios según masas de agua, épocas del año, diferencias costa-océano y afloramientos, como el de Trafalgar, en el que se ve un cambio de proporción entre unos pigmentos característicos de un grupo a otro, demostrando así que un aporte de nutrientes adicional determina el crecimiento de unos grupos respecto otros. GD 0614 100 50 0 GD1 GD2 GD3 GD3 GD4 GD4 GD4 GD5 GD5 GD5 GD6 GD6 GD6 GD6 5m 5m 5m 33m 5m 31m 100m 5m 40m 50m 5m 85m 95m 400m Prasinofitas Bacilariofitas Dinofitas Haptofitas Figura 1. Resultados del programa CHEMTAX (abundancias pigmentarias respecto total de clorofila a) correspondientes a la campaña STOCA junio 2014, radial de Gualdaquivir. Predominio del grupo de las diatomeas en todas las estaciones, seguido por el de las dinofitas. AGRADECIMIENTOS Agradecer a la tripulación de los B/O Ramón Margalef y Ángeles Alvariño por su participación en las campañas. Este trabajo ha sido financiado mediante el proyecto STOCA del Instituto Español de Oceanografía y el proyecto CTM2014-59244-C3. REFERENCIAS 1 - Criado-Aldeanueva, F. et al., 2006. Distribution and circulation of water masses in the Gulf of Cadiz from in situ observations. Deep Sea Research Part II: Topical Studies in Oceanography, 53(11-13), pp.1144–1160. 2 - Macías, D. et al., 2008. Chlorophyll maxima and water mass interfaces: Tidally induced dynamics in the Strait of Gibraltar. Deep-Sea Research Part I: Oceanographic Research Papers, 55(7), pp.832–846. 3 - Prieto, L. et al., 1999. Phytoplankton, bacterioplankton and nitrate reductase activity distribution in relation to physical structure in the northern Alboran Sea and Gulf of Cadiz (southern Iberian Peninsula). Boletin Instituto Español de Oceanografia, 15, pp.401–411. 4 - Goela, P.C. et al., 2014. Using CHEMTAX to evaluate seasonal and interannual dynamics of the phytoplankton community off the South-west coast of Portugal. Estuarine, Coastal and Shelf Science, 151, pp.112–123. 5 - Mackey, M.D., 1996. CHEMTAX- a program for estimating class abundances from chemical markers : application to HPLC measurements of phytoplankton. Marine Ecology Progress Series, 144, pp.265–283. 6 - Ruiz, J. et al., 2001. Surface distribution of chlorophyll, particles and gelbstoff in the Atlantic jet of the Alborán Sea: From submesoscale to subinertial scales of variability. Journal of Marine Systems, 29(1-4), pp.277–292. 7 - Echevarria, F. et al., 2002. Physical – biological coupling in the Strait of Gibraltar. Deep Sea Research Part II: Topical Studies in Oceanography, 49, pp.4115–4130. 49 (2016) Spatial distribution and estuarine sources of dissolved organic matter export to the coastal zone in the Gulf of Cádiz, Spain Enrique González-Ortegón1, Francisco Baldó1, María J. Bellanco1, Ricardo F. Sánchez-Leal1, María P. Jiménez1, J. Pedro Cañavate2, César Vilas2 1 Insituto Español de Oceanografía, Centro Oceanográfico de Cádiz, Puerto Pesquero, Muelle de Levante s/n, 11006 Cádiz. Spain. 2 IFAPA Centro El Toruño, Camino de Tiro Pichón, 11500 El Puerto de Santa María, Cádiz, Spain. ABSTRACT Dissolved organic matter (DOM) is a major component of the organic matter transported to the coastal zone by rivers. It controls ecosystem-level processes (e.g. food web) and constitutes an important pathway for nutrients transport from land to coastal waters. We know that estuarine discharges affect the primary production and nutrient composition in the adjacent coastal area. For instance, the current hypernutrification of the Guadalquivir estuary may benefit primary production on adjacent coasts. However, studies on DOM in the Gulf of Cádiz waters are unknown despite its importance in the global ocean functioning. The Gulf of Cádiz is under the estuarine influence of three main estuaries: Guadiana, Tinto-Odiel and Guadalquivir. The present study evaluates the relevance of DOM and the estuarine influence and environmental factors which determine its distribution in the Gulf of Cádiz. Our results suggest that the Gulf of Cádiz water mass is receiving large amounts of dissolved organic transported by the Guadiana and Guadalquivir rivers and much lesser from Tinto-Odiel. Thus, the estuarine influenced area explained the fDOM variability in the Gulf of Cadiz and this variability was shaped by turbidity, water depth and distance from the coast. Within the estuarine ecosystems, salinity and turbidity were the main factors explaining the fDOM variability. INTRODUCTION Dissolved organic matter (DOM) influences aquatic food webs and controls the availability of dissolved nutrients and metals [1,2]. DOM is also important from regional and global biogeochemical perspectives, as DOM constitutes an important pathway for carbon (C), nitrogen (N), and phosphorus (P) transport from land to sea (Harrison 2005). The quantification of these elements from their sources in the continental shelf has been poorly studied. The Gulf of Cádiz water masses are directly influenced by the three main estuarine systems (Guadiana, Tinto-Odiel and Guadalquivir). Nutrient export to neighbouring coastal waters generates phytoplankton blooms on the shelf [3]. In the Guadalquivir estuary 17% and 83% of the estuarine SPM concentration was organic and inorganic matter, respectively [4]. However, at present we do not know how fDOM varies through the Gulf of Cádiz and how it is interacting with environmental variables. We hypothesise that fDOM spatial variability in the GC is determined by the rivers influence by transport to costal waters. Advanced sensor technology is widely used in aquatic monitoring and research. We used the YSI EXO2 multiparametric sonde provided by six sensors and an integral pressure transducer. Each sensor measures its parameter via a variety of electrochemical, optical, or physical detection methods. We used the capability of water chemistry sensors embedded in this new sensor platform to document spatial variability in the Gulf of Cádiz. This new sensor platform continuously samples the mouth of the three main estuaries and water column in the Gulf of Cádiz MATERIALS AND METHODS Sampling was carried out on board the Ramon Margalef oceanographic vessel during March 2016 (Figure 1). We used a YSI multiparameter sonde (EXO2; Yellow Springs, OH). The EXO2 sonde uses a combination of electrical and optical sensors for specific conductivity, water temperature, pH, dissolved oxygen, turbidity, fluorescent dissolved organic matter (fDOM), chlorophyll-a fluorescence, and phycocyanin fluorescence. Physical parameters of the EXO2 sonde were highly correlated (R=0.8, p<0.01) with the CTD-ADCP. A multivariate approach to spatial analysis among ecosystems (estuaries vs. GC), within ecosystems estuaries and GC (Radials) differences, and depth and coastal influenced area (distance from the main land) differences in the total algae and fDOM was followed using the PRIMER 6.1 (Plymouth 50 (2016) Routines in Multivariate Ecological Research) computer software pack. Multivariate data analysis was carried out by non-metric multidimensional scaling (MDS) ordination with the Euclidian distance similarity. Our physical dataset includes temperature, salinity, dissolved oxygen, turbidity and pH. We used generalised additive models (GAMs) to test the physical factors effects on fDOM. temperature and turbidity in all radials, while depth had a negative effect, reducing fDOM concentration (Fig. 2). In the estuaries, turbidity and salinity were found to have a negative effect (Fig. 3).These results suggest that the estuarine influence from the Guadalquivir and Guadiana estuaries explains the dissolved organic matter variability found in the Gulf of Cádiz. In general, fDOM concentrations are much higher in estuaries than in the open ocean, though concentrations are highly variable (2). Although variations in fDOM are primarily the result of natural processes, human activities such as freshwater discharges and wetland drainage can affect the levels in estuarine systems with carrying out effects on the Gulf of Cádiz. Human transformations of the Tinto-Odiel estuary would explain the high dissimilarity respect to the other two estuaries. These novel observations resulted in highdensity, mesoscale spatial data and revealed unknown variability in physical, chemical, and biological factors. Figure 1. Sampling locations for the different oceanographic cruises. Radials from right to left: TF Trafalgar, SP Sancti Petri, GD Guadalquivir, TO Tinto y Odiel, and GU Guadiana. l Sa We found an expected high dissimilarity among ecosystems in terms of total algae and fDOM concentration (ANOSIM analyses R=0.9, p<0.001). However, among estuarine samples the Tinto-Odiel ones were closer to the Gulf of Cádiz samples (low fDOM values) than the Guadiana and Guadalquivir ones (the highest fDOM values). Among the oceanic samples, the average similarity was low (R=0.49, p<0.001) being this variability explained mainly by the distance from the coastline and the radials (Fig. 2). Most of the differences were found between the station closer to the coastline (Stations 1) and the furthest one (R = 0.6, p< 0.001). tor linear predic RESULTS AND DISCUSSION rio tu a fEs Figure 3. fDOM prediction as a function of salinity in the Guadalquivir (right) and Guadiana (left) estuaries. Tinto-Odiel has not been showed due to the absence of a salinity gradient. ACKNOWLODGEMENTS This work was financed by the MICCIN grants DILEMA (CTM2014-59244-C3-2-R). REFERENCES De pth ictor linear pred fRa dia l Figure 2. fDOM prediction as a function of depth and the radials of the Gulf of Cádiz salinity. Radials from right to left: TF, SP, GD, TO and GU (see legend in the figure 1). Nonparametric models (GAM) were fit to the data to estimate the partial effects of the various covariates on fDOM. In the Gulf of Cádiz, we found positive effects of 1 - Findlay, S. E. G., and R. L. Sinsabaugh (2003), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, 512 pp., Elsevier, New York. 2- Harrison, J.A., N. Caraco, and S. P. Seitzinger (2005), Global patterns and sources of dissolved organic matter export to the coastal zone: Results from a spatially explicit, global model, Global Biogeochem. Cycles, 19, GB4S04. 3- Prieto L, Navarro G, Rodríguez-Gálvez S, Huertas IE, Naranjo JM,Ruiz J (2009) Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula). Cont Shelf Res 29:2122–2137 4 -González-Ortegón E, Drake P. Effects of freshwater inputs on the lower trophic levels of a temperate estuary:physical, physiological or trophic forcing? Aquat Sci 2012;74: 455–69 51 (2016) Quantification of total carbohydrates in microalgae extracts Isabel Guerra1, Idaira Jerez1, Argimiro Rivero1, Milagros Rico1, Miguel Suárez de Tangil1 & Juan Luis Gómez-Pinchetti2 1 Grupo QUIMA- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain. 2 Banco Español de Algas, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain RESUMEN Las microalgas son organismos fotosintéticos con requisitos relativamente simples para el crecimiento y localizadas en hábitats diversos tales como aguas marinas, dulces, salobres, residuales o en el suelo, bajo un amplio rango de temperaturas, pH y disponibilidad de nutrientes. Algunas microalgas presentan un alto contenido en carbohidratos pudiendo tener éstos función biológica estructural (mayoritariamente en forma de celulosa y polisacáridos solubles) o función de almacenamiento (principalmente en forma de almidón). En el desarrollo de la investigación abordada en el presente artículo se analizan 11 cepas de microalgas aportadas por el Banco Español de Algas (BEA). ABSTRACT Microalgae are photosynthetic organisms with relatively simple growth requirements and located in habitats such as seawater, freshwater, brackish waste or on the floor, under a wide range of temperature, pH and nutrients availability. Some microalgae have high carbohydrate content which can have structural biological function (mostly in the form of cellulose and soluble polysaccharides) or storage function (e.g. starch). In the development of the present research, 11 microalgae strains provided by the Spanish Bank Algae (BEA) were analized. INTRODUCCIÓN Las microalgas y las cianobacterias son un conjunto heterogéneo de microorganismos fotosintéticos unicelulares, eucariotas las primeras y procariotas las segundas. Se localizan en hábitats diversos tales como aguas marinas, dulces, salobres, residuales o en el suelo, bajo un amplio rango de temperaturas, pH y disponibilidad de nutrientes; se les considera responsables de la producción del 50% del oxígeno y de la fijación del 50% del carbono en el planeta. Algunas microalgas pueden contener una gran cantidad de carbohidratos acumulados en plastos como materiales de reserva (mayoritariamente en forma de almidón) o como componente principal de la pared celular (en forma de celulosa y polisacáridos solubles) [1]. La acumulación de carbohidratos en microalgas se debe a la fijación del dióxido de carbono durante el proceso fotosintético. La fotosíntesis es un proceso biológico que utiliza ATP/NADPH para fijar y convertir el CO2, capturado desde el aire, produciendo glucosa y otros azúcares a través de una ruta metabólica conocida como el ciclo de Calvin. Los carbohidratos contenidos en microalgas son complejos y consisten en una mezcla de azúcares neutros, amino azúcares y ácidos urónicos cuyas composiciones varían entre especies y condiciones de crecimiento [2]. La caracterización precisa de estos carbohidratos es actualmente uno de los principales obstáculos para el análisis de la composición detallada de las microalgas y de los compuestos que exudan al exterior. Los análisis más comunes de carbohidratos implican un procedimiento de hidrólisis (ácida o alcalina) para romper los polímeros en sus constituyentes monoméricos. En esta investigación, los carbohidratos totales presentes en las muestras de biomasa de alga se cuantifican mediante un método analítico que utiliza antrona en presencia de ácido sulfúrico que reacciona para formar un derivado del furano de color verde (furfural o hidroximetilfurfural). Seguidamente mediante espectrofotometría se determina la concentración de carbohidratos presentes en la muestra ya que ésta es función de la intensidad de color. MATERIAL Y MÉTODOS Se ha dispuesto de 11 cepas diferentes de microalgas y cianobacterias procedentes del Banco Español de Algas (BEA): (1) BEA0536B, Ankistrodesmus sp.; (2) BEA0762B, Phormidiochaete sp.; (3) BEA0854B, Nodularia spumigena; (4) BEA0031B, Chloroidium saccharophilum; (5) BEA0190B, Pseudopediastrum boryanum; (6) BEA0204B, Cosmarium blyttii; (7) BEA0208B, Cosmarium sp.; (8) BEA0659B, Pseudopediastrum boryanum; (9) BEA0666B, Spyrogyra 52 (2016) sp.; (10) BEA0860B, Ochrosphaera verrucosa; (11) BEA0990B, Chloromonas cf, reticulata. Preparación de los extractos de microalgas Se prepararon extractos acuosos mezclando 10 mg de cada microalga previamente liofilizada con 10 mL de agua destilada. Se someten a agitación durante 10 minutos en un agitador magnético y posteriormente se introducen en un equipo de ultrasonidos unos segundos. Tras 5 minutos centrifugando se extrae el sobrenadante y es filtrado con un filtro de jeringa de 0,45 μm. Determinación de carbohidratos extractos. El máximo contenido de carbohidratos se encontró en las cepas Ochrosphaera verrucosa y Nodularia spumigena, siendo la cepa Phormidiochaete sp. la que ofrece menor contenido de carbohidratos. Como conclusión, estos resultados indican que las especies de microalgas analizadas pueden ser utilizadas para la producción de bioetanol por fermentación de carbohidratos y para la generación de biogás a partir de biomasa de microalgas, principalmente las especies Ochrosphaera verrucosa y Nodularia spumigena, que mostraron el mayor contenido de carbohidratos. AGRADECIMIENTOS El contenido de carbohidratos se determinó mediante un método descrito anteriormente que utiliza el reactivo de antrona. Para ello, se preparó el reactivo pesando 0,1 g de antrona y diluyendo con ácido sulfúrico al 98% hasta un volumen de 50 mL. Se introdujo 1 mL de cada extracto de microalga en tubos de ensayo y, a continuación, se añadieron 2 mL del reactivo de antrona previamente preparado. Durante 20 segundos se agitó la mezcla en un equipo de agitación vórtex y, seguidamente, se introdujeron los tubos en un baño de agua fría durante 2 minutos y en un baño a 100°C durante 10 minutos. Finalmente, se dejó atemperar los tubos de ensayo otros 10 minutos en un baño de agua fría y se determinó la absorbancia a una longitud de onda de 625 nm, frente a un blanco preparado con 1 mL de agua destilada y 2 mL de reactivo de antrona tratado de la misma forma. La cantidad de carbohidratos en las muestras analizadas se determinó utilizando como referencia una recta de calibrado obtenida a partir de diferentes patrones de (+D)-Glucosa tratados con el mismo procedimiento descrito previamente para las muestras algales. Los autores desean expresar su agradecimiento al Banco Español de Algas (Taliarte, España) por la colección de cepas que han aportado y que han hecho posible este trabajo. REFERENCIAS 1 – Chun-Yen hen, 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J., 78:1-10. 2 – David W. Templeton, 2012. Separation and quantification of microalgal carbohydrates. J. Chromatogr. A., 1270:225-234. RESULTADOS Y DISCUSIÓN La curva de calibrado fue obtenida para el rango de concentraciones comprendidos entre 5 y 125 mg/L, siendo realizados y analizados todos los patrones por triplicado. Absorbancia 2.000 1.500 y = 0.0139x + 0.0265 R² = 0.9998 1.000 0.500 0.000 0 50 100 150 Concentración (mg/l) Fig. 1. Curva de calibrado (+D)-Glucosa. Sustituyendo los valores de absorbancias obtenidas para los extractos de algas en la ecuación de la recta de calibrado obtenida (y = 0,0139x + 0,0265), se ha cuantificado la cantidad de carbohidratos totales contenidos en dichos 53 (2016) Quantification of phenolic compounds in microalgae Idaira Jerez-Martel1, Sara García-Poza1, Gara Rodríguez-Martel1, Cristina Afonso-Olivares1, Milagros Rico1, Miguel Suárez de Tangil1 & Juan Luis Gómez-Pinchetti2 1 Grupo QUIMA, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain. 2 Banco Español de Algas, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain. ABSTRACT The extracts of several microalgae from the culture collection at the Spanish Bank of Algae (Ankistrodesmus sp., Spirogyra sp., Euglena cf. cantabrica and Caespitella pascheri) were screened for their radical scavenging activity against the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). In addition, their phenolic profiles were determined by using reversed phase high performance liquid chromatography (RP-HPLC), which allowed the identification of 6 phenolic constituents: gallic acid, (+) catechin, (-) epicatechin, syringic acid, protocatechuic acid and chlorogenic acid. Microalgae Euglena cf. cantabrica, Spirogyra sp. and Ankistrodesmus sp. showed the presence of the phenolic compounds, having Euglena cf. cantabrica the highest amount (5.15 mg of gallic acid and 1.26 mg of protocatechuic acid per gram of freeze-dried microalgae). Syringic acid was not detected and (+) catequin, chlorogenic acid and (-) epicatechin were also quantified in Euglena cf. cantabrica (71.4, 77.9 and 7.09 µg per gram of dry material, respectively, two orders of magnitude lower than gallic and protocatechuic acids). Besides, microalgae Euglena cf. cantabrica exerted the highest antioxidant activity, which may be related to the presence of these compounds in high concentrations. INTRODUCTION Primary production is the ultimate source of organic matter in the sea, but living biomass forms less than 1% of total organic carbon in seawater, while more than 90% of organic carbon occurs as non-living dissolved organic carbon. In contrast to the organic reservoirs on land, the processes by which dissolved organic matter (DOM) has been formed are unclear, and actual sources and the chemical nature of DOM are not well known [1]. DOM has various functions and plays important roles in chemical, biological and even physical oceanography. Despite DOM composition strongly influences its role in the environment, DOM characterization is still not routinely included in many biogeochemical studies. DOM interacts with trace metals and controls their dynamics. Wells et al. [2] demonstrated that diatoms of the genus Pseudo-nitzschia have adapted to iron limitation through the production of a strong iron-complexing organic ligand, domoic acid. The influences of Cu(II) and Fe(III) metals on the cells and exudate of phenolic profiles of the green microalgae Dunaliella tertiolecta and diatom Phaeodactylum tricornutum have been demonstrated in our previously reported studies focused on the implications of polyphenols in microalgae growing under metal stress [3, 4]. Cells exposed to copper excreted a larger amount of polyphenols as a protective mechanism to alleviate the toxicity of copper in the solution. These phenolic compounds are implicated countering metal toxicity at the membrane surface and slowing down the toxicity of metals in the extra-cellular media. In addition, phenolic compounds exuded from microalgae, such as sinapic acid and (+) catechin, have an influence in iron redox chemistry by favouring the persistence of Fe(II) for their requirements [5]. Despite the important role of phenolic compounds, few reports have focused on the identification and quantification of polyphenols in microalgae [3,4,5]. The main objective of this work was to identify and quantify the following 6 phenolic compounds in microalgae extracts: gallic acid (GA), (+) catechin (C), (-) epicatechin (E), syringic acid (SA), protocatechuic acid (PA) and chlorogenic acid (CA). Microalgae strains, bioprospected at the Canarian region and deposited at the culture collection of the Spanish Bank of Algae (Taliarte, Spain), were: Ankistrodesmus sp., Spirogyra sp., Euglena cf. cantabrica and Caespitella pascheri. The antioxidant activities of extracts were also determined with regard to their potential application for particular food and pharmaceutical purposes. The increased demand for healthy foods could find a nontraditional ally in microalgae. 54 (2016) MATERIAL AND METHODS Microalgae strains were provided by the Spanish Bank of Algae (Taliarte, Spain). Chromatographic analysis was performed on a Liquid Chromatography Varian system equipped with a diode array detector (DAD) and connected to a Star software. The Radical Scavenging Activity (RSA) was determined by measuring the loss of DPPH color at 515 nm after reaction with the samples. RESULTS AND DISCUSSION Yields of several microalgae extractions were evaluated and the results are presented in Figure 1. Increasing extraction efficiency was found when water was used as extracting solvent with two exceptions: Euglena cf. cantabrica and Caespitella pascheri, which showed higher yield of extraction by using methanol. The highest yields were found in microalgae Euglena cf. cantabrica (57.9%). 80 60 40 Methanol 57.9 25.7 20 0 Euglena cf. cantabrica Water 30.2 16.3 13.7 12.8 13.2 Caespitella pascheri Spirogyra sp. 18.3 Ankistrodesmus sp. Fig 1. Yield of extractions expressed as a percentage by weight of the freeze-dried starting material. The strongest DPPH radical scavenging capacity was associated to Euglena cf. cantabrica extracts (100% inhibition) with a half-life (t1/2 = time required for reducing initial concentration of DPPH by 50%) lower than 2.1 seconds, followed by methanol extract of Spirogyra sp. (61.6%) with a t1/2 of 202 seconds (when the extracts were prepared by mixing 10 mg of microalgae biomass per mL). At the same proportion of 1 mg mL-1, Euglena cf. cantabrica gave higher activity (71%) in inhibiting DPPH radical than BHT (26%) and lower activity and t1/2 (4 seconds) than BHA (91% with a t1/2 of 130 seconds), being BHA and BHT synthetic preservatives commonly used in the food industry. The presence of polyphenols in the extracts was confirmed by comparing retention times and overlapping UV spectra with those of the standard compounds. Among all tested algae, Caespitella pascheri did not provide polyphenols. However, GA was identified in Spirogyra sp. and PA was detected in Ankistrodesmus sp. Microalgae Euglena cf. cantabrica showed much higher amounts of GA and PA in comparison with the other microalgae in the present study (5.15 and 1.26 mg per gram of freeze-dried material, respectively) and also presented relevant quantities of C, CA and E. As a conclusion, a selected group of phenolic compounds was detected in several microalgae strains and may be involved in microalgae cellular response to ROS, being potential components of DOM. ACKNOWLEDGMENTS The authors would like to express their gratitude to José Juan Santana Rodríguez for allowing the use of the HPLC equipment and to the Spanish Bank of Algae for providing microalgae strains. This research was supported by the sponsors “Familia Megías Martínez” and “Satocán Group” (Innova Program 2020 - Fundación Universitaria de Las Palmas). REFERENCES 1 - Ogawa H & Tanoue E, 2003. Dissolved Organic Matter in Oceanic Waters. J. Oceanogr., 59:129-147. 2 - Wells ML, Trick CG, Cochlan WP, Hughes MP & Trainer VL, 2005. Domoic acid: The synergy of iron, copper, and the toxicity of diatoms. Limnol. Oceanogr., 50(6):1908-1917. 3 - López A, Rico M, Santana-Casiano JM, GonzálezDávila M & González AG, 2015. Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ. Sci. Pollut. Res., 22:14820–14828. 4 - Rico M, López A, Santana-Casiano JM, González AG & González-Dávila M, 2013. Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol. Oceanogr., 58(1):144-152. 5 - Santana-Casiano JM, González-Dávila M, González AG, Rico M, López A & Martel A, 2014. Characterization of polyphenol exudates from Phaeodactylum tricornutum and their effects on the chemistry of Fe(II)-Fe(III). Mar. Chem., 158:10-16. 55 (2016) Estacionalidad de los flujos de CO2 agua -atmósfera en el Golfo de Cádiz (2014-2015) D. Jiménez-López1, S. Garrido1, N. Hernández-Poyuelo1, A. Sierra1, T. Ortega1, R. Ponce1, M.J. Bellanco2, R. Sánchez-Leal2, A. Gómez-Parra1 y J. Forja1, * 1 Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 – Puerto Real, Cádiz (España). 2 Instituto Español de Oceanografía. Centro Oceanográfico de Cádiz. Puerto Pesquero, Muelle de Levante s/n. Apdo. 2609. E11006, Cádiz (España). *Correo del autor: [email protected] RESUMEN Se presentan las variaciones espacio-temporales de la presión parcial de CO2 en la zona nororiental de la plataforma continental del Golfo de Cádiz. La base de datos corresponde a un total de 6 campañas oceanográficas realizadas en 2014 y 2015. Los valores medios de pCO2 presentan importantes variaciones estacionales, con intervalos comprendidos entre 340 – 380 µatm en invierno y primavera, y 425 – 445 µatm en situaciones de verano y otoño. Las distribuciones de pCO2 no son homogéneas, presentando generalmente una disminución con la distancia a la costa, así como asociados a eventos de elevada producción primaria (elevadas concentraciones de clorofila y utilizaciones aparentes de oxígeno negativas). Los flujos con la atmósfera presentar valores negativos durante el invierno y primavera, y positivos en verano y otoño, con un valor medio anual de -0.6 mmol m-2 d-1. Por tanto, el Golfo de Cádiz en su conjunto actúa como un sumidero de CO2, con una capacidad de captación de 9.6⋅108 mol año-1. INTRODUCCIÓN Los océanos en su conjunto regulan el clima del Planeta mediante un intercambio continuo de calor y gases de efecto invernadero con la atmósfera [1]. De esta forma, se estima que los océanos en su conjunto son capaces de captar aproximadamente el 40 % de las emisiones antropogénicas de CO2 a la atmósfera ([2], [3]). Sin embargo, existe un intenso debate científico del papel que desempeña los márgenes continentales en el ciclo global del carbono, en gran parte debido en la definición de sus límites. Como zona de transición entre los sistemas costeros y los océanos, el intercambio de CO2 con la atmósfera se encuentra condicionado por la distancia a costa. De esta forma, la zona costera actúa generalmente como fuente de CO2 a la atmósfera, mientras que las plataformas continentales constituyen un sumidero de CO2 atmosférico, con una capacidad de captación de 0.3 - 0.4 Pg C año-1, lo que supone aproximadamente un 30% la captación de CO2 por el océano global [4]). Existen pocos estudios sobre la variabilidad de los flujos de CO2 agua-atmósfera en el Golfo de Cádiz. Ribas et al. [5] destacan la dependencia de sus valores con la distancia a costa, de forma que en las zonas más someras, debido a los aportes fluviales y a la intensificación de los procesos de mineralización de la materia orgánica en lo sedimentos, actúan como una fuente de CO2. Por otra parte, los flujos de CO2 agua-atmósfera en la zona estudiada presenta una intensa variación estacional, de forma que durante los meses de Noviembre a Marzo actúa como un sumidero de CO2, y en los meses de verano como una fuente. El balance neto del intercambio de CO2 para todo el año muestra que la zona nororiental del Golfo de Cádiz actúa como un sumidero de CO2 atmosférico, con un flujo medio de -0,2 mmol m-2 día-1. Adicionalmente, De la Paz et al. [6] describen los elevados valores de pCO2 que se detectan en la desembocadura del Guadalquivir, que actúa como una fuente de CO2 a la atmósfera, con flujos medios de 85 mmol m-2 día-1. MATERIAL Y MÉTODOS Las campañas se realizaron a bordo de los B/O Ángeles Alvariño y Ramón Margalef al comienzo de las estaciones climatológicas comprendidas entre primavera de 2004 y verano de 2005. La presión parcial de CO2 se ha registrado on line mediante un sistema conectado a la toma de agua del continuo del barco y que está provisto de un equilibrador mixto (tipo burbuja” y “flujo laminar y un IRGA (LI-Cor 6262). Se ha integrado en la base de datos la información del termosalinógrafo y la estación meteorológica del barco. Adicionalmente se han tomado muestras discretas de las aguas superficiales para la cuantificación de oxígeno, pH, 56 (2016) alcalinidad total, clorofila y nutrientes. Estas variables, que permiten una mejor interpretación de la influencia de los procesos biológicos sobre los valores de pCO2, se han determinado utilizando los métodos habituales en oceanografía. RESULTADOS Y DISCUSIÓN En la figura 1 se muestra las variaciones típicas de pCO2 encontradas en las aguas superficiales. En general se observa como en las estaciones más cálidas (verano y otoño) presentan valores entre 70 y 90 µatm superiores a los encontrados en invierno y primavera, así como un aumento con la cercanía a costa. Tabla 1. Valores medios de temperatura, pCO2, velocidad de viento (V) y flujo de CO2 agua-atmósfera (valor negativo indicada captación y positivo emisión). Mar 2004 Jun 2004 Oct 2004 Dic 2004 Mar 2005 Jun 2005 t (°C) 15.5 21.1 21.7 18.2 15.7 20.9 pCO2 (µatm) 393.4 410.7 408.6 381.6 364.4 400.2 V (m s-1) 7.0 6.1 6.3 7.3 4.7 6.9 Flujo (mmol m-2 s-1) - 0.4 1.1 1.0 - 2.5 - 2.8 0.1 El flujo medio para el periodo de tiempo estudiado es -0.6 mmol m-2 d-1, y por tanto, el Golfo de Cádiz actúa como un sumidero de CO2, con una capacidad de captación aproximada de 9.6⋅108 mol año-1 si se considera una superficie estudiada de 4380 km2. AGRADECIMIENTOS Este trabajo ha sido financiado por los proyectos STOCA (Instituto Español de Oceanografía) y CTM2014-59244C3. REFERENCIAS Fig. 1. Variaciones de pCO2 (µatm) en el Golfo de Cádiz correspondientes a las campañas de diciembre de 2014 y junio de 2015 En la tabla 1, donde se presentan los valores medios de pCO2, velocidad de viento y flujo con la atmósfera para cada campaña, puede apreciarse esta evolución estacional. Cabe destacar la elevada temperatura media registrada en octubre de 2004, superior incluso a las encontradas en verano, así como la anomalía térmica de la campaña realizada en invierno de 2004. Existe una cierta correlación lineal entre los valores medios de pCO2 y la temperatura (r2 = 0.64), así como evidencias locales de la influencia de procesos biológicos sobre pCO2. De esta forma, mínimos relativos de pCO2 se ha asociado a altas concentración de clorofila, pH elevados o valores negativos de la utilización aparente de oxígeno, fundamentalmente en la zona afectada por la descarga de nutrientes del Guadalquivir. Takahashi et al. [7] propone un algoritmo para evaluar la importancia relativa de los procesos térmicos y biológicos sobre los valores de pCO2. Para el conjunto de valores medios se obtiene un T/B de 1.12, indicando que son fundamentalmente los procesos térmicos los responsables d de la variación de pCO2 en el Golfo de Cádiz. 1 - Sarmiento, J. L. y Gruber, N. 2006. Ocean Biogeochemical Dynamics. Princeton University Press, 528 pp. 2 - Tans, P.P., Fung, I.Y. y Takahashi, T., 1990. Observational constraints on the global atmospheric CO2 budget. Science, 247: 1431-1438. 3 - Broecker, W.S. y Peng, T.H., 1992. Interhemispheric transport of carbon dioxide by ocean circulation. Nature, 356: 587-589. 4 - Chen, C.T.A., y Borges, A.V., 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep sea Research Part II: Topical Studies in Oceanography, 56(8-10): 578-590. 5 - Ribas, M., Gómez-Parra, A. y Forja, J.M. 2011. Air-sea CO2 fluxes in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Mar. Chem 123 (1–4): 5666. 6 - De la Paz, M., Gómez-Parra, A., Forja, J.M., 2007. Inorganic carbon dynamic and air-water CO2 exchange in the Guadalquivir Estuary (SW Iberian Peninsula). Journal of Marine Systems, 66(1-2): 265-277. 7 - Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A.,Metzl, N., Tilbrook, B., Bates, N.,Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J., Nojiri, Y., 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep‐Sea Research II 49, 1601–1622. 57 (2016) Influencia de los aportes costeros en la dinámica del CH4 en el Golfo de Cádiz D. Jiménez-López1, *, A. Sierra1, T. Ortega1, R. Ponce1, M.J. Bellanco2, R. Sánchez-Leal2, A. Gómez-Parra1 y J. Forja1 1 Dpto. Química-Física. CACYTMAR.Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 – Puerto Real, Cádiz, Andalucía, España. 2 Instituto Español de Oceanografía. Centro Oceanográfico de Cádiz. Puerto Pesquero, Muelle de Levante s/n. Apdo. 2609. E11006, Cádiz (España). *Correo del autor: [email protected] RESUMEN Se han realizado muestreos en el Golfo de Cádiz durante 2014 y 2015 en los que se ha determinado la concentración de CH4 lo largo de varias secciones: Guadalquivir, Sancti Petri y Trafalgar. El CH4 se ha medido utilizando un cromatógrafo de gases. Se ha observado un aumento de CH4 en zonas profundas como consecuencia de las características hidrodinámicas de la zona, así como por los procesos de remineralización bentónica ocurridos en el sedimento. Las concentraciones más elevadas se han detectado cerca de costa debido a los aportes continentales. Los mayores flujos a la atmósfera se han estimado en los meses estivales debido a las altas temperaturas alcanzadas durante esas campañas. Toda la zona estudiada se comporta como una fuente de CH4 a la atmósfera, con emisiones globales de 0,61 y 0,75 Gg CH4 año-1 en 2014 y 2015 respectivamente. INTRODUCCIÓN El metano es responsable de aproximadamente el 20% del efecto invernadero, con un efecto 25 veces mayor que el CO2. Dicho gas tiene origen natural (ej. los humedales) y antropogénico (ej. agricultura), siendo este segundo origen responsable de más de la mitad de las emisiones actuales de CH4 [1]. El CH4 se forma durante la descomposición de la materia orgánica mediante el proceso anaeróbico de la metanogénesis. Las principales reacciones de metanogénesis son la fermentación de la materia orgánica y la reducción del CO2 [2]. Además, el metano en el medio marino puede tener un origen no biogénico ya sea por la filtración de CH4 termogénico, mediante estructuras geológicas como los volcanes de fango o mediante la disolución de hidratos de gas [3]. MATERIAL Y MÉTODOS El muestreo se realizó en la parte oriental del Golfo de Cádiz, situado al suroeste de la península Ibérica. La circulación en el Golfo de Cádiz se encuentra dominada por el intercambio de masas de aguas del Atlántico y el Mediterráneo a través del Estrecho de Gibraltar. Además del flujo de agua Mediterránea, el golfo de Cádiz recibe considerables aportes de ríos que desembocan en la cuenca, como el Guadalquivir. Las muestras se recogieron en tres transectos perpendiculares a costa a diferentes profundidades (Fig. 1), durante las campañas STOCA 2014 y 2015 correspondientes a las cuatro estaciones del año, a bordo de los buques Ángeles Alvariño y Ramón Margalef. Fig. 1. Transectos de la zona de estudio: Guadalquivir (GD), Sancti Petri (SP) y Trafalgar (TF). Para el análisis de CH4, las muestras se tomaron por duplicado en frascos Winkler de 250 mL, se fijaron con HgCl2 para inhibir procesos microbiológicos, y se sellaron con grasa Apiezon® para prevenir el intercambio gaseoso con la atmósfera. Las medidas de CH4 disuelto se realizaron utilizando un cromatógrafo de gases Bruker® GC-450 provisto de un detector de ionización de llama, tomando unos 25 g (±0,01 g) de la muestra mediante el uso de una jeringa de cristal (Agilent P/N 5190-1547) y 25 mL de un gas patrón de concentración conocida (1800 ppbv). Esta operación se realizó por duplicado para cada frasco Winkler. Tras esto, se agita la jeringa durante 5 minutos (VIBROMATIC Selecta) y se deja reposar para alcanzar una situación de equilibrio. Por último, el gas es inyectado en el cromatógrafo de gases. La concentración de gases en el agua se calculó a través de las medidas realizadas sobre el espacio de cabeza de las 58 (2016) muestras, usando las solubilidades propuestas por Wiesenburg & Guinasso (1979) [4]. Para la estimación de los flujos de gases en la interfase atmósfera-océano en la zona de estudio se utilizó la siguiente expresión: F = k(CW – C*) -1 donde k (cm h ) es la velocidad de transferencia del gas, Cw (mol L-1) es la concentración del gas en el agua, y C* (mol L-1) es la solubilidad del gas a la temperatura de equilibración (25 ± 1 °C) y a la salinidad de la muestra. Un flujo positivo indica transferencia del gas del agua a la atmósfera RESULTADOS Y DISCUSIÓN Las concentraciones medidas en este estudio presentan variabilidad estacional, con valores medios más elevados durante otoño (12,53 ± 1,84 nM) y más bajos en primavera (8,08 ± 0,66 nM). Estos valores son más elevados que los encontrados por Ferrón et al (2010) [5] en aguas del Golfo de Cádiz durante estas estaciones del año. En todas las estaciones estudiadas, las aguas superficiales se encuentran sobresaturadas de CH4. Los valores coindicen con concentraciones de CH4 obtenidas en el estuario de Changjiang y su área marina adyacente [6]. Sin embargo, son superiores a los datos encontrados en zonas oceánicas [7]. En los transectos de Guadalquivir y Sancti Petri se observa claramente que los valores más elevados están asociados a aguas costeras, con valores máximos que varían entre 10,00 y 19,65 nM en Guadalquivir en las diferentes estaciones del año, y valores entre 10,82 y 20,22 nM en Sancti Petri dependiendo de la campaña. En el transecto de Trafalgar también se encuentran altos valores en el fondo de las estaciones más costeras, con concentraciones que varían entre 10,08 y 17,36 nM. Las plataformas continentales y los estuarios son los responsables de aproximadamente el 75% de las emisiones globales oceánicas de CH4 [8], en concordancia con las mayores concentraciones de CH4 medidas en este estudio en las zonas más costeras. De hecho, la zona costera de las secciones de Guadalquivir y Sancti Petri reciben aportes de materia orgánica provenientes del río Guadalquivir en el primer caso, y de la red de caños y marismas en el caso de Sancti Petri, incorporándose una parte importante de esta materia orgánica a los sedimentos. Por tanto, los altos valores de CH4 encontrados en el fondo se deben a la metanogénesis producida en el sedimento (Fig. 2). Fig. 2. Transecto de Sancti Petri durante junio de 2015. Al igual que las concentraciones de CH4, los flujos de este gas presentan variabilidad estacional, encontrándose, en general, los valores más elevados en otoño y verano, y los más bajos a comienzos de primavera, donde se registraron las temperaturas más bajas. Los flujos de CH4 máximos se deben a las elevadas temperaturas medidas durante las campañas estivales, lo que afecta a la transferencia del gas a la atmósfera al disminuir su solubilidad. Los flujos medios de CH4 son positivos, es decir, el Golfo de Cádiz actúa como fuente de estos gases a la atmósfera. Las emisiones globales del sistema son de 0,61 y 0,75 Gg CH4 año-1 en 2014 y 2015 respectivamente para el área de estudio (43,83 x 102 Km2). Este valor es superior al calculado por Ferrón et al (2010) [5], 0,08 Gg año-1 aunque para una superficie menor del Golfo de Cádiz (15,86 x 102 Km2). AGRADECIMIENTOS Este trabajo ha sido financiado por los proyectos STOCA (Instituto Español de Oceanografía) y CTM2014-59244C3. REFERENCIAS 1 - Intergovernmental Panel of Climate Change (IPCC), 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 2 - Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107(2): 486-513. 3 - Judd, A. G., Hovland, M., Dimitrov, L. I., Garcia Gil, S., & Jukes, V., 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2(2): 109-126. 4 - Wiesenburg, D. A., & Guinasso Jr, N. L., 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. Journal of Chemical and Engineering Data, 24(4): 356-360. 5 - Ferrón, S., Ortega, T., & Forja, J. M., 2010. Temporal and spatial variability of methane in the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula). Journal of Sea Research, 64(3): 213-223. 6 - Zhang, G., Zhang, J., Liu, S., Ren, J., Xu, J., & Zhang, F., 2008. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry, 91(1): 71-84. 7 - Forster, G., Upstill-Goddard, R. C., Gist, N., Robinson, C., Uher, G., & Woodward, E. M. S., 2009. Nitrous oxide and methane in the Atlantic Ocean between 50 N and 52 S: Latitudinal distribution and sea-to-air flux. Deep Sea Research Part II: Topical Studies in Oceanography, 56(15): 964-976. 8 - Bange, H. W., Bartell, U. H., Rapsomanikis, S., & Andreae, M. O., 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochemical Cycles, 8(4): 465-480. 59 (2016) ¿Es el análisis de agua adecuado para el estudio de contaminantes orgánicos en áreas costeras como el Mar Menor? Víctor M. León1, Rubén Moreno-González1 & Juan A. Campillo1 1 Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, C/ Varadero 1, San Pedro del Pinatar, 30740 Murcia, Spain. RESUMEN En este trabajo se analiza la presencia y distribución de contaminantes orgánicos regulados y de interés emergente en agua de mar del Mar Menor y se evalua su variabilidad diaria y estacional en puntos con distinto grado de exposición a los principales focos de contaminación. Este estudio revela la gran variabilidad temporal de la concentración de contaminantes orgánicos en esta matriz (pesticidas, PAHs, fármacos, etc.). Por tanto se evidencia que un análisis puntual de agua de mar no es representativo para la evaluación de contaminantes orgánicos hidrofóbicos en el medio, siendo necesario un muestreo intensivo o bien el uso de muestras que integren la contaminación en un periodo de tiempo (sedimento, biota o muestreadores pasivos). Estos resultados evidencian la necesidad de desarrollar criterios ambientales de referencia para estas matrices, más que para la matriz agua como se ha hecho hasta ahora a nivel europeo en la Directiva Marco de Agua. También se han detectado variaciones estacionales para estos compuestos en agua de mar, sedimento y biota, evidenciando la capacidad de las altas temperaturas y la irradiación solar en el Mar Menor de reducir la carga de algunos contaminantes en verano seguramente por procesos de degradación y/o volatilización. Además, se han observado diferentes patrones de bioacumulación de algunos contaminantes orgánicos en moluscos y peces debido a factores ambientales, fisiológicos y de comportamiento, lo que hace necesario identificar las especies más adecuadas para el seguimiento de cada grupo de contaminantes en zonas costeras. INTRODUCCIÓN Las actividades humanas se concentran en las áreas costeras que reciben descargas directas e indirectas de contaminantes orgánicos, incluyendo hidrocarburos aromáticos policíclicos, pesticidas, fármacos, tensioactivos, productos de cuidado e higiene personal, etc. La evaluación del estado del medio marino requiere del análisis de la presencia, distribución y efectos de estos contaminantes, para lo que es necesario disponer de muestras representativas del medio. Muchos de estos contaminantes tienden a adsorberse sobre el material particulado con el que entran en contacto que tiende a depositarse en el sedimento o bien entrar en la cadena trófica. Por ello las matrices recomendadas por los convenios internacionales (OSPAR, MED POL, etc.) para el seguimiento de los contaminantes tradicionales como PAHs, contaminantes organoclorados y metales traza incluyen el sedimento y la biota. Sin embargo, en la legislación europea la matriz preferente de referencia es el agua en ámbito continental y marino (Directiva Marco de Agua), aunque la mayoría de los contaminantes incluidos en la legislación tienen un comportamiento eminentemente hidrofóbico y tiene una baja solubilidad. Por ello es necesario poner en evidencia qué información ofrece el análisis de una muestra de agua y cuáles son las alternativas que existen y que comúnmente aplican los expertos en la materia. Las presiones e impactos de las actividades humanas son especialmente relevantes en áreas someras con una capacidad limitada de dilución como es el caso de las lagunas costeras. Estos sistemas presentan además variaciones estacionales de las condiciones fisicoquímicas y actividades humanas significativas, que deben ser consideradas cuando se pretende evaluar su impacto en el medio marino a través de programas de seguimiento de la contaminación química. En este estudio se caracteriza la variabilidad diaria y estacional de contaminantes orgánicos regulados y de interés emergente en agua de mar en puntos de muestreo sometidos a distintos grados de contaminación química. Los grupos de contaminantes orgánicos incluidos en este trabajo han sido pesticidas organoclorados y de uso actual, PAHs, bifenilos policlorados y fármacos, analizándose en total más de 150 analitos. También se ha estudiado su distribución estacional en agua, sedimento y biota del Mar Menor con el objetivo de identificar la matriz o matrices más adecuadas para cada grupo de contaminantes estudiados. MATERIAL Y MÉTODOS Se han tomado muestras de agua de mar en 32 puntos cada tres meses durante dos años (Figura 1) y en 19 puntos de ellos también de sedimentos con periodicidad semestral. En algunos puntos del principal aporte superficial (La rambla del Albujón) y en la propia laguna se realizó un muestreo diario de agua, para evaluar la representatividad de una muestra puntual. 60 (2016) 200 Cage S3: 0.5 km El Albujón w. Chlorpyrifos Terbuthylazine Concentration (ng L-1) Además, se tomaron muestras de biota en primavera y otoño de 2010 en 9 áreas de distintos puntos de la laguna, incluyendo varias especies de moluscos y peces. Por último se trasplantaron almejas a distintos puntos de la laguna para evaluar la bioacumulación de contaminantes y los efectos biológicos que estos puedan ocasionarles. Propyzamide 150 Tributhylphosphate 100 50 0 0 Agua Sedimento+ agua Fig. 1. Distribución de los puntos de muestreo. El análisis de diferentes grupos de contaminantes orgánicos y matrices ha requerido de la aplicación de procedimientos específicos según el caso. El análisis de PAHs, compuestos organoclorados y pesticidas de uso actual en agua superficial y agua de mar se ha realizado mediante extracción con barras magnéticas recubiertas de polidimetilsiloxano que son desorbidas térmicamente sobre un cromatógrafo de gases con detección mediante espectrometría de masas [1,2]. Sin embargo en el caso de las muestras de fármacos se aplicó la cromatografía líquida de ultra alta resolución y detección de espectrometría de masas utilizando un pretratamiento específico para agua, sedimento [3] y biota [4]. Por último, los PAHs y compuestos organoclorados se extrajeron del sedimento y biota mediante extracción Soxhlet, posterior purificación por extracción en fase sólida y análisis por técnicas cromatográficas específicas [5,6]. RESULTADOS Y DISCUSIÓN La variación diaria y semanal es muy acusada para los contaminantes orgánicos considerados en este estudio, tanto en la desembocadura de la rambla del Albujón como en la propia laguna. Como ejemplo de esta variabilidad se muestra en la Fig. 2 la evolución de la concentración de varios plaguicidas y el tributilfosfato. Estos resultados evidencian que una muestra puntual de agua no es representativa del medio para contaminantes con cierto carácter hidrofóbico, siendo necesaria una serie temporal 50 100 Time (h) 150 200 más amplia para obtener datos ambientalmente relevantes que nos den una visión de lo que ocurre realmente en esta matriz. Fig. 2. Variación de concentraciones de contaminantes en agua en un punto próximo a la desembocadura de la rambla del Albujón. Así como alternativa se deben utilizar muestras integradoras de la contaminación, como la biota, el sedimento o los muestreadores pasivos que ofrecen un valor integrador de la carga contaminante a la que han estado expuestos. Se han observado diferentes patrones de bioacumulación de algunos contaminantes orgánicos en moluscos y peces debido a factores ambientales, fisiolóficos y de comportamiento, siendo necesario identificar y utilizar las especies más adecuadas para el seguimiento de cada grupo de contaminantes en zonas costeras. Por ello, se confirma la necesidad de seleccionar las especies más adecuadas para el seguimiento de la contaminación de acuerdo con las características de cada grupo de contaminantes (especialmente los de interés emergente). Por tanto es fundamental la revisión de los indicadores y criterios ambientales que proponen las directivas europeas para la evaluación de la calidad del medio marino, ya que básicamente proponen concentraciones de referencia en agua, siendo necesarios valores específicos para matrices ambientales más adecuadas como el sedimento o la biota. AGRADECIMIENTOS This work was supported by the Spanish Inter-Ministerial Science and Technology Commission through the ‘IMPACTA’ project (CICYT, CTM2013-48194-C3-1-R) and the DECOMAR project (CTM2008-01832), the Seneca Foundation (Region of Murcia, Spain) through the ‘BIOMARO’ project (15398/PI/10), and by the European Union through the European Regional Development Fund (ERDF). REFERENCIAS 1 - Moreno-González R, Campillo JA, García V & León, VM, 2013. Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere, 92: 247-257. 2 - Moreno-González, R., Campillo, J.A., León, V.M., 2013. Influence of an intensive agricultural drainage basin on the seasonal of organic pollutants in seawater from a Mediterranean coastal lagoon (Mar Menor, SE Spain). Mar. Pollut. Bullet,. 77: 400–411. 3 - Gros M, Rodríguez-Mozaz S, Barceló D, 2012. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupolelinear ion trap tandem mass spectrometry. J Chromatogr. A, 22: 1-33. 4 - Huerta B, Jakimska A, Gros M, Rodriguez-Mozaz S & Barcelo D, 2013 Analysis of multi-class pharmaceuticals in fish tissues by ultra-highperformance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1288: 63- 72. 61 (2016) 5 - Fernández B, Campillo JA, Martínez-Gómez C, Benedicto J, 2010. Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast. Aquat. Toxicol., 99: 186–197. 6 - León VM, García I, Martínez-Gómez C, Campillo JA, Benedicto ,. 2014. Heterogeneous distribution of polycyclic aromatic hydrocarbons in surface sediments and red mullet along the Spanish Mediterranean coast. Mar Pollut Bull 87:352-363. 62 (2016) The vertical distribution of dissolved platinum in the West Atlantic Ocean: evidence for a non-conservative behaviour Daniel E. López-Sánchez1, Antonio Cobelo-García2 1 2 Universidad de Cádiz Instituto de Investigacións Mariñas de Vigo (IIM-CSIC) ABSTRACT Dissolved Pt was analyzed in three depth profiles from the Western Atlantic Ocean (WAO) in the context the Meridional Overturning Circulation (MOC). Samples were collected during the Dutch GAO2 GEOTRACES cruise onboard the R/V Pelagia in 2011. One of the stations was located in the North Atlantic -39.399°W 47.801° N, the second in the Central Atlantic -40.8835° W, 7.7664° N and the last in the South Atlantic -39.4425° W, 35.00835° S. We found important contribution of the water mass system over our profiles, the north profiles is influenced mostly by the North Atlantic Depth Water (NADW), the second profile had influenced by the Antarctic Intermediate Water (AAIW) and upper Circumpolar Deep Water (uCDW) and North Atlantic Deep Water (NADW). Finally the third profile is affected similarly by the same water mass as the second profile, but additionally we found the presence of the Antarctic Bottom Water (AABW). Dissolved Pt concentrations observed in this study ranged from 0.11 to 0.37 pM, with an average value of 0.26 ± 0.06 pM (mean ± 1 SD; n=59). Depth profiles showed a non-conservative behavior, in contrast with the only previous studies in the Atlantic waters which were reported more than two decades ago. Possible causes for these discrepancies are discussed. INTRODUCTIÓN Platinum is a highly siderophile metal and, as such, is one of the least abundant elements at the Earth’s surface with a typical crustal abundance of 0.5 ng g-1 [1]. In natural waters, dissolved Pt typically displays picomolar and subpicomolar concentrations [1]. Current interest on the investigation of the environmental Pt geochemistry relies on the fact that its cycle at the Earth’s surface is greatly impacted by anthropogenic activities, amounting up to, at least, 80% of its total mobilization. Among these activities, the use of Pt in automotive catalytic converters has been identified as the major source of anthropogenic Pt released into the environment; accordingly, elevated Pt concentrations have been extensively reported in areas close to vehicular traffic [1] but also evidence for a global Pt environmental disturbance has been given [2]. Oceanic profiles of dissolved Pt have been reported for the Pacific [3], Indian [4] and Atlantic [5] oceans, with concentrations ranging from 0.2 to 1.6 pM. In these studies, concentrations invariant with depth in the North Atlantic [5] were reported; a scavenged-type profile in the Indian Ocean [4] was observed, whereas for the Pacific the available studies show discrepant behavior: recycled-type [3] and conservative [6]. The behavior of platinum derived from these studies is not oceanographically consistent with respect to their basin-to-basin variation, suggesting the possibility of error in some of the data. In order to shed further light on the oceanic behaviour of Pt, three vertical profiles were analysed in the West Atlantic waters within the framework of the international GEOTRACES program. MATERIAL AND METHODS The three profiles for dissolved Platinum (PtD) covered the West Atlantic Ocean. Samples were collected during the GEOTRACES GA02 transect from Iceland to Punta Arenas (Chile). Samples were taken using 24 trace-metal clean 24-L PVDF bottles mounted on a titanium frame with a SEABIRD 911 CTD system and deployed with a Kevlar hydrowire [7]. The complete ‘‘ultraclean CTD’’ was immediately placed in an ISO Class 6 clean room container, where samples for dissolved metals were filtered directly from the PVDF samplers using 0.2 µm cartridges. Samples were acidified to pH 1 using ultrapure HCl (Seastar Chemicals). All sample processing for Pt determination was carried out in a laminar flow bench (ISO-5) housed inside an ISO-7 lab. Dissolved Pt was analyzed by means of catalytic adsorptive cathodic stripping voltammetry (Cat-AdCSV), using the procedure described in [1]. Briefly, acidified (pH 1; HCl, Merck Suprapur®) samples were UV-digested in quartz tubes with PTFE caps using a 125-W high-pressure mercury lamp for 2 hours. After digestion, sulphuric acid (final concentration 0.5 M; Trace Select, Fluka), formaldehyde (final concentration 3.5 mM; Riedel-de-Haen) and hydrazine sulfate (final concentration 0.45 mM; Fluka) were added. Samples were then transferred to a PTFE voltammetric cell and a deposition potential of − 0.3 V (vs. Ag/AgCl) was applied for 10–20 min depending on platinum concentrations. After a quiescence of 10 s, the 63 (2016) RESULTS AND DISCUSSION Dissolved Pt concentrations observed in this study ranged from 0.11 to 0.37 pM, with an average value of 0.26 ± 0.06 pM (mean ± 1 SD; n=59). Concentrations at stations Leg1 and Leg2 (Figure 1) were almost identical, with values of 0.23 ± 0.05 pM (0.12-0.30 pM; n=18) and 0.22 ± 0.05 pM (0.11-0.32 pM; n=17) respectively, whereas for Leg3 values were significantly (two-tailed P<0.0001) higher: 0.31 ± 0.03 pM (0.25-0.37 pM; n=24). These values are in close agreement with the only dataset to date in the Atlantic Ocean [5], which reported concentrations of 0.26 ± 0.08 pM (0.14-0.39 pM; n=19) in the water column near Bermuda (32°10’N, 64°30’W) and 0.30 ± 0.07 pM (0.110.41 pM; n=17) near Azores (26°20’N, 33°40’W). Recently an oceanic residence time for Pt of 2.4 ± 1.0 104 years was estimated [8], i.e. lower than the long residence times (>105 years) typical of conservative elements but within the typical range of recycled elements (103-105 years), and higher than for scavenged elements (<103 years). This cast some doubt on the previous results reporting conservative or scavenged-type behaviour, but is in agreement with the results found in our study. However, more studies are needed in order to better understand the factors controlling the oceanic behaviour of Pt. 0 0.0 0.1 Pt (pM) 0.2 0.3 0.4 0.5 1000 Depth (m) potential was scanned to − 1.1 V in the differential pulse mode and the Pt peak at about − 0.90 V quantified. A Metrohm 663 VA polarographic stand (Herisau, Switzerland), equipped with a HMDE (working electrode), a Ag/AgCl (reference electrode) and a glassy carbon rod (auxiliary electrode) was used. The detection limit of the technique, expressed as three times the standard deviation of the blanks, was 0.02 pM. Given that there is no water reference material for Pt at present, the accuracy of the analytical procedure was checked by means of the analysis of spiked oceanic waters, obtaining typical recoveries of 102 ± 10 %. 2000 3000 4000 5000 Fig. 2. Vertical profile of dissolved Pt at Leg2 station (Fig. 1), where a typical recycled-type distribution is observed. ACKNOWLEDGEMENTS We would like to thank the CSIC for the PhD grant to DELS, and M. Rijkenberg (NIOZ) and the Dutch GEOTRACES program for providing the samples. Fig. 1. Location of the stations (red broken lines) in the West Atlantic Ocean where dissolved Pt was analyzed. However, in our study we found a non-conservative behaviour for Pt in the West Atlantic Ocean. Figure 2 shows the profile for the Central Atlantic Station (Leg2), indicating a recycled-type behaviour which is in contrast with the conservative behaviour reported in the only previous dataset for Pt in the Atlantic more than two decades ago [5]. Accordingly, the previous studies on the oceanic behavior of Pt do not show a consistent pattern, with conservative, scavenged-type and recycled-type reported [3-6] for the Indian, Pacific and Atlantic waters. REFERENCES 1. Cobelo-García, A., et al. Mar Chem, 2013. 150: 11 2. Soyol-Erdene, T.-O., et al. Environ Sci Technol, 2011. 45: 5929 3. Goldberg, E.D., et al. App Geochem, 1986. 1: 227. 4. van den Berg, C.M. and G.S. Jacinto. Anal chim acta, 1988. 211: 129 5. Colodner, D.C., et al. Anal Chem, 1993. 65: 1419 6. Suzuki, A., et al. Mar Chem, 2014. 166: 114 7. Rijkenberg, M.J.A., et al. Mar Chem, 2015. 177: 501 8. Soyol-Erdene, T.-O., Huh, Y. Geochem Geophys Geosyst, 2012. 13: Q06009 64 (2016) Assessing the reactivity of DOM along the Levantine intermediate waters of the Mediterranean Sea Alba María Martínez-Pérez1, Mar Nieto-Cid1 & Xosé Antón Álvarez-Salgado1 1 Instituto de Investigaciones Marinas, CSIC ABSTRACT In spite of the key role played by marine dissolved organic matter (DOM) in the global carbon cycle, the bioavailability of this pool in the dark ocean is still poorly understood. Current hypotheses, posed by the “sizereactivity continuum” and the “microbial carbon pump” conceptual frameworks, need to be tested experimentally. In this context, the Mediterranean Sea —often considered as a laboratory basin to investigate processes occurring at the World Ocean scale— has been chosen to test these hypotheses. The reactivity of DOM was followed at the depth level of the Levantine Intermediate water (LIW) in their route across the entire Mediterranean Sea. We sizefractionated the DOM of the LIW using an efficient ultrafiltration cell (cut off 1000 Da) observing a significant decrease of the percentage of high molecular weight DOM (HMW-DOM) with increasing apparent oxygen utilization (AOU) rates. HMW-DOM was responsible for 29% of the oxygen consumption at the LIW level, supporting the “size reactivity continuum” postulate. INTRODUCTION MATERIAL AND METHODS Marine dissolved organic matter (DOM) is one of the largest and least understood reservoirs of reduced carbon on the Earth’s surface [1]. At 662 Pg C, DOM represents 96% of the total organic carbon in the oceans [2]. It is produced mainly in the epipelagic layer (0–150 m depth) as a result of phytoplankton photosynthesis and subsequent food web interactions [3]. The aim of this work is to test the “size-reactivity continuum” hypothesis [4]. According to this postulate, changes in the bioavailability of DOM could be explained by varying proportions of more labile high molecular weight DOM (HMW-DOM) compared with slower degrading low molecular weight DOM (LMWDOM). We have used tangential flow ultrafiltration with a 1 kDa membrane cut-off to separate the high and low molecular weight fractions of the DOM in the Med Sea. The Med Sea is a semi-enclose basin open to the Atlantic Ocean through the Gibraltar Strait. It is composed of two basins of similar size, the eastern and western basins separated by the Sicily Strait. It is characterized by relatively high salinity and low nutrient concentrations and it is used as a lab basin to test processes happening at a global scale [5]. If the “sizereactivity continuum” hypothesis is correct, the Atlantic water entering the Strait of Gibraltar should transport high concentrations of DOM with a high average molecular weight, which would be progressively consumed within the overturning cell in such a way that the Levantine Intermediate water (LIW) that leaves the Strait of Gibraltar should transport low concentrations of DOM with low average molecular weight. To test this hypothesis we followed the LIW along the whole Med Sea. Water samples were collected during the transMediterranean cruise HOTMIX aboard R/V Sarmiento de Gamboa (Heraklion, Crete, 27 April 2014 – Las Palmas, Canary Islands, 29 May 2014). Fig. 1 Study area and sampling stations. Black circles depict the whole cruise stations and red asterisks represent the stations for the DOM size-fractionation. At each station, full-depth continuous conductivitytemperature-depth (SBE 911 plus CTD probe), dissolved oxygen and chlorophyll fluorescence profiles were recorded. These probes were attached to a rosette sampler (SBE 38) equipped with 24 (12 litres) Niskin bottles. Water samples were collected to analyse salinity (S), dissolved oxygen (DO) and chlorophyll a (Chl a) and calibrate the CTD sensors for conductivity, DO and fluorescence. Samples for S were measured with a Guildline Portasal salinometer Model 8410A. Dissolved oxygen was determined following the Winkler potentiometric method modified after [6]. The Apparent oxygen utilization (AOU) was calculated as in [7]. For the determination of dissolved organic carbon (DOC), and DOM fractionation, seawater samples were collected in 5-litres acid-cleaned 65 (2016) polycarbonate carboys and then filtered through precombusted GF/F filters. Aliquots of 10 mL of the filtrate were collected for DOC quantification in precombusted glass ampoules. These samples were acidified to pH < 2 and the ampoules were heat-sealed and stored in the dark at 4 °C until analysis. DOC concentration was determined with a Shimadzu TOC-V organic carbon analyzer by high temperature catalytic oxidation (HTCO). At nine stations samples were taken for the DOM sizefractionation. Two-liter aliquots of the filtrate were collected in acid-cleaned Teflon bottles for DOM fractionation using an ultrafiltration cell (Millipore, 2000) equipped with a membrane of 1kDa cut-off (Millipore, PLAC 150 mm) and applying 55 psi of pressure with N2. RESULTS AND DISCUSSION In this study we focused on the LIW as this is the unique water mass found throughout the entire Med Sea and can be easily traced by its characteristic S maximum between 200–500 m depth [8]. The DOC concentration in the core of this water mass decreased from 60.2 ± 0.9 in the easternmost station down to 45.7 ± 0.6 µM in the Mediterranean water (MW) in the Atlantic Ocean. By contrast, the AOU increased from 18.1 up to 93 µM. These results indicate that DOM in the LIW is subject to progressive microbial degradation as it displaced from the Levantine Sea to the Strait of Gibraltar. To test which is the DOM fraction that is more susceptible to microbial degradation, we size-fractionated the DOM pool into HMW (> 1kDa) and LMW (< 1kDa) fractions. Fig. 2. AOU vs DOC for DOM fractionation HMW-DOM represented 76% at the easternmost station (stn 1) and 58% at the MW in the Atlantic Ocean (stn 25) and was inversely correlated with the AOU. Fig. 2 shows that the consumption of the DOC pool (green dots) occurs in parallel to the increasing oxygen demand. Note that the decline of the DOC pool correspond to the decay of the HMW-DOM fraction (purple dots), whereas the LMWDOM fraction (yellow dots) did not show significant decrease; even a minor, but not significant, increase with AOU can be envisaged. The slopes of the relationships of DOC and HMW-DOC with AOU (-0.21 mol C mol O2–1), indicate that 29% of the organic matter remineralization is due to DOM, and particularly to the HMW-DOM. This result is in accordance with [9] in the Eastern Med Sea. Moreover, this result supports the “size-reactivity continuum” hypothesis. This outcome does not exclude the microbial carbon pump hypothesis that assumes refractory HMW-DOM production during remineralization processes. ACKNOWLEDGEMENTS The authors are grateful to the Captain, crew, technicians and scientists aboard the R/V Sarmiento de Gamboa. We thank M.J. Pazó and V. Vieitez for DOC measurements. This work was financed by the project HOTMIX (grant number CTM2011-30010-C02-02-MAR). A.M.M.-P. was funded by a predoctoral fellowship and a short stay fellowship from the Mineco. M.N.-C. was supported by the CSIC Program “Junta para la Ampliación de Estudios” cofinanced by the ESF. REFERENCES 1 - Hedges, J.I., 1992. Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 67-93. 2 - Hansell, D.A., Carlson, C.A., Repeta, D.J., Schlitzer, R., 2009. Dissolved organic matter in the ocean a controversy stimulates new insights. Oceanography 22, 202-211. 3 - Carlson, C.A., 2002. Chapter 4 - Production and Removal Processes. In: Hansell, D. A., Carlson, C. A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, pp. 91-151. 4 - Amon, R.M.W., Benner, R., 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41, 41-51. 5 - Bergamasco, A., Malanotte-Rizzoli, P., 2010. The circulation of the Mediterranean Sea: a historical review of experimental investigations. Adv. Oceanogr. Limnol. 1, 1128. 6 - Langdon, C., 2010. Determination of dissolved oxygen in seawater by Winkler titration using the amperometric technique. GO-SHIP repeat hydrography manual: a collection of expert reports and guidelines edited by BM Sloyan and C. Sabine, IOC/IOCCP, Paris. 7 – Benson, B., Krause, J. 1984. The concentration and isotopic fractionation of oxygen dissolved infreshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29 (3), 620-632. 8 - Roether, W., Klein, B., Beitzel, V., Manca, B.B. 1998. Property distributions and transient-tracer ages in Levantine Intermediate Water in the Eastern Mediterranean. J. Marine Syst. 18, 71-87. 9 - Meador, T.B., Gogou, A., Spyres, G., Herndl, G.J., Krasakopoulou, E., Psarra, S., Yokokawa, T., De Corte, D., Zervakis, V., Repeta, D.J., 2010. Biogeochemical relationships between ultrafiltered dissolved organic matter and picoplankton activity in the Eastern Mediterranean Sea. Deep-Sea Res. II Top. Stud. Oceanogr. 57, 1460-1477. 66 (2016) Temporal evolution of Rare-earth Elements concentrations in the southwestern Iberian Peninsula shelf: sources and distribution Mário Mil-Homens1,2, Pedro Brito1,2, Filipa Naughton1, Teresa Drago1 Joana Raimundo1,2, Carlos Vale2 & Miguel Caetano1,2 1 2 IPMA, Portuguese Institute of Sea and Atmosphere, Portugal CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal ABSTRACT Concentrations of rare-earth elements (REEs), Al, Fe and grain-size parameters were measured in a 5 m sediment core collected in the shelf area offshore of the southwestern Iberian Peninsula. The core VBC2 was dated using a combination of 210Pb and 14C determinations. The highest fine-grained contents together with Al, Fe and REE concentrations were found towards the Present. This suggesting less dynamic environmental/oceanographic conditions that favoured the depositional processes associated with the stabilization of shoreline at 3050BC and a major detrital contributions derived from the shift to humid conditions “Little Ice Age” (LIA, 1350AD-1900AD) at approximaltey 1350AD. The intense mining activities in the Iberian Pyrite Belt (IPB) sulfide massive deposits (between the 1860s to the 1960s) mobilized great amount of enriched REE particles to the environment. The NASC-normalized REE pattern is similar to those found in the Guadiana estuarine sediments pointing to a major estuarine contribution to the sediment load deposited in the adjacent coastal zone. INTRODUCTION Rare-earth elements (REE) have been used to study trace sediment provenance[1], due to their low mobility during sedimentary processes and short residence times in seawater [2]. The lower sector of the Guadiana watershed crosses the IPB, one of the largest world's massive sulfide province, mined since the Copper Age (3000 to 2000BC) until the Present day[3]. In this study is reported the temporal distribution of grainsize, Al, Fe and REE concentrations during the last 9.5 kyrs in a sediment core of the Algarve shelf area of the southwesten Europe. The main objectives are to infer the sediment provenance and the depositional conditions. MATERIAL AND METHODS The VC2B sediment vibrocore with five meters length was retrieved in the shelf area offshore of southwest Iberia Peninsula at 96 m water depth (36º53'16.24''N, 8º04'06.39''W). Grain-size analysis was performed using a Malvern Mastersizer 2000 laser diffraction particle sizer with a measuring range of 0.014 μm–2000 mm. The age model was based on six 210Pb and 226Ra determinations in the upper 30 cm and on eight accelerator mass spectrometry 14C dates (AMSC14) on marine material (shell and planktonic foraminifera). Elemental concentrations were obtained after total digestion of 0.1 g of grounded sample (< 2 mm) with a mixture Aqua Regia and HF in closed Teflon bombs at 100 ºC for 1 hour. Aluminium was determined by flame atomic absorption spectrometry (Perkin Elmer AA100) using a nitrous oxide- acetylene while Fe was measured with an air acetylene flame. Concentrations of REE elements were measured in the same sample solutions using a quadrupole ICP-MS (Thermo Elemental, X-Series). RESULTS AND DISCUSSION Sediment samples are dominated by silt. Fine-grained contents varying between 75% and 98% presenting an increase towards the surface. Concentrations of Al were relatively constant until c.a. 1350AD followed by an increase towards the Present (max 7.8%). This variability parallels the grain-size profile pointing to the enrichment of fine-grained particles in the last 1400 years. Concentrations of Fe present similar down-core trends to Al and significant correlations (p< 0.01; r2=0.94). These correlations suggest the association with fine-grained particles reflecting major detrital contributions and/or a decrease of energetic conditions related to the coastline evolution and to the transition from dry to humid conditions. The coastline stabilization at about 3050BC[4] is followed by a decrease of the mean-grain size values from 3050BC to 1400AD. Above this age, it is observed a significant increase of the fine fraction due to the proximity to Guadiana river mouth and to high river discharge associated with wetter climatic conditions of the LIA. The sum of REE (∑REE) in sediment core samples varied between 69 and 150 mg kg-1. The ∑REE are lower than the mean values for the Guadiana estuarine sediments (212 mg kg-1[5] and 182 mg kg-1[6]). In average for all core depths, L-REE (La - Pr series) corresponds to 69%, M-REE (Nd Dy series) to 28% and H-REE (Ho - Lu series) to 3% of the 67 (2016) ∑REE concentration. All REE are significantly correlated among them with Al and Fe (0.89< r2 <1.00, p< 0.01). In general, the REE depth variability is marked by an increase towards the Present. The low concentrations are found in bottom sediments with the highest sand contents, suggesting that REE pattern is influenced by grain-size. The significant relationships, the normalized profiles to Al still present high variability, suggesting other sediment component than fine-grained particles influencing the REE distributions. Besides clays, heavy minerals (e.g., monazite, zircon) may act as important REE carriers [7]. The normalization of REE concentration to a shale composite, North American Shale Composite (NASC), is usually used to identify sedimentary patterns through an enrichment or deficiency (fractionation process) of a single element or group of elements[8]. A clear temporal separation of sediment layers is found (fig. 1): (i) before 3500BC marked by deposition of coarse material; (ii) between 3500BC and 1450AD evidencing grain-sizes fluctuating around a mean value; (iii) between 1450AD and 1850AD sediment deposition shows high fine-grained particles and (iv) younger than 1850AD associated with the mobilization of great amount of particulated materials released to the environment by modern mining activities. These patterns were always lower than 1 and decreased with depths, indicating no enrichment in REE concentrations with respect to the shale and also increase dilution by marine carbonate and sand contents. In spite of the clear separation in four periods the L-REE is always enriched relatively to H-REE. Sediments older than 3500BC showed an almost flat profile of the La - Lu series indicating a similar proportion of L-REE to H-REE. NASC-normalized REE pattern is similar to those found in the Guadiana estuarine sediments [5,6] with the enrichment of L-REE and M-REE relative H-REE. Fig. 1. NASC-normalized Normalization values from [9]. REE distributions. The Ce anomalies (Ce/Ce*=3 x CeNASC/(2 x LaNASC + NdNASC [10]) are closer to 1 but ratios shows a gradual increasing trend from 1800 AD to the Present. Ce/Ce* is positively and significantly correlated with the ∑REE (r2=0.89) and with Al (r2=0.85) suggesting that the degree of Ce depletion is relative to the decrease of REE concentrations. The estimated Eu anomalies (Eu/Eu*=EuNASC/(sqrt(LaNASC x PrNASC)) [11]) were also closer to the unit (0.97-1.12) indicating a lack of significant Eu anomalies. Nevertheless, values decrease after 1940 AD pointing to an increased exchange and transport of this element to the water column. Interestingly, Ce and Eu anomalies are decoupled being the Ce/Ce* the differentiator. This suggests that Eu/Eu* may occur in any sediment layer while Ce/Ce* is characteristic of a certain period of time. ACKNOWLEDGMENTS This study was financially supported by the Foundation for Science and Technology (FCT) through the POPEI project (FCT/PDCT/ MAR/55618/2004). CLIMHOL project (PTDC/AAC-CLI/100157/2008) supported the financial costs with AMSC14 measurements. This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT and European Regional Development Fund, in the framework of the programme PT2020. REFERENCES 1 - Prego R, Caetano M, Bernárdez P, Brito P, OspinaAlvarez N, Vale C, 2012. Rare earth elements in coastal sediments of the northern Galician shelf: Influence of geological features. Cont Shelf Res, 35:75-85. 2 - Cullers R, Chaudhuri S, Kilbane N, Koch R, 1979. Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochemi Cosmochimi Ac, 43:1285-1301. 3 - Marcoux E, 1997. Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt. Miner Deposita 33:45-58. 4 - Boski T, Moura D, Veiga-Pires C, Camacho S, Duarte D, Scott DB, Fernandes SG, 2002. Postglacial sea-level rise and sedimentary response in the Guadiana Estuary, Portugal/Spain border. Sediment Geol, 150:103-122. 5 - Pérez-López R, Delgado J, Nieto JM, Márquez-García B, 2010. Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): A proxy for fluid-rock interaction and ancient mining pollution. Chem Geol, 276:29-40. 6 - Delgado J, Pérez-López R, Galván L, Nieto JM, Boski T, 2012. Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: A new perspective. Mar Poll Bull 64:1799-1808. 7 - Yang SY, Jung HS, Choi MS, Li CX, 2002. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sc Lett, 201:407-419. 8 - Haskin LA, Haskin MA, Frey FA, Wildeman TR, 1968. Relative and absolute terrestrial abundances of the rare earths. In: Origin and Distribution of the Elements. Ahrens LH (Ed) Pergamon press, New York:889–911. 9 - McLennan SM, 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem, 21:169-200. 10 - Elderfield H, Greaves MJ, 1982. The Rare-Earth Elements in Sea-Water. Nature, 296:214-219. 68 (2016) 11 - Taylor S, McLennan S, 1985. The continental crust: Its composition and evolution. Blackwell (Oxford), London.312 69 (2016) Improving UV-based technologies for marine water disinfection: Application to Ballast Water J. Moreno-Andrés, L. Romero-Martinez, A. Acevedo-Merino & E. Nebot Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz. Campus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain. ABSTRACT Water on ships is employed in the majority of the vessel activities, being necessary to carry out a correct management of it, which involves marine water treatment. From the point of view on the selection of technologies to be used on board, they have to adapt to special requirements such as little space available, operation simplicity, treatment effectiveness, etc. Among the mainly water streams generated on vessels, appears the ballast water as emerging challenge (especially on cargo ships) due to the transport of invasive species, and the large impact that the ballast water discharges could cause on ecosystem and human activities. To avoid this problem, it must be implemented ballast water treatment before water discharge according with the nearly coming into force Ballast Water Management Convention - BWMC. The effectiveness of microbiological disinfection by UV-based treatments (Advanced Oxidation Processes –AOP) has been evaluated in this study. The aim of it was to investigate inactivation rates of microbiological indicator E. faecalis, established on BWMC, by means of photolytic (UV-C), photocatalytic (UV-C/TiO2), and photolysis (UV-C/H2O2). A comparison between photo-chemical processes was assessed by using flow-through UV-reactor: working at different flow conditions with the goal of treatment optimization. Both photolysis and photocatalysis were far more effective, as it reduced dose requirements by up to 57.8% (UV-C/TiO2) and 30.5% (UV-C/H2O2). The results highlight the potential application of environmentally-friendly, innovative, and advanced technologies for marine water treatment. INTRODUCTION Maritime transport is continuously expanding through the globe, it actually covers about 90% of total world merchandise [1]. Besides, the cruise tourism industry, has experienced a boom in recent years: the number of people who have chosen to spend their holidays aboard a cruise ship has multiplied by four in the last two decades [2], meaning in exponential growth. The water on vessels is used for almost all activities carry out on board, and it implies the needs to discharge it. These environmental pressures could be enough to constitute a health hazard to the ecosystem and increase marine pollution. Among the mainly water streams generated on vessels, appears the ballast water as emerging challenge. Ballast water is needed on oceangoing vessels to ensure ship stability and buoyancy; when ballast water is released into far ecosystems, the organisms included herein could find a way that enables them to develop and spread into the new habitat, becoming invasive [3]. Invasive aquatic species involve a global challenge and one of the most severe pollution problem facing the world´s oceans [3]: “one single ballast tank was estimated to contain more than 300 million harmful organisms that could be developed into confirmed toxic cultures” [4]. So, is essential to develop ballast water treatments (BWTs) and management strategies to minimize the spread of organisms in ballast water. Usually, BWTs consists in a filtration step followed by a disinfection phase; it could be applied physically, chemical or physical-chemically [5]. A BWTs must address a number of parameters established on Ballast Water Management Convention (BWMC), developed by IMO and adopted in 2004 [6]: it established guidelines including different indicators and discharge limits for ballast water. According to these procedures, the goal of this study is to optimize different UV-based treatments for ballast water disinfection, in order to promote the application of sustainable and advanced technologies (AOPs) for these purposes. The specific goal is to investigate inactivation rates of microbiological indicator E. faecalis, established on BWMC, by means of photolytic (UV-C), photocatalytic (UV-C/TiO2), and photolysis (UV-C/H2O2). MATERIAL AND METHODS - Microbiological procedures: Pure cultures of E. faecalis (ATCC 27285) were inoculated to Artificial Seawater for reach concentrations around 106-107 CFU/mL. Posttreatment analysis was assessed by membrane filtration technique. 70 (2016) - UV-Reactor´s: Two tubular UV reactors were used on experiments: A PVC reactor for UV and UV/H2O2 treatment and a photocatalytic reactor (with fixed TiO2) for UV/TiO2 treatment. All of them are tubular reactors operating in continuous-flow. The dose was calculated as the product of mean intensity and Theoretical Retention Time. - Experimental: The experimental procedure consisted of applying three different treatments, at different UV-C doses. In the case of hydrogen peroxide, it was added in a single dosage before the UV irradiation to reach a H2O2 concentration of 5 mg/L. - Data treatment: The effectiveness of the treatment was determined by logarithmic reduction of the survival of microorganisms: log (N/N0). It was modeled with GinaFiT tool [7]. RESULTS AND DISCUSSION The results obtained from different treatments are shown in Fig. 1, in which the logarithm inactivation versus the UV dose received is represented. Photocatalytic treatment shows even a better improvement of UV light: 57.8% of reduction in UV dose for reach 4Log inactivation. The generation of ·OH on a fixed catalyst is derived from light incidence, it have the advantage of no chemicals added, but some studies reflect the loss efficiency in marine waters because of catalyst aging [9]. Table 1. Kinetic and statistical parameters predicted by fitting of disinfection experimental data. Treatment S.L. (mJ/cm2) kmáx (cm2/mJ) R2 ± S.E. ± S.E. UV 5.92 ± 2.94 0.40 ± 0.03 0.957 UV/H2O2 1.91 ± 2.14 0.51 ± 0.03 0.976 UV/TiO2 2.32 ± 1.54 0.93 ± 0.08 0.965 Both AOPs are effective in disinfection of marine waters, even with other indicators [9, 10]. Future studies could evaluate the effect of organic matter present in real seawater, or the possible synergistic effect that could have the implementation of a combined treatment: UV/TiO2/H2O2. The results make possible the bet on more sustainable technologies due to the absence of chemicals and low formation of disinfection by-products; besides they can adapt to on-board requirements. Moreover, it could increase efficiency of water management on vessels and explore the possibility of reusing some of the treated streams and minimizing harmful discharges. ACKNOWLEDGEMENTS The Spanish Ministry of Economy and Competitiveness by Ref. CTM2014-52116-R has supported the work. REFERENCES Fig. 1. a) UV dose necessary to inactivate up to four logarithmic units for UV (purple), UV+H2O2 (blue), and UV+TiO2 (orange) treatment. b) Modeled disinfection profiles. The best fitting model for the three disinfection profiles was Log-linear+shoulder [7]: a shoulder region appear at low UV doses (Table 1), where little or no inactivation occurs, followed by a transition to log-linear yield. Parameters of the model are shown in table 1; kinetic constant was increased according to UV-C < UV-C/H2O2 < UV-C/TiO2 meaning in an improvement on UV treatment for both AOPs. UV/H2O2 treatment generate hydroxyl radicals (·OH) by photolysis of H2O2, these radicals could be the main disinfection route. The results do not show significant interference by application on marine waters. The concentration used (5 ppm) was optimized in previous studies in order to avoid ·OH recombination process and high concentration of chemical [8]. The improvement was of 30.5% of reduction in UV dose, for reach 4-Log inactivation. 1 - IMO, 2012. International shipping facts and figures – information resources on trade, safety, security, environment. 2 - Cruise Market Watch, 2014. Growth of the Cruise Line Industry. In: http://www.cruisemarketwatch.com/growth/. 3 - Werschkun B, Banerji S, Basurko OC et al., 2014. Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention. Chemosphere 112:256–266. 4 - Belkin S & Colwell RR, 2005. Oceans and Health: Pathogens in the Marine Environment. Springer 5 - Tsolaki E, Diamadopoulos E, 2010. Technologies for ballast water treatment: a review. J Chem Technol Biotechnol 85:19–32. 6 - IMO, 2004. International Convention for the Control and Management of Ships’ Ballast Water and Sediments. BWM/CONF/36. 7 - Geeraerd AH, Valdramidis VP, Van Impe JF, 2005. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95–105. 8 - Moreno-Andrés J, Romero-Martínez L, AcevedoMerino A, Nebot E, 2016. Determining disinfection efficiency on E. faecalis in saltwater by photolysis of H2O2: Implications for ballast water treatment. Chem Eng J 283:1339–1348. 9 - Rubio D, Casanueva JF, Nebot E, 2013. Improving UV seawater disinfection with immobilized TiO2: Study of the viability of photocatalysis (UV254/TiO2) as seawater disinfection technology. J Photochem Photobiol A Chem 71 (2016) 271:16–23. 10 - Romero-Martínez L, Moreno-Andrés J, AcevedoMerino A, Nebot E, 2014. Improvement of ballast water disinfection using a photocatalytic (UV-C + TiO 2 ) flowthrough reactor for saltwater treatment. J Chem Technol Biotechnol 89:1203–1210. 72 (2016) Identificación, cuantificación y análisis de ácidos grasos de la comunidad fitoplanctónica del área de influencia del Guadalquivir en el Golfo de Cádiz Identification, quantification and fatty acids analysis of the phytoplankton community of the Guadalquivir influence area in the Gulf of Cadiz. R. Muñoz-Lechuga (1), S. van Bergeijk (1), C. Vilas (1), R. Sánchez-Leal (2), C. Pérez-Gavilan (1) , J.P. Cañavate (1). (4) IFAPA Centro El Toruño, Junta de Andalucía. [email protected] (5) Instituto Español de Oceanografía – Centro Oceanográfico de Cádiz. ABSTRACT The phytoplankton community at the influence area of the Guadalquivir river is poorly studied in terms of genera or species composition, or biomass and their role as major primary producers in the food web of the Gulf of Cadiz has not been investigated. Despite its relevance, no work on species identification and quantification has been carried out. In the present study, phytoplankton was sampled at 10 sites covering the entire area of influence and the mouth of the estuary, from 10-80 m depth (surface and bottom), in the months of June, August and November of 2013, using Niskin bottles collected with CTD casts. In total, 40 samples of phytoplankton were analyzed, identifying genera or species (> 20 µm) and quantifying their abundance and biovolumes. At the same time, fatty acid profiles of seston samples were analyzed to determine their role as the base of the food web; these profiles are also explored as possible indicators of the phytoplankton community species composition. Up to 40 genera or species were identified, mostly diatoms and dinoflagellates. Some of the identified species are considered toxic to fish and bivalves showing significant values of abundances, as Dinophysis spp., Pseudonitzchia spp. or Alexandrium spp. Spatial and seasonal gradients were observed in phytoplankton distribution. Dinoflagellates were dominant in surface waters, near the coast, in June and August, while diatoms were dominant in bottom waters, offshore and in November. Fatty acid markers of dinoflagellates and diatoms confirm that distribution. Key words: microfitoplancton, Golfo de Cádiz, distribución, cuantificación, ácidos grasos INTRODUCCIÓN El fitoplancton contribuye en gran medida en la producción primaria de las bases de las redes tróficas marinas Pomeroy (1974). Sin embargo, la comunidad fitoplanctónica en la zona de influencia del rio Guadalquivir y el Golfo de Cádiz está escasamente estudiada. El objetivo de este trabajo fue estudiar la diversidad de géneros o especies, cuantificar la biomasa y comprender su papel como productores primarios en la red trófica del Golfo de Cádiz. MATERIAL Y MÉTODOS Las muestras fueron recogidas en la parte externa de la zona de influencia del Golfo de Cádiz con el estuario del Guadalquivir durante las campañas oceanográficas de Junio, Agosto y Noviembre de 2013 del IEO-Cádiz durante 2013 (STOCA/INGRES, ECOCADIZ y ARSA en el marco del proyecto ECOBOGUE (P. EXC. RNM 7467). Se identificaron y cuantificaron géneros y especies, se calcularon sus biovolúmenes, biomasa de carbono y se realizaron análisis de ácidos grasos de muestras análogas. Para la captura de imágenes se usó una cámara Leica DFC420 incorporada al microscopio Leica DM5500B. El método utilizado para la cuantificación de géneros y especies fue el clásico de Utermöhl (1958), usando cámaras de sedimentación. El cálculo del biovolumen individual de cada especie/género se realizó asignando una figura geométrica simple semejante a la forma del individuo midiendo así sus dimensiones Hillebrand et al. (1999). Para el cálculo de la biomasa de carbono se utilizó un ratio que relaciona el biovolumen del individuo con su contenido en C, para diatomáceos (0.15pg C μm−3) y no diatomáceos (0.225 pg C μm-3) Reynolds (1984). Durante los muestreos el CTD registró datos de temperatura, salinidad, oxígeno disuelto y concentración de chl a en el agua. Además se cogieron muestras de las botellas Niskin que se filtraron por filtros GF/F (Whatman) calcinados para estimar los sólidos en suspensión (filtros) y la concentración de NO3-, NO2-, NH4+, PO43- y SiO32-, (filtrado). Para el análisis de los ácidos grasos se recogieron muestras de seston en botellas Niskin que se filtraron por filtros GF/F (Whatman) calcinados y fueron analizados por cromatografía de gases. 73 (2016) El tratamiento estadístico ha sido realizado mediante los softwares Microsoft Excel 2013, PRIMER-E y el software libre R v3.0.1. RESULTADOS Y DISCUSIÓN Se identificaron más de 40 géneros o especies, la mayoría de ellos dinoflagelados y diatomeas (Fig. 1). Los dinoflagelados se encontraron entre el grupo de especies de mayor tamaño. Entre las especies de menor tamaño se identificó una clorofita y otra criptofita. Además se localizaron dos especies de silicoflagelados (Dictyochophyceae) y un flagelado heterótrofo, también con esqueleto de silice (Ebria) de tamaños medios. contribuyeron con más biomasa. Las altas densidades de Gymnodinium spp. en junio, Alexandrium spp. y Pseudonitzchia spp. en agosto (Fig. 1) y de Skeletonema spp. en noviembre, parecen indicar “blooms” de esas especies. Otras como Ceratium spp., Diploneis spp. o Pleurosigma spp. fueron constantes en esos tres meses. Analizando la distribución de las especies, se observan diferencias espaciales y estacionales. El análisis PERMANOVA nos indica una diferencia significativa entre los meses de junio y noviembre con un (P=0.001) (Fig. 2). La temperatura y las concentraciones de nitrato y silicato tuvieron más relevancia en junio, sin embargo, en los de noviembre fue el O2 disuelto y la concentración de fosfato Espacialmente se observaron diferencias entre superficie y fondo en los tres meses, dominando los dinoflagelados a poca profundidad y Fig. 2. Análisis de componentes principales de los puntos de muestreo y las variables ambientales de los meses de junio y noviembre. las diatomeas en el fondo. El análisis de ácidos grasos confirma la presencia de marcadores para dinoflagelados como el 18:5n3; 22:6n3; w3 y w6. Estos marcadores fueron dominantes en el mes de junio para las radiales GD, PD y MT. También se encontraron marcadores de diatomeas, bacterias y material terrígeno como el 22:0; 18:0; BAME y PU16. Presentaron dominancia en el mes de noviembre, pero sólo en los radiales MT y PD. Fig. 1. Biovolúmenes medios (μm3) por individuo de los géneros y especies estudiados en este trabajo. Medias con desviaciones y rangos. Los círculos representan valores atípicos (Izq). Biomasa total media (ng de C L-1) frente a la densidad total media (nº células L-1) del conjunto de muestras del mes de agosto (Drch). Closteriopsis sp. no se ha descrito para aguas marinas. Se encontraron varias especies potencialmente tóxicas como Alexandrium spp., Dinophysis spp. o Pseudonitzchia spp. (Fig. 1). Varias diatomeas, como Pseudonitzchia spp. o Skeletonema spp., alcanzaron densidades relativamente altas, pero en términos de biomasa tuvieron poco peso en la comunidad dado su pequeño tamaño. Por el contrario, especies de mayor tamaño y menor abundancia REFERENCIAS Hillebrand, H. et al., 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of phycology, 35(2), pp.403–424. Pomeroy, L.R., 1974. The ocean’s food web, a changing paradigm. Bioscience, 24(9), pp.499–504. Reynolds, C.S., 1984. The ecology of freshwater phytoplankton, Cambridge University Press. Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie, 9, pp.1–38. 74 (2016) Grado de saturación del CaCO3 en el Golfo de Cádiz: una primera aproximación T. Ortega, A. Sierra, D. Jiménez-López, R. Ponce, A. Gómez-Parra, J. Forja Dpto. Química-Física. CACYTMAR.Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 – Puerto Real, Cádiz, Andalucía, España. *Correo del autor: [email protected] RESUMEN En este trabajo se presenta un primer estudio sobre la distribución del grado de saturación del CaCO3 en el Golfo de Cádiz para una situación de primavera. Se han tomado muestras a diferentes profundidades en la columna de agua en cinco transectos, en los que se ha medido pH, alcalinidad total (AT) y la concentración de Ca2+. AT y la concentración de carbono inorgánico disuelto (CID) varían entre 2316 y 2585 µmol kg-1, y 2134 y 2379 µmol kg-1 respectivamente. Se ha observado un aumento de las concentraciones de AT y CID con la profundidad en la columna de agua, provocado por las propias características hidrodinámicas de la zona y por la remineralización bentónica. Salvo en el transecto de Trafalgar, en el resto se aprecia un aumento de la AT y el CID con la distancia a costa. La concentración de calcio varía entre 10.74 y 11.71 mmol kg-1 y aumenta con la distancia a costa en las aguas superficiales. Los mayores valores de Ca2+ se han medido en aguas profundas. Las aguas superficiales en todos los transectos están sobresaturadas de CaCO3, con grados de saturación de calcita (Ωa) y aragonito (Ωc) que varían entre 2.4 y 4.3, y 1.6 y 2.8 respectivamente. El comportamiento del grado de saturación del CaCO3 está condicionado por el pH, lo que provoca su aumento con la distancia a costa en las aguas superficiales y su disminución con la profundidad. INTRODUCCIÓN La acidificación oceánica debida a la entrada de CO2 atmosférico está produciendo cambios en la química del carbono del agua de mar, y sus efectos más inmediatos son la disminución del pH y de la capacidad tampón del océano debido a la pérdida de iones carbonato (CO2 + CO32- + H2O = 2 HCO3-) [1, 2]. De hecho, esta acidificación puede estar alterando las tasas de calcificación/disolución de algunos organismos y del CaCO3 de los sedimentos, y se cree que desempeñará un papel cada vez más importante en el ciclo de CaCO3 oceánico de las próximas décadas [3]. Las aguas mediterráneas que entran en el Golfo de Cádiz a través del Estrecho de Gibraltar están experimentando una disminución anual de pH de -0.0044±0.00006 unidades, que pueden interpretarse como un indicador del proceso de acidificación de la cuenca [3], lo que puede repercutir de una manera directa en el ciclo del CaCO3 de la zona. El trabajo que se presenta, forma parte de un primer estudio con el que se quiere conocer la influencia de la acidificación oceánica y los aportes costeros sobre el grado de saturación del CaCO3 en el Golfo de Cádiz. El calcio es un elemento mayoritario del agua de mar, cuya concentración apenas presenta cambios a nivel oceánico. De ahí que en diferentes estudios su cuantificación se realice a partir de la salinidad [1]. Sin embargo, en las zonas costeras debido a los aportes terrestres y a procesos de disolución/precipitación de CaCO3, este elemento puede presentar considerables variaciones en su concentración. De hecho, en la actualidad sólo existe un trabajo en el que se han realizado medidas directas de calcio transoceánicas [4] y en el que se ha obtenido que la profundidad de saturación de la calcita y aragonito es menor si el calcio es medido a si es calculado a partir de la salinidad. Como parte de este trabajo, se ha optimizado la medida de calcio en aguas costeras, lo que permitirá tener una mejor cuantificación para trabajos futuros del grado de saturación de CaCO3. MATERIAL Y MÉTODOS Fig. 1. Transectos de la zona de estudio del Golfo de Cádiz: Guadiana (GU), Tinto y Odiel (TO), Guadalquivir (GD), Sancti Petri (SP) y Trafalgar (TF). En marzo de 2016 se ha realizado una primera campaña de una serie de cuatro en el Golfo de Cádiz a bordo del B/O Ángeles Alvariño. Se han considerado 5 secciones 75 (2016) localizadas en la desembocadura del Tinto y Odiel (TO), Guadiana (GU), Guadalquivir (GD), Sancti Petri (SP) y Trafalgar (TF) (Figura 1). En cada una de ellas existe una serie de estaciones fijas en la que se ha medido pH, alcalinidad total y calcio en la columna de agua. El pH y AT se analizaron mediante valoración potenciométrica utilizando un valorador potenciométrico (Metrohn 905) provisto de un electrodo combinado de vidrio (Metrohm, ref 6.0210.100), calibrado previamente en la escala total. Como valorante se utilizó HCl 0,1 M, preparado en NaCl 0,7 M. Se tomaron muestras por duplicado de 99,73 mL mediante una bureta. Las concentraciones de carbono inorgánico disuelto y de carbonato se obtuvieron a partir de la AT y pH utilizando constantes disociación propuestas para la escala total [5]. La concentración de Ca2+ se midió por medio de una valoración potenciométrica (Metrohn 905) utilizando un electrodo selectivo de calcio (Metrohm, 6.0510.100). Se utilizó como agente valorante ácido etilenglicol-bis-(2aminoetileter)-N,N,N´,N´ tetracético (EGTA) 0.01 M. A las muestras se le añadió 10 mL de bórax 0.1 M para tamponarlas a un pH próximo a 9. Loa análisis se han realizado por duplicado utilizando aproximadamente 5 g (±0,1 mg) de muestra por duplicado, y se ha obtenido una desviación estándar media de ± 5 µM. El grado de saturación de la calcita (Ωc) y aragonito (Ωa) se calculó a partir de la concentración de calcio y carbonato y del producto de solubilidad aparente del CaCO3 [6]. Se consideró la variación de éste con la profundidad [7]. una clara disminución con la profundidad condicionada por el descenso que experimenta el pH en la columna de agua. En la Figura 2 se muestra a modo de ejemplo la variación del Ωc en el transecto del Guadalquivir. RESULTADOS Y DISCUSIÓN Las concentraciones de AT y CID medidas en el Golfo de Cádiz varían entre 2316 y 2585 µmol kg-1 y 2134 y 2379 µmol kg-1, respectivamente. Es en la sección de Trafalgar donde se alcanzan los valores más elevados, posiblemente debido a su mayor influencia del agua mediterránea. En los cinco transectos estudiados se ha observado un aumento de las concentraciones de AT y CID con la profundidad en la columna de agua, provocado por la propia estratificación de masas de agua en la zona y por la remineralización bentónica. Salvo en el transecto de Trafalgar, en el resto se aprecia un aumento de la AT y el CID con la distancia a costa. En la zona de estudio la concentración de Ca varía entre 10.74 y 11.71 mmol kg-1 y presenta un comportamiento muy similar al de la salinidad en todos los transectos, con un aumento de la concentración con la distancia a costa en las aguas superficiales y los mayores valores en aguas profundas. El CO32- presenta un comportamiento similar al del pH, con valores más elevados en aguas superficiales y en aumento con la distancia a costa y disminución con la profundidad en la columna de agua. Sus concentraciones varían entre 104.2 y 176.0 µmol kg-1. Las aguas superficiales del Golfo de Cádiz están sobresaturadas de CaCO3, con valores de Ωa y Ωc que varían entre 2.4 y 4.3, y 1.6 y 2.8 respectivamente. Los dos grados de saturación presentan el mismo comportamiento, REFERENCIAS 1 - Wanninkhof, R, Barbero, L, Byrne, R, Cai, W-J, Huang, W-J, Zhang, J-Z, Baringer, L & Langdon, C, 2015.Ocean acidification along the Gulf Coast and East Coast of the USA. Continental Shelf Research, 98: 54–71. 2 - Flecha, S, Pérez, FF, García-Lafuente, J, Sammartino, S, Ríos, AF & Huertas, IE, 2015. Trends of pH in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin. Scientific Reports (DOI: 10.1038/srep16770) 3 - Smith, SV & Mackenzie. FT, 2015. The Role of CaCO3 Reactions in the Contemporary Oceanic CO2 Cycle. Aquat Geochem. (DOI: 10.1007/s10498-015-9282-y) 4 - Rosón, G, Fernández-Guallart, E, Pérez, FF & Ríos, A F, 2016. Calcium distribution in the subtropical Atlantic Ocean: implications for calcium excess and saturation horizons. Journal of Marine Systems, 158: 45-51. 5 - Lueker, TJ, Dickson, A.G. & Keeling, CD, 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem., 70:105-119. 6 - Mucci, A., 1983. The solubility of calcite and aragonite in seawater at varius salinities, temperatures, and one atmosphere total pressure. Am. J. Sci., 283:780-799. 7 - Zeebe, RE &Wolf-Gladrow, D, 2001.CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series 65, Amsterdam. Profundidad (m) Ωc Distancia a costa (km) Fig. 1. Variación del grado de saturación de la calcita (Ωc) en la columna de agua en el transecto del Guadalquivir. Los puntos negros muestran las estaciones de muestreo. Ya que el grado de saturación se encuentra afectado en gran medida por el pH, que a su vez presenta importantes variaciones relacionadas con la actividad biológica en las agua superficiales y se encuentra afectado por la entrada de aguas continentales, se requiere un estudio estacional para poder comprender la dinámica del CaCO3 en el Golfo de Cádiz. AGRADECIMIENTOS El trabajo ha sido financiado por el Proyecto CICYT CTM2014-59244-C3-1-R. 76 (2016) Potencial de macroalgas como alimentos funcionales Raquel Ortega1, Aroa López1, Adela Durá1, Argimiro Rivero1, Miguel Suárez de Tangil1 & Juan Luis Gómez Pinchetti2 1 Grupo QUIMA-IOCAG, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain 2 Banco Español de Algas, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain RESUMEN Los alimentos de origen vegetal despiertan un gran interés desde el punto de vista de la actividad antioxidante. Enfermedades crónicas como el cáncer, alzheimer y enfermedades cardiovasculares entre otras están causadas en gran parte por el estrés oxidativo y la peroxidación lipídica. Estos procesos se inician, principalmente, por la aparición de radicales libres, que generan posteriormente Especies Reactivas del Oxígeno (EROs) y producen un gran daño celular [1]. En este trabajo se plantea el estudio de la actividad antioxidante de algas macroscópicas con el fin de comparar los resultados con los obtenidos para diferentes alimentos de origen vegetal: pimiento rojo andaluz, la papaya, el pimiento verde, el pimiento amarillo, el maíz en lata y el maíz tierno maduro de Canarias. Se utiliza la medida de la actividad antirradicalaria como un primer paso para determinar la utilidad de estas macroalgas en la prevención de la oxidación molecular. El método seleccionado para este estudio ha sido el descrito por Chu, Chang y Hsu [2], con ligeras modificaciones. Se utiliza el radical 1,1-difenil-2-picrilhidrazilo (DPPH) como radical estable a neutralizar por los antioxidantes de los extractos de las muestras. La disminución de la absorbancia medida a 515 nm durante 10 minutos permite conocer la capacidad de los mencionados extractos de inhibir el radical DPPH. En este ensayo se calcula el porcentaje de neutralización de radicales libres (Radical Scavenging Activity, % RSA), y el tiempo que tarda en disminuir la concentración de DPPH en un 50%, con el fin de obtener una visión de la rapidez y efectividad en la neutralización de los radicales libres. Los valores de RSA fueron calculados en base a la siguiente ecuación: RSA (%) = (1 – absorbancia de la muestra / absorbancia inicial de la disolución de DPPH) x 100. ABSTRACT Plant based foods have attracted a great interest because they exhibit antioxidant activity. Chronic diseases such as cancer, Alzheimer's and cardiovascular diseases are largely caused by oxidative stress and lipid peroxidation. These processes are mainly initiated by free radicals, which generate Reactive Oxygen Species (ROS) and produce a cell damage [1]. In this study, macroalgae antioxidant activity was compared with those of extracts from different plant materials: Andalusian red pepper, papaya, green pepper, yellow pepper, canned corn and sweet corn mature from Canary Islands. The radical scavenging activity is used as a first step to determine the utility of macroalgae in the prevention of molecular oxidation. The method selected for this study was described by Chu, Chang and Hsu [2] and used with slight modifications. 2,2-diphenyl-1-picrylhydrazyl (DPPH) is a stable free radical which has an unpaired valence electron at one atom of nitrogen bridge. Scavenging of DPPH radical by the antioxidants from extracts is the basis of this assay. The decrease in the absorbance was recorded at 515 nm for 10 min giving the antioxidant activity of the extracts. The half-life (time required for reducing initial concentration of DPPH by 50%) and the Radical Scavenging Activity, (% RSA) and were calculated in order to gain an approach into the speed and effectiveness in neutralizing free radicals. RSA values were calculated using the following equation: RSA (%) = (1 – absorbance of sample/ absorbance of DPPH solution) x 100. 77 (2016) REFERENCIAS [1] Ferrazzano, G.F., Amato, I., Ingenito, A., Zarrelli, A., Pinto, G. & Pollio, A. (2011). Plant polyphenols and their anti-cariogenic properties: a review. Molecules, 16, 1486-1507. [2] Y.H. Chu, C.L. Chang, H.F. Hsu, Journal of the Science of Food and Agriculture, 80 (2000) 561– 566. 78 (2016) Copper effect on Fe(II) oxidation rate constant in seawater Norma Pérez-Almeida1, Aridane G. González1, J. Magdalena Santana-Casiano1 and Melchor González-Dávila1 1 Instituto de Oceanografía y Cambio Global (IOCAG). Universidad de Las Palmas de Gran Canaria. Las Palmas de Gran Canaria, Spain ABSTRACT The interaction between the redox chemistry of Fe and Cu at nanomolar has been studied in UV-treated seawater. The oxidation of Fe(II) was studied as a function of concentrations of Cu(II) and Cu(I) from 0 to 200 nM. The effect of added H2O2 (0 – 500 nM), pH (6.0 – 8.5) and NaHCO3 (2 – 9 mM) on the Fe(II) rate constants was studied at Cu(II) levels (0 – 200 nM). To understand the competition between Fe and Cu, the reduction of Cu(II) to Cu(I) was also studied as a function of oxygen (air-saturated and anoxic seawater), Fe(II) (0 – 200 nM) and H2O2 (0 – 300 nM). The Fe(II) oxidation was accelerated by the presence of Cu(II) and Cu(I). This acceleration has been explained by the redox coupling between Fe and Cu, competition for different inorganic species (hydroxyl and carbonate groups studied independently) and by the formation of Fe-Cu particles (cupric or cuprous ferrite). Superoxide played a key role in the oxidation rate of Fe(II) in the presence of Cu(II). The presence of Fe(II) caused a greater reduction of Cu(II) to Cu(I). This is directly related to the levels of oxygen, Fe(II) and H2O2 concentrations. The presence of Fe(II) produced a rapid formation of Cu(I) in the first 2 – 3 min of reaction. These experimental results demonstrated that the presence of Fe and Cu strongly affected the inorganic redox chemistry of both metals in UV-treated seawater. INTRODUCTION The effect of copper on the Fe chemistry has been studied [1, 2, 3, 4, 5]. These authors found that the redox reaction of both metals can be affected by the redox reactions of the other. These results showed a true catalytic effect of copper on the Fe(II) oxidation in acidic solutions [1]. This was caused by the radical hydrosuperoxide, HO2•, which reacts with Fe(II) according to the Haber-Weiss mechanism. The same authors also reported that the effect of Cu(II) on Fe(II) kinetics is a function of the initial concentrations of both Fe and Cu. Sayin [3] suggested that copper ions take part in an oxidation-reduction cycle of Fe(II) and act as a catalyst in the oxidation of the iron in biotite. They demonstrated that the oxidation of iron increased in the presence of Cu. Sedlak and Hoigne [4] studied the role of copper in the redox cycling of iron in atmospheric waters and also demonstrated that the catalytic effect of copper altered the production of radicals during the oxidation. Matocha et al. [5] showed that, under anoxic and acidic conditions, the reduction of Cu(II) to Cu(I) by dissolved Fe(II) was rapid and generally completed in the first 1-2 min and was also affected by the presence of chloride ions. The oxidation of Fe(II) by Cu(II) is thermodynamically possible by considering the speciation of these metals in solution [5]. In this manuscript, we focused on the inorganic interactions between Fe and Cu in seawater, in terms of redox reactions. The oxidation rate of Fe(II) in seawater at nanomolar levels is studied in the presence of both Cu(I) and Cu(II) to levels of 200 nM. The effect of pH (6.0 – 8.5), bicarbonate concentrations (2 – 9 mM) and H2O2 (0 – 500 nM), superoxide (after superoxide dismutase treatment) in the presence of copper was also studied. The effect of chloride on the Cu(I) chemistry is minimized here due to the constant concentration of chloride in seawater. The effect of Fe on the Cu redox chemistry has been studied under different experimental conditions, such as a function of Fe(II) concentration (0 – 200 nM), under airsaturated and anoxic conditions, together with the effect of H2O2 levels (0 – 300 nM). These results should improve our knowledge of the importance of these metal interactions in natural waters and improve the kinetic models for the oxidation of Fe(II) and Cu(I) in seawater. MATERIALS AND METHODS The Fe(II) and Cu(I) concentrations were determined spectrophotometrically using the ferrozine method [6, 7] and a modified version of the bathocuproine method [8, 9] respectively. The ferrozine and Fe(II) form a peak at 562 nm. Bathocuproine disulfonate salt and Cu(I) form a peak at 484 nm [8, 9]. Kundra et al. [10] demonstrated the formation of Cu(I)-ferrozine at 470 nm. All our experimental data were corrected by the non-absorbing baseline at 700 nm. Fe(II) and Cu(I) were measured at nanomolar levels by using a 5 m long waveguide capillary flow cell (World Precision InstrumentsTM) connected to the UV-Vis detector USB2000 (Ocean OpticsTM). The light used was 79 (2016) a halogen light source (HL-2000-FHSA from Mikropack). The capillary flow cell and the UV detector were connected using 400 µm optical fiber. The spectra were recorded using the OOIBase32 software by Ocean Optics. The sample was introduced in the column using a peristaltic pump (EXPETEC Perimax 12) with a flux of 1 mL min-1. RESULTS AND DISCUSSION This study demonstrates how the redox chemistry of Fe is affected by Cu in seawater. Cu(II) and Cu(I) accelerate the Fe(II) oxidation rate in seawater. The key role of O2•- on the Fe(II) rate in the presence of Cu(II) has been demonstrated. The increase in the oxidation rate of Fe(II) can be due to the added Cu, and to the competition of Fe and Cu interaction with hydroxyl, H2O2, O2•- and carbonate groups. These ROS reactions are not enough to explain the Fe-Cu redox interaction and the Fe-Cu redox pair reaction, and the formation of Fe-Cu particles (cupric and cuprous ferrite) should be considered. The effect of Fe(II) on the reduction of Cu(II) was also studied. Cu(II) was rapidly reduced to Cu(I) in the presence of Fe(II) in seawater under air-saturated and anoxic conditions. The concentration of Cu(I) formed was affected by the concentrations of both Fe(II) and H2O2 in seawater. This study demonstrates that the oxidation of Fe(II) in the presence of inorganic Cu increased the oxidation rate in seawater. For Cu(II), the presence of Fe(II) invoked a strong and rapid reduction to Cu(I) that underwent oxidation, under air-saturated conditions. Sayin [3] suggested an overall reaction to describe the Fe-Cu interaction in acidic solutions (Equation 1 – 4). These reactions can be also applied to the experimental conditions considered in the current investigation according to the experimental results. 4Fe(II) → 4Fe(III) + 4e− 4Cu(II) + 4e− → 4Cu(I) 4Cu(I) → 4Cu(II) + 4e− 4H+ + O2 + 4e− → 2H2 O (1) (2) (3) (4) 4Fe(II) + 4H+ + O2 ↔ 4Fe(III) + 2H2 O (5) with the overall reaction (Equation 5): where Fe(II), Fe(III), Cu(I), and Cu(II) represent the free or inorganic species in natural waters. The formation of Cu-Fe particles (cupric or cuprous ferrite) cannot be discriminated as well as the Fe(III) and Cu(I) interaction which was described as a quick reaction by Sedlak and Hoigne [4]. In order to summarize the effect of Cu on the Fe(II) oxidation in seawater we proposed the layout of the interaction (Fig. 1) that is a modified version from Sedlak and Hoigne, [4], where Fe(II) is rapidly oxidized to Fe(III). Fig. 1. Layout of the interaction between Fe and Cu during the redox reactions in seawater (modified from Sedlak and Hoigne [4]). ACKNOWLEDGMENTS This study received financial support from the Project CTM2010-19517-MAR and CTM2014-52342-P given by the Ministerio de Economía y Competitividad from Spain. REFERENCES 1 - Stumm W & Lee GF, 1961. Kinetic product of ferrous iron. Ind. Eng. Chem., 53: 143-146. 2 - Parker OJ &Espenson JH, 1969. Reactions involving copper(I) in perchlorate solution. A kinetic study of the reduction of iron(III) by copper(I). Inorg. Chem., 8(7): 1523-1526. 3 - Sayin M, 1982. Catalytic action of copper on the oxidation of structural iron in vermiculitized biotite. Clay Miner., 30(4): 287-290. 4 - Sedlak DL & Hoigne J, 1993. The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmos. Environ. - Part A General Topics, 27(14): 21732185. 5 - Matocha CJ, Karathanasis AD, Rakshit S & Wagner KM, 2005. Reduction of copper(II) by iron(II). J. Environ. Qual., 34: 1539-1546. 6 - Violler E, Inglett PW, Hunter K, Roychuodhury AN & Cappellen P, 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. App. Geochem. 15, 785-790. 7 - Santana-Casiano JM, Gonzalez-Davila M & Millero FJ, 2005. Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters. Environ. Sci. Tech. 39(7), 2073-2079. 8 - Moffett J, Zika R & Petasne R, 1985. Evaluation of bathocuproine for the spectrophotometric determination of copper (I) in copper redox studies with applications in studies of natural-water. Anal. Chim. Acta. 175, 171−179. 9 - Gonzalez-Davila M, Santana-Casiano JM, Gonzalez AG, Perez N & Millero FJ, 2009. Oxidation of copper (I) in seawater at nanomolar levels. Mar. Chem. 115(1), 118124. 10 - Kundra SK, Katyal M & Singh RP, 1974. Spectrophotometric determination of copper(I) and cobalt(II) with ferrozine. Analytical Chemistry, 46(11): 1605-1606. 80 (2016) The science of ocean predictions and operational oceanography: the new science paradigm Nadia Pinardi1, Francesco Trotta1, Giovanni Coppini2, Emanuela Clementi3, Claudia Fratianni3 and Ivan Federico2 1 Department of Physics and Astronomy, Alma Mater Studiorum University of Bologna, Bologna (IT) Centro EuroMediterraneo sui Cambiamenti Climatici, Ocean Predictions and Applications, Lecce (IT) 3 Istituto Nazionale di Geofisica e Vulcanologia, Bologna section, Bologna (IT) 2 ABSTRACT The science of ocean predictions has started in the eighties and it has rapidly advanced thereafter due to satellite sea level data availability and increasingly accurate numerical ocean models. The last ten years have seen great advances in this new sector of oceanography: numerical ocean models that resolve the mesoscales were implemented from the global ocean to the regional seas (scales of few km), data assimilation schemes capable to assimilate frequent ocean profiles and satellite data were developed, coupling between eulerian hydrodynamics and surface waves was started to better resolve the surface currents and nesting of unstructured ocean models allows to forecast properly the coastal, tidal and baroclinic currents at the resolution of few hundred meters. The predictability limit for ocean short term forecasts is of the order of several days, depending on the ocean variable and the accuracy of the atmospheric forcing forecast. The possibility to produce analyses and forecasts at the ocean mesoscales is underpinning our new capacity to understand ocean dynamics and investigate the climate variability of the ocean: ocean forecasting models in fact are also used to produce reanalyses that allow an accurate reconstruction of the mean and eddy components of the flow field and their relationship, describe wáter mass formation processes and study the ocean dynamics at unprecedented resolution and accuracy. On the other hand, the access to open data from the operational services and in particular the Copernicus Marine Enrvironment Monitoring Service (http://marine.copernicus.eu/), allows to develop new ocean applications for the blue economy that were unthinkable few years ago, among others, accurate search and rescue decision support systems, oil spill forecasting and hazard mapping, efficient ship routing and good environmental status marine indicators. 81 (2016) Distribution and ecological risk assessment of legacy and emerging organic pollutants in coastal marine sediments from the Atlantic coast (Andalusia, SW Spain) Marina G. Pintado-Herrera1, Tatiane Combi2, Carmen Corada-Fernández1, Eduardo GonzálezMazo1 & Pablo A. Lara-Martín1 1 Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz. Campus de Excelencia Internacional del Mar (CEI-MAR). Cadiz, Spain, 11510 2 Interdepartmental Centre for Environmental Science Research, University of Bologna, Via San Alberto 163, 48123 Ravenna, Italy ABSTRACT Contamination of aquatic systems by no longer used but very persistent compounds (e.g., organochlorine pesticides) and newly detected chemicals, such as personal care products (PCPs), represents a raising concern. We have aimed in this work to carry out one of the first comparisons of both types of contaminants, legacy and emerging, in two coastal systems (Cadiz Bay and Huelva Estuary). A wide range of analytes were selected to this end, including hydrocarbons, UV filters, fragrances, antimicrobials… Analysis of surface sediments revealed the occurrence of 46 out of 97 chemicals, and that most of them were predominantly accumulated in depositional areas with high organic carbon content. Polycyclic aromatic hydrocarbons (PAHs), fragrances (e.g., OTNE), UV filters (e.g., octocrylene), and nonylphenol had the highest concentrations (up to 1098, 133.5, 72 and 575 ng g-1, respectively). Several inputs were detected, from atmospheric deposition after combustion to wastewater discharges and recreational activities. However, an environmental risk assessment performed for those chemicals for which ecotoxicological data was available, indicates that legacy contaminants still pose the highest potential risk towards benthonic organisms (individual hazard quotients up to 580). INTRODUCTION Up until the end of the 1990s most of the environmental monitoring on xenobiotic organic compounds was devoted to persistent organic pollutants (POPs) and other priority contaminants due to their well-known persistence, bioaccumulation potential and toxicity. Although the production and use of many of them (e.g., polychlorinated biphenyls, or PCBs) are nowadays banned or restricted in most countries (“legacy contaminants”), knowing the actual distribution of these chemicals is relevant since they are still detected in the environment and their advisable levels are set by several international laws. More recently, there has been a rising interest for identifying and screening new organic synthetic compounds in the environment, the so-called “emerging contaminants”, which has been possible due to the development of new analytical techniques. One of the main groups of emerging contaminants is personal care products (PCPs), substances that are widely consumed by the society (e.g., surfactants, fragrances, UV filters, antimicrobials, etc.) and continuously introduced in the environment mainly through the effluents of wastewater treatment plants (WWTPs). The knowledge on the distribution and fate of organic contaminants, both legacy and emerging compounds, in the particulate phase (e.g., sediments, suspended solids, and soils) is more limited than in the aqueous phase as their bioavailability and, hence, toxicity, is severely reduced. In that sense, this work is focused on investigating and comparing the spatial distribution of a wide range of both legacy and emerging contaminants in coastal systems from SW Spain (Cadiz Bay and Huelva Estuary). As well as performing an initial assessment of their potential risk for benthic organisms. For this purpose, 97 structurally diverse compounds have been monitored, including PAHs, PCBs, several types of pesticides (e.g., organochlorines, organophosphorus, and pyrethroids), organophosphate flame retardants, antimicrobials, nonylphenol, fragrances, and UV filters. STUDY AREA AND EXTRACION PROCEDURE Two different coastal systems from the Atlantic coast of Andalusia (SW Spain) have been selected: the Cadiz Bay and the Huelva Estuary (Figure 1). Both areas comprise salt-marsh environments surrounded by coasts and several towns, accounting for a total of about 600 000 and 260 000 inhabitants, respectively. Surface sediment samples (0-5 cm depth) were taken at 48 samplings stations in Cadiz Bay area and 18 in Huelva Estuary using a Van Veen grab. Duplicates of each sample were extracted and analyzed using the methodology 82 (2016) previously developed by Pintado-Herrera et al. [1]. Extraction of analytes from sediment samples was achieved by pressurized liquid extraction (PLE). Separation, identification and quantification of target compounds were performed on a gas chromatography-tandem mass spectrometry. DATA ANALYSIS AND RISK ASSESSMENT An interpolation method was applied to estimate the concentration of target compounds in surface sediments from both sampling areas, by using the ArcGIS 10 software. Then, mass inventories for different classes of contaminants were calculated taking into account the contaminant concentration in sediment, the thickness of sediment sampled and the average density of the dry sediment particles. Additionally, a risk evaluation was also performed for those target compounds that were detected in sediments and for which ecotoxicological data on benthonic species was available. Measured environmental concentrations (MEC) were derived from the data presented in this manuscript whereas the predicted non effect concentrations (PNEC) were taken from literature. Using both MEC and PNEC values, different hazard quotients (HQ) were calculated. RESULTS AND DISCUSSION Forty six out of 97 analytes were found in samples from Cadiz Bay, whereas 43 were detected in Huelva Estuary. Regarding the Cadiz Bay, the main sources of organic contaminants that affect this area are wastewater discharges from local WWTPs and aquatic recreational activities during the touristic season. There are also some active fishing ports, a military naval station and some heavy industries (shipyards and a plane factory). On the other hand, Huelva Estuary is characterized by receiving acidic fluvial water discharges (pH <4) with very high concentrations of heavy metals through the Tinto and Odiel river system. Other than mining, there is a very important industrial area at the junction of the two rivers. Occurrence of sewage-derived contaminants from local WWTPs and pesticides from strawberry fields is also expected. Roughly, most of the contaminants followed similar distribution patterns (Figure 1), presenting the highest concentrations in the western part of the inner bay (Cadiz) and along Tinto River (Huelva). Nevertheless, different contamination sources were identified depending on the chemical and the sampling site (e.g., ports for PAHs, recreational activities for UV filters, and wastewater discharges for fragrances). Regarding the sources of PAHs in both aquatic environments, all the results showed similar trends and pointed out petroleum and biomass combustion (e.g., coal) as the common sources for PAHs in these areas. Some compounds, such as the UV filters octocrylene or EHMC, have been identified as ubiquitous in both areas. Their relative higher levels in sediments compared to other UV filters can be explained on the basis of their higher hydrophobicity and their extensive use in sunscreen formulations. To evaluate the extent of contamination, mass inventories were calculated in Cadiz Bay and Huelva Estuary (Figure 2), showing that PAHs was the most abundant class of contaminants in terms of mass (528 kg and 411 kg, respectively), followed by nonylphenols (408 kg in Cadiz Bay). In general, we could also observe that sediments with high organic carbon content and fine-grain (<63µm) had higher levels of many of the target analytes (PAHs, PCBs, fragrances …). Fig. 1. PAH spatial distribution: 1) Cadiz Bay and 2) Huelva Estuary. Finally, results from a preliminary environmental risk assessment indicated that there is a potential risk for some compounds (mainly DDE, PCBs and PAHs) to cause biological adverse effects. There is, however, lack of reliable information to perform an accurate prediction of the risk to human health and aquatic organisms after decades of continuous exposure to random combinations of low levels of both regulated and emerging products. Fig. 2. Mass inventories of the analyzed groups in both study areas. ACKNOWLEDGEMENTS This study has been carried out with the support of two Spanish regional research projects (RNM 5417 and RNM 6613), and with the help of a grant from the Spanish Ministry of Education, Culture and Sport. REFERENCES 1 - M.G. Pintado-Herrera, González-Mazo, E., LaraMartín, P.A, 2016. In-cell clean-up pressurized liquid extraction and gas chromatography-tandem mass spectrometry determination of hydrophobic persistent and emerging organic pollutants in coastal sediments. J. Chromatogr. A 1429:107-118. 83 (2016) Abnormal mortality of octopus after a storm water event: accumulated lead and stable lead isotopes as fingerprints Joana Raimundo1,2, Francisco Ruano1, João Pereira1, Mário Mil-Homens1,2, Pedro Brito1,2, Carlos Vale2 & Miguel Caetano1,2 1 IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal CIIMAR, Marine and Environmental Research Center, Rua dos Bragas, 289, 4050-123 Porto, Portugal 2 ABSTRACT Octopus vulgaris is a sedentary organism that inhabits coastal waters being subjected to anthropogenic compounds from terrestrial origin. Digestive gland accumulates high levels of Pb and other contaminants as a result of its physiological function in the digestive process. Lead concentration in coastal environments results from weathering, industrial and domestic discharges, and atmospheric deposition. Since stable Pb isotopic composition is not affected by kinetic processes occurring between source and sink, its signature in marine sediments has been used to identify the influence of the different sources. However, lead isotopic signature in organisms has been poorly explored in environmental sciences. After a short period of a heavy rainfall, hundreds of octopus died in Portuguese coastal areas. Levels of Pb and ratios of its stable isotopes were determined in the digestive gland of stranded octopus and compared to individuals caught alive and to sediments and urban runoff material. Octopus digestive gland reflected Pb concentrations in sediments, with enhanced levels in specimens from Cascais. Pronounced augment (up to one order of magnitude) of this element was registered in the digestive gland of stranded octopus. Stranded octopus presented lower Pb isotope signatures than the alive ones but closer to the signatures obtained in the runoff material. The obtained results clearly evidence that octopus mass stranding was related to strong rainfall and runoff. Pb isotopic signature was an adequate proxy to determine the causeeffect relation. INTRODUCTION Urban water runoff is one of the major sources of pollutants to receiving waters [1-3]. In urban environments, anthropogenic Pb originates from a variety of sources including vehicular dust, leaded paint and industrial emissions. The study of stable Pb isotopes provides a powerful tool in tracing Pb sources. The ratios between isotopes provide an identification of different Pb sources which have distinct isotopic signatures [4, 5]. The Pb isotope ratios vary with local geology and proximity to anthropogenic inputs, as well as temporally as pollution sources change. Cephalopods represent an essential link in marine trophic chains. O. vulgaris have a short life span, high metabolic rates and inhabit at coastal waters. Several studies have highlighted that octopus digestive gland can reflect environmental contamination [6-8]. In some cases, geographical variations of metal availability can overcome the biological differences [7]. Concentrations of Pb have contrasting geographic patterns in digestive gland of specimens collected in the Portuguese coast [8-10]. After a period of a heavy rainfall, hundreds of octopus died in two Portuguese coastal areas adjacent to rivers with high flow. The aim of this study was to test Pb isotopic signature as a tool to trace the rapid and high input of freshwater/runoff material as the primary cause of octopus mortality. This hypothesis was tested by: i) histological alterations in octopus tissues; and ii) determination of Pb concentrations and Pb stable isotopes in digestive gland, sediments and urban runoff material. MATERIAL AND METHODS Seventy five common octopuses, Octopus vulgaris, were collected in two areas, Matosinhos (N of Portugal) and Cascais (nearby Lisbon), of the Portuguese coast. Octopus were captured in two contrasting conditions: (i) living specimens caught in November 2009 (hereafter “alive”); (ii) dead specimens collected in January 2010, after a period of heavy rain and runoff (hereafter “stranded”). Digestive gland was totally removed, freeze-dried, grounded and homogenised. Pieces of mantle, arms and digestive gland were collected from stranded and alive octopuses and used for histological analysis, following the protocol adopted by the IPMA laboratory of pathology for mollusks. The top 5-cm layer of sediments were sampled in 2009 at Matosinhos (n=5) and Cascais (n=4) with a Van-Veen grab. The urban runoff-derived material resulted from heavy rain periods in January 2010 was collected from two roadway gully pots. Sediments and urban runoff material were oven-dried, sieved (2-mm mesh) and grounded. 84 (2016) 1.2000 Runoff Alive Casc 1.1400 1.1200 0.4700 0.4750 206 Pb/208 Pb 206 High precipitation event have occurred just before the stranded octopus were found. The average rainfall changed from 43 mm to 216 mm within two weeks. Under these conditions, the death of the octopus was presumably related to the rapid decrease of salinity, since cephalopods show a high sensitivity to changes in salinity conditions. The main tissue structures of stranded octopus were severely compromised, showing lesions in the collagen fibers as well as in the cells of the digestive gland. This suggests that death was likely due to multiple organ failure, related to hypertrophy and presence of exudates that correlate with the extreme environmental alterations. The accumulation of fluid in octopus tissues leading to their death may concomitantly have conduced to the input of other solutes. The geographical differences observed for Pb concentrations in the digestive gland of octopuses, higher in Cascais, are in line with the distinct levels registered in the sediments from the two areas. High Pb concentrations were observed in stranded specimens, which were up to one order of magnitude above the levels reported for alive octopus captured in the Portuguese coast [14-16, unpublished data]. The sharp increase of Pb bioaccumulation was presumably associated with the runoff period. Alive octopus showed high Pb signatures, while stranded organism showed lower isotopic ratios closer to the urban runoff material (Figs. 1 and 2). 1.2200 Runoff Sed Mat Alive Mat Strand Mat 206 Pb/207 Pb 1.2000 1.1800 1.1600 1.1400 1.1200 1.1000 0.4650 0.4700 0.4750 0.4800 206 Pb/208 Pb 0.4850 0.4900 Fig. 1. Relationships between 206Pb/207Pb and 206Pb/208Pb ratios in urban runoff material, sediments, alive and stranded O. vulgaris captured in Matosinhos (Mat). Strand Casc 1.1600 1.1000 0.4650 RESULTS AND DISCUSSION Sed Casc 1.1800 206 Pb/207 Pb Samples of digestive gland were digested according to [11]. For sediments and runoff material, two mineralization procedures were used according to the methods by [12, 13]. Total Pb concentration and stable Pb isotopes (206Pb, 207Pb and 208Pb) were determined using a quadrupole ICPMS. The precision and accuracy of Pb concentration and stable isotope composition was determined through analysis of certified reference materials and using 115In as internal standard. 0.4850 0.4800 207 206 Fig. 2. Relationships between Pb/ Pb and Pb/208Pb ratios in urban runoff material, sediments, alive and stranded O. vulgaris captured in Cascais (Casc). The obtained results suggest that octopus mass strandings were related to strong rainfall and runoff. Moreover, Pb isotopes results showed to be a good proxy to determine runoff inputs in the environment and in biological matrices and in this case provided useful forensic evidence in the identification of the cause-effect. ACKNOWLEGDMENTS Joana Raimundo acknowledges the pos-doctoral grant by FCT (SFRH/BPD/91498/2012), and João Pereira the support of COST Action FA1301. REFERENCES 1 - Sansalone JJ & Buchberger SG, 1997. J. Environ. Eng ASCE,123: 134-143. 2 - Barrett ME, Irish Jr LB, Malinia Jr JF & Charbenuea RJ, 1998. J. Environ. Eng ASCE,124: 131-137. 3 - Davis AP, Shokouhian M & Ni S, 2001. Chemosphere, 44: 997-1009. 4 - Labonne M, Othman DB & Luck J-M, 1998. App. Geochem., 13: 885-892. 5 - Labonne M, Othman DB & Luck J-M, 2001. Chem. Geol., 181: 181-191. 6 - Bustamante P, Cherel Y, Caurant F & Miramand P, 1998. Polar Biol., 19: 264-271. 7 - Nessim RB & Riad R, 2003. Chem. Ecol., 19: 275-281. 8 - Raimundo et al., 2004. Sci. Total Environ., 325: 71-81. 9 - Napoleão P, Pinheiro T & Sousa Reis C, 2005. Sci. Total Environ., 345: 41-49. 10 - Seixas S, Bustamante P & Pierce G, 2005. Sci. Total Environ., 340: 113-122. 11 - Ferreira A, Cortesão C, Castro O & Vale C, 1990. Sci. Total Environ., 97/98: 627-639. 12 - Loring D & Rantala R, 1990. Tech. Mar. Environ. Sci., 9: 1-13 13 - Caetano M, Fonseca N, Cesário R & Vale C, 2007. Sci. Total Environ., 380:84-92. 14 - Raimundo J, Vale C, Duarte R & Moura I, 2008. Sci. Total Environ., 390: 410-416. 15 - Raimundo J, Vale C, Caetano M, Cesário R & Moura I, 2009. Aquat. Biol., 6: 25-30. 16 - Raimundo J, Costa PM, Vale C, Costa M & Moura I, 2010. Comp. Biochem. Physiol. C, 152: 139-146. 85 (2016) Biomarkers response in Scrobicularia plana following exposure to polystyrene microplastics Francisca G. Ribeiro, Nélia C. Mestre, Cátia Cardoso, Tainá Fonseca, Thiago L. Rocha, Maria Fonseca, Beatriz Pereira, Maria João Bebianno CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal ABSTRACT Nowadays there is an increasing resilience of plastics as an everyday item. With the rapid increase in their production and spread, the plastic debris are accumulating in the marine environment where they are fragmented into smaller pieces. One of the most produced polymer, and accordingly, more common in the marine environment is the polystyrene (PS). Ranges of organisms, especially invertebrates, are vulnerable to the exposure of microparticles. However, the impacts of microplastics (< 5mm) in the marine systems are poorly understood. The aim of this study is to assess the toxicity of PS microplastics in different tissues of the peppery furrow shell Scrobicularia plana. Clams were exposed to 1 mg L-1 of PS microplastics (20 µm) for 14 days, followed by a 7 days depuration. Microplastics accumulation in gills and digestive gland, and their effects on a battery of biomarkers response: oxidative stress (catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase), oxidative damage (lipid peroxidation), neurotoxicity (acetylcholinesterase activity) and genotoxicity (comet assay to evaluate DNA damage) were assessed to select the most appropriate biomarker to evaluate microplastics effects. INTRODUCTION In the contemporary society, plastics have acquired a fundamental importance to commercial, industrial and medical applications. Polypropylene (PP), polyethylene (PE) and polystyrene (PS) are the most produced polymers, and thus, more common in the marine environment [1]. Recently, ubiquitous microscopic particles were identified in the marine environment - the microplastics. Currently, they are defined as particles that are less than 5 mm in diameter, according to the National Oceanic and Atmospheric Administration of the United States of America [2]. They are an emerging marine contaminant and, to date, have been found in many habitats and in the system of a variety of marine and freshwater species. Thus, it is important to understand its distribution in the marine environment and the implications on habitats, biodiversity and health of the marine species [1]. The biological effects in organisms depend on the size of the microplastics whereas, the smaller the size, the greater the effect to be accumulated at the cellular level. Despite concerns related to the ingestion, the effects of microplastics in populations and its implications for the food chain are not well known. Many adverse effects of microplastics in a lot of marine species have been described in the literature, such as: reduction of the feed rate, physical damage due to accumulation, induction of oxidative stress, effects on reproduction, decreased neuroprotective activity, development of pathologies and even mortality [3, 4]. Marine invertebrates are particularly susceptible to microplastics, because of their size and feeding strategy. Scrobicularia plana was used as the model to study microplastics toxicity. Since the microplastics mode of action and biological risk are not yet very clear, the potential ecotoxicological risk need to be assessed. Reactive oxygen species (ROS) can damage lipids, proteins, and DNA. Thus, stress oxidative enzymes play an important role as a defense response and form an important component of the antioxidant response [5]. In the present work the impact of Polyestirene (Ps) was assessed, in gills and digestive gland of S. plana by the response of oxidative enzimes (catalase, superoxide dismutase, glutathione Stransferase and glutathione peroxidase) MATERIAL AND METHODS Scrobicularia plana bivalve species (38 ± 5 mm of shell length) were collected in Cabanas de Tavira, Algarve, Portugal (N 37º7'59.75 '' W 7 36'34.95 ''). Live animals were transferred to the laboratory and inserted in 20 liters glass aquaria (n=6), with constant aeration. They were acclimated during 7 days and exposed to PS microplastics for 14 days, followed by 7 days of depuration. The aquaria were divided into two groups: control and exposed (concentration of PS of 1 mg L-1), in triplicate. The monodisperse PS microplastics (diameter = 20 µM) were obtained from Sigma-Aldrich (Germany). A stock solution (100 mg L-1) was prepared in ultrapure water (18 MΩ/ cm) and, before every renewal, sonicated for 30 minutes 86 (2016) (Ultrasonic bath VWR International, 230 V, 200 W, 45 kHz frequency). The water was changed every 24 hours, with subsequent addition of 1 ml of the microplastics stock solution. Clams were not fed and no significant differences in mortality, between treatments, were detected during the exposure. Clams were collected after 0, 3, 7 and 14 days of exposure, and after the 7 days of depuration. Gills, digestive gland, and remaining tissues (mantle, foot, and adductor muscles) were dissected and stored at -80 ºC, until further use. To assess the physiological status of control and exposed clams to microplastics during the experiment, soft tissues and shells were weighted and the condition index (CI) was determined as the percentage (%) of the ratio between drained weight of the soft tissues (g) and total weight (g). Antioxidant enzymatic activities were measured in the gills and digestive glands cytosolic fractions of clams, from control groups and exposed to microplastics. Total protein concentration was determined in the cytosolic fraction following the Bradford method [6], using bovine serum albumin as a standard. SOD activity was determined in the cytosolic fraction by the reduction of cytochrome c by the system xanthine oxidase/hypoxanthine at 550 nm [7]. CAT activity was determined by measuring the consumption of hydrogen peroxide (H2O2) at 240 nm [8]. GPx activity was measured through NADPH oxidation in the presence of excess glutathione reductase, reduced glutathione and hydroperoxide as substrate, at 340 nm [9]. GST activity was determined by measuring the conjugation of l-chloro2,4-dinitrobenzene (CDNB) with reduced glutathione (GSH), by an increase in absorbance at 340 nm [10]. RESULTS AND DISCUSSION No significant changes were obtained in the condition index, between unexposed and exposed organisms, during the accumulation (control: 33.05 ± 4.76 %; microplastics: 31.53 ± 5.30 %; p > 0.05) and the depuration periods (control: 31.31 ± 4.58 % microplastics: 31.83 ± 4.72 %; p >0.05), indicating that the organisms were in good health during the experiment. Regarding the gills, results showed that the exposure to microplastics significantly induce an increase in SOD activity, (p<0.05) after 7 and 14 days. However, GPx activity only increase in clams exposed to microplastics on the 3rd day of exposure, and GST activity only on 14 day of exposure. During the depuration there was only a decrease in SOD activity (p<0.05). In the digestive gland, results showed an increase on SOD activity on the 14th of accumulation period. Moreover, GPx activity was significantly increase on day 3 followed by a decrease on the 14th (p<0.05), while GST activity significantly decreased in clams exposed to microplastics after 3 days of exposure (p<0.05). Followed the depuration period, SOD increased its activity, while GPx and GST activity were inhibited (p<0.05). Previous studies reported that microplastics can cause oxidative stress responses. These results also indicated like previous data an increase in oxygen and nitrogen based reactive species, that are the first inflammatory response, induced by polystyrene nanoparticles, in the hemocytes of Mytillus [11] and an inhibition for Se-dependent glutathione peroxidases and catalase in the digestive gland of mussels exposed to polystyrene and polyethylene [12]. Both gills and digestive gland seem to be susceptible to oxidative stress, since enzimatic activities were noticiable in both tissues. So, we can predict that probably PS microplastics induce ROS and can cause toxic effects in clams. Nevertheless, microplastics toxicity needs to be more fully addressed, by combining the results with other biomarkers. REFERENCES 1 - Lusher, A., 2015. Microplastics in the marine environment: distribution, interactions and effects. Marine anthropogenic litter. Springer, pp. 245-307. 2 - NOAA, 2015. National Oceanographic Administration Service 3 - Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., Thompson, R. C., 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental science & technology 42, 5026-5031. 4 - Wright, S. L., Thompson, R. C., Galloway, T. S., 2013. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution 178, 483492. 5 - Cid, A., Picado, A., Correia, J. B., Chaves, R., Silva, H., Caldeira, J., Diniz, M. S. (2015). Oxidative stress and histological changes following exposure to diamond nanoparticles in the freshwater Asian clam Corbicula fluminea (Müller, 1774). Journal of Hazardous Materials, 284, 27-34. 6 - Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248-254. 7 - McCord, J. M., Fridovich, I., 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological chemistry 244, 60496055. 8 - Greenwald, R. A., 1987. Handbook of methods for oxygen radical research. Free Radical Biology and Medicine, 161. 9 - Lawrence, R. A., Burk, R. F., 1978. Species, tissue and subcellular distribution of non Se-dependent glutathione peroxidase activity. The Journal of nutrition 108, 211-215. 10 - Habig, W. H., Pabst, M. J., Jakoby, W. B., 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry 249, 7130-7139. 11 - Canesi, L., Ciacci, C., Bergami, E., Monopoli, M., Dawson, K., Papa, S., Canonico, B., Corsi, I., 2015. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the 87 (2016) hemocytes of the marine bivalve Mytilus. Marine environmental research, 111, 34-40. 12 - Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., Pauletto, M., Bargelloni, L., Regoli, F., 2015. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution 198, 211-222. 88 (2016) Influence of seawater carbonate system in phenotypic plasticity response to ocean acidification of the mollusc Scurria araucana along the Chilean coast Araceli Rodríguez-Romero1,3, Tania Opitz1, Samanta Benítez2,3, Laura Ramajo1,2, Nelson A. Lagos2,3, Marcos A. Lardies1,3 1 Facultad de Artes Liberales & Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Peñalolén, Santiago, Chile Facultad de Ciencias, Universidad Santo Tomas, Ejército 146, Santiago, Chile 3 Center for the Study of Multiple-drivers on Marine Socio-Ecological Systems (MUSELS). 2 ABSTRACT The rapid increase of surface ocean concentrations of CO2, due to rising anthropogenic CO2 emissions is expected to exert negative impacts on a wide range of marine fauna. One of the major challenges is to understand how marine organisms will respond to ongoing rapid ocean acidification (OA). The main aim of this study is to predict how organisms will respond differentially to OA due to the natural variability of pCO2 in their respective habitats. For that, we investigate the geographic variation in seawater carbonate system and their effects in the physiological phenotype traits using both, a field and a laboratory approaches in three populations of the mollusc Scurria arauacana, Huasco, Talcaruca and Los Molles localized at both sides of one of the most important biogeographic break (i.e. originated by permanent upwelling) on the Chilean coast. Individuals of S.araucana populations were collected during two years in the selected localities and transported to the laboratory. Once at laboratory, organisms were characterized in terms of shell length, total buoyancy and dry tissue weight, shell composition, metabolic and heart . After acclimation period individuals of populations from Talcaruca and Los Molles were exposed to three CO2 treatments (400 ppm, 750 ppm and 1300 ppm) for 30 days. Metabolic rates and buoyancy weight were determined at 10, 20 and 30 days. Our results shows that carbonate content of shells and tissue of organisms differ significantly among populations and the acclimation capacity and phenotypic plasticity to OA differ greatly both within and between populations of same species and that understanding such variations will be essential for predicting the impacts of ocean acidification. INTRODUCTION Current global climate change is occurring at an unprecedented rate due to increasing anthropogenic carbon dioxide (CO2) emissions. Consequently, significant alterations in oceanic conditions are predicted over the next century, including a reduction in surface water pH (termed Ocean Acidification ‘OA’). OA represents an unprecedented hazard to marine ecosystems, having the potential to affect organismal physiological performance, fitness and ultimately impact ecosystem biodiversity and function. Physiological tolerances to environmental factors limit the distribution of marine species. Geographically widespread species may distribute across biogeographic breaks. These transitional areas serve as limits to dispersal or adaptation affecting patterns of abundance and variation in phenotypic traits within species and populations. The coast of Chile shows a transitional biogeographic break, in an area around 30-32°S that limits an abrupt discontinuity in upwelling regimes. Upwelling regions present surface waters with low temperature and pH levels and are predicted to be one of the environment most strongly affected by OA [1]. The study of marine benthic organisms that inhabit this area is a useful tool to predict organismal and populational responses to OA. However, only few investigations have considered the change in phenotypic plasticity among geographic populations in marine organisms to OA expected scenarios [2]. Consequently, our study explores the following questions; Vary the effects of OA among populations in same species across a biogeographic break? Are there populational differences in physiological traits at intraspecific level that move beyond a biogeographic break? Is there a similar pattern of pH acclimation capacity between populations ? Is the variability of seawater carbonate system correlated with phenotypic plasticity of populations? MATERIAL AND METHODS Individuals of populations of the marine mollusc Scurria araucana were collected randomly by hand at low tides from intertidal rocky shores situated at three localities along the biogeographic break zone in Chilean coast (Fig.1); Huasco (27° 59' S, 71°18′W), Talcaruca (30° 29' 89 (2016) Pacific Ocean Atlantic Ocean Huasco Talcaruca Los Molles Fig. 1. Location of the study sites along coast of Chile. RESULTS AND DISCUSSION Seawater carbonate chemistry parameters varied significantly among study sites. The highest variability in these parameter levels was recorded in Talcaruca site, which is situated front of the upwelling center (Table 1). S. araucana showed differences in scaling relationship between populations. Furthermore, significant differences (p<0.01) were observed for buoyancy weight and metabolic rate between individuals collected from Huasco, Talcaruca and Los Molles (Fig. 2) Regarding to the CO2 exposure experiment, population of S. araucana from Los Molles showed the lowest metabolic rate at the 400 ppm CO2 treatment (i.e. control) while organisms from Talcaruca showed the lowest metabolic rate was recorded at the 1300 ppm CO2 treatment. Results indicated that S. araucana populations from three selected study sites, show different acclimation ability to OA. In future OA conditions, population from Talcaruca would be less impacted than those populations from Huasco and Los Molles, as this site is characterized by a higher environmental heterogeneity in terms of seawater carbonate chemistry. Therefore, the environmental heterogeneity would help the presence of phenotypic plasticity, leading to a differential response of populations to future OA scenarios. Table 1. Summary of salinity, temperature and seawater carbonate chemistry variables measured in three study locations. Temperature is expressed as ºC. Total alkalinity (TA), TIC, HCO3−, CO32− and CO2 are expressed in mM kg-1 seawater. pCO2 is expressed as μatm. Parameter Salinity Temperature pHNBS TA DIC CO3 pCO2 Ωcalcite Ωaragonite Metabolic rate (mgO2 L h-1g-1) S, 71°41′ W ) and Los Molles (32° 24’ S, 71º 50´W). This sites show differential variability in physical-chemical characteristics of coastal waters. Organisms were transported to the laboratory and maintained at constant temperature (14 ºC) and salinity (33 ppt), aerated seawater, for one week before experimental exposure and measurements of oxygen consumption and cardiac activity (Heart rate, HR). Furthermore, animals were characterized in terms of shell length (mm), total buoyancy weight (g), dry tissue and shell weight (g). After acclimation period a subsample of individuals of S. araucana from Talcaruca and Los Molles were exposed for Oxygen consumption and buoyancy weights were measured at day 10, 20 and 30. Oxygen consumption (O2 mg x L−1) was measured as described by [2]. Cardiac activity was used as a measure of variability in seawater carbonate parameters on physiological performance. Cardiac activity was measured as described in [3] and expressed as heart rate x min-1 . Huasco Talcaruca Los Molles 34.50 ± 0.10 32.70 ± 0.34 32.06 ± 0.32 14.70 8.15 ± 0.12 2235.2 ± 20.0 2045.1 ± 82.6 155.3± 60.2 420.1 ± 122.1 3.96 ± 1.02 2.55 ± 0.82 13.80 7.90 ± 0.41 2279.6 ± 64.3 2158.2± 146.4 103.2 ± 39.6 879.9 ± 332.3 2.51 ± 0.95 1.60 ± 0.59 14.24 8.11 ± 0.14 2225.9 ± 30.2 2037.9 ± 145.1 144.3 ± 34.8 454.1 ± 176.0 3.51 ± 1.59 2.24 ± 1.01 140 B 120 B 100 80 60 A 0 Huasco Talcaruca Los Mollles Latitude Fig. 2. Metabolic rate values in S. araucana populations from three selected study sites. Capital letters represent significant differences (p<0.01) between populations. Mean±SE. ACKNOWLODGEMENTS This work was funded by FONDECYT Grant No. 1140092 and by the Millennium Nucleus Center for the Study of Multiple drivers on Marine Socio-Ecological Systems (MUSELS, MINECON C120086). REFERENCES 1 - Gruber N et al., 2012 Rapid Progression of Ocean Acidification in the California Current System, Science. 2 - Lardies MA et al., 2014. Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. J. Sea Res, 90, 127–134. 3 - Gaitán-Espitia JD et al.,2014 Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol., 217, 4379–4386. 90 (2016) What is the role of the main inlet of Ria Formosa coastal lagoon in the exchanges with the Ocean? A seasonal approach Alexandra Rosa1, Alexandra Cravo1 & José Jacob1 1 CIMA-Centro de Investigação Marinha e Ambiental, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal ABSTRACT Ria Formosa lagoon is a multi-inlet barrier system on the South coast of Portugal, formed by 5 islands, 2 peninsulas and 6 inlets in permanent contact with the Atlantic Ocean. These inlets can be divided into three distinct regions: east, central and west sectors, from where the Faro-Olhão inlet is the most important one in terms of exchanges. The aim of this research addresses the need for improved understanding of the role of this inlet in terms of seasonal mass exchanges (water, nutrients, chlorophyll a and suspended solids) with the adjacent ocean, given the high biological productivity importance of this system. To perform this study, in situ measurements and water samples along a selected cross section were accomplished hourly during 6 complete tidal cycles, covering the different annual seasons. Results reveal that the mass balances depend on a multi-scale temporal fluctuations – tidal and seasonal. The main driving mechanisms explaining the exchanges variability are the biological productivity of the waters and physical processes acting on the adjacent coast. Seasonally, the higher growth of phytoplankton reflected in the chlorophyll a (used as a proxy) was recorded during the springsummer campaigns when there was a relevant export of nutrients, chlorophyll and suspended solids, contributing to fertilize the coast. The occurrence of upwelling, in autumn condition of spring tide revealed to be a key process, having a main role in this coast, driving the fertilization of the Ria Formosa. The high amounts of mass imported into this system contribute to replenish the nutrients and further increase its biological productivity. 1. INTRODUCTION 2. MATERIAL AND METHODS Coastal lagoons are water bodies located in transition zones between land and ocean. Consequently, these are very dynamic and changeable over time. This study is focused on Ria Formosa system (south coast of Portugal), with 55 km long (E-W direction) and a maximum width of 6 km (N-S direction). It is considered a productive shallow lagoon, having 5 islands, 2 peninsulas and 6 inlets. Hydrodynamically, those are divided into three different sectors: east, central and west. The last sector includes Ancão, Faro-Olhão and Armona inlets and is the most important one in terms of water exchanges [1]. It is responsible for ~90% of the lagoon’s total tidal prism, from which 59-71% circulates through Faro-Olhão, 25-37% through Armona and <6% cross Ancão [1][2]. The tides are semi-diurnal, controlling not only the water renewal (about 50-75% in each tidal cycle; [3]), but also the mass exchanges. The main goal of this study at the main inlet of Ria Formosa – Faro-Olhão was: a) to assess the seasonal and tidal variability of mass exchanges of nutrients, chlorophyll a and suspended matter with the Atlantic Ocean, b) understand the interplay of the forcing mechanisms between both environments and c) evaluate the impact of the magnitude of those exchanges upon the phytoplankton activity. 2.1 Field Site, Campaigns and Methods Six seasonal oceanographic campaigns (2012-2013) were conducted in a cross section at the Faro-Olhão inlet under spring and neap tides in Spring and Autumn conditions. Field measurements and samples were carried out over complete semi-diurnal tidal cycles (~ 12.5 h) at three different stations of the cross-section (center of the inlet and both margins). In situ temperature, salinity, pH and dissolved oxygen were measured using a multi-parametric probe YSI (Model 6820). Water samples for the determination of nutrients, suspended solids and chlorophyll a were collected hourly at three depths: Surface, Secchi disk extinction depth and bottom, using a 5 l Niskin bottle. To quantify the mass exchanges, the flow velocity was measured using an ADP (ADP Bottom Track, Sontek) and the variation of the sea level height was measured by 2 pressure transducers (Level TROLL). The nutrients and chlorophyll a concentrations were determined spectrophotometrically, following the methods described in literature [4 and 5, respectively]. The suspended solids were determined using a gravimetric method [6]. The organic and inorganic fractions of those were also determined after combustion of the filters at 450ºC during 4h. The flood, ebb and residual tidal prisms were determined by integrating the hourly flow rate along the tidal cycle. Mass exchanges were obtained multiplying the 91 (2016) flow rate by the average concentrations for the section, then integrating them along the sampling tidal period. RESULTS AND DISCUSSION Data revealed that the variability of parameters depend on multiscale temporal fluctuations, i.e. between fortnightly tidal conditions, Spring tide (ST) vs. Neap tide (NT), and seasonal conditions. Between tides the highest variability along the tidal cycles was observed during spring tides. However, the main processes responsible for the results were both the higher biological activity in Spring and Summer and the occurrence of upwelling in Autumn. This is a frequent process in the south coast of Portugal [7] if the wind is favourable (with strong west component). After these periods nutrients and chlorophyll a are supplied to the coast but can also have influence inside the Ria Formosa, since an import of these compounds from the adjacent ocean by tidal influence was recorded. The reflection of these observations is mirrored in the estimates of mass exchange through Faro-Olhão inlet (Table 1). Table 1. Net tidal prisms and mass exchanges of nutrients, Chlorophyll a (Chl a) and Suspended Solids (SS) during 6 campaigns. Positive values correspond to import into the Ria Formosa and negative values to export to the Ocean. Net Mass exchanges (kg) NH4 Chl a SS -276 -203 25.8 -193 ton -73.8 -15.6 12.8 28 ton -113 -380 -14.3 -110 ton 21.7 43.5 -97.6 2.4 ~ 4 ton 92.7 1290 -253 4.2 -210 ton 4.8 851 -158 Campaign 3 Prism (m ) SiO4 Spring - ST 5.42E+05 -1050 7.7 Spring - NT 7.31E+06 294 126 Summer - ST 7.93E+05 -1040 -306 Autumn - NT -3.11E+05 -68.1 Autumn - ST -1.45E+06 371 Winter - ST -642 -1.97E+05 PO4 NO3 -13.8 -252 ton In Spring and Summer campaigns this inlet behaved as a flood inlet. In opposition, in Autumn and Winter campaigns it behaved as an ebb inlet. Consequently, it showed a changeable behaviour and it cannot be stated that this is a consistent flood inlet, as is sometimes reported in literature [3]. In Spring - ST, chlorophyll a reached the maximum concentration range (0.7-2.5 µg/L), and it corresponded to a total import of ~ 26 kg, along with ~8 kg of phosphate. The remaining nutrients (specifically silicate ~ 1 ton) and SS (193 tons) were exported. As the organic fraction of the SS represents ~55% it means that by that time ~100 ton of organic matter contributed to fertilize the adjacent coast. In Spring - NT there was a general import of mass, except for ammonium and nitrate that were exported from the Ria Formosa. In Summer campaign, there was a maximum export of nutrients. By that time ~14 kg of chlorophyll a was exported, reflecting its higher productivity inside the lagoon than in the coast. As ~ 26% of the SS corresponded to organic fraction, it represented ~ 30 ton to further fertilize the adjacent sea. In Autumn – NT, there was an import of phosphate, nitrate, chlorophyll a and SS, whereas in Autumn - ST, there was an evident increase of nutrients import (~ 90 kg phosphate and > 1 ton nitrate) except for ammonium and SS. This can be explained because this last campaign occurred during an upwelling event, with no wind relaxation, not promoting the phytoplankton growth. In the winter, despite the export of water, chlorophyll a, ammonium, silicate, and suspended solids (majorly inorganic ~ 82%), there was an import of phosphate and nitrate from the coast which, like in Autumn, would contribute to replenish the nutrients and increase the productivity of the Ria Formosa. In summary, at the main inlet of this system – Faro-Olhão, regardless the tide and the net prism of the tide, the higher productivity of the Ria Formosa during Spring and Summer seasons contributes to fertilize the coastal zone, particularly in ammonium and nitrate (that showed to be a source to the coast). In Autumn and Winter seasons, as the nutrients will decrease inside the lagoon by continuous consumption from phytoplankton, even if the inlet behaved as an ebb one, phosphate and nitrate were imported. This shows a deficiency of those nutrients comparatively with their higher availability on the coast. The magnification of the import of nutrients in Autumn - ST was also coincident with the upwelling event, the driving mechanism supplying the nutrients into the lagoon and contributing to further increase its biological productivity. ACKNOWLEDGEMENTS The authors are grateful to all the team members for their support during the campaigns. This work was financially supported by FCT (Portuguese Foundation for Science and Technology) under the project ref: “PTDC/MAR/114217/2009-COALA“. REFERENCES 1 - Pacheco, A., Ferreira, Ó., Williams, J. J., Garel, E., Vila-Concejo, A., & Dias, J. A., 2010. Hydrodynamics and equilibrium of a multiple-inlet system. Marine Geology, 274(1-4), 32–42; 2 - Jacob, J., Cardeira, S., Rodrigues, M., Bruneau, N., Azevedo, A., Fortunato,A. B., Rosa, M., Cravo, A., 2013. Experimental and numerical study of the hydrodynamics of the western sector of Ria Formosa. Journal of Coastal Research, 65, 2011–2016; 3 - Newton, A., & Mudge, S. M., 2003. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuarine, Coastal and Shelf Science, 57(1-2), 73–85; 4 - Grasshoff, K., Erkhardt, M. and Kremling, K. 1983. Methods of Seawater Analysis. Verlag Chemie, New York, 419 pp; 5 - Lorenzen Carl J., 1967. Vertical distribution of chlorophyll and phaeo-pigments: Baja California. Deep Sea Research and Oceanographic Abstracts, 14 (6): 735- 745; 6 - APHA, A., 2002. WPCF, Standard Methods for the Examination of Water and Wastewater. Amer. Public Health Assoc., Washington, DC; 7 - Relvas, P., Barton, E.D., 2002. Mesoescale patterns in the Cape São Vicente (Iberian Peninsula) upwelling region. J. Geophys. Res. 107 (C10), 3164 (28 (1 23)). 92 (2016) Efectos de la carbamazepina sobre la termorresistencia de Artemia parthenogenetica Raquel Samper 1, Ivan Morant 1, Deborah Aurora Perini2, Inmaculada Varó3 & Amparo Torreblanca1 1 Departamento de Biología Funcional y Antropología Física. Universitat de València (España) Universidad de Siena (Italia) 3 Instituto de Acuicultura Torre de la Sal. CSIC (España) 2 RESUMEN En las última décadas se ha realizado un gran esfuerzo para determinar los niveles de las denominadas sustancias emergentes que llegan a los diferentes compartimentos ambientales. Entre estas sustancias se encuentran los fármacos de uso humano o veterinario. La carbamazepina (CBZ) es un medicamento antiepiléptico de uso clínico y se ha detectado su presencia en el medio acuático [1]. Aunque recientemente se han llevado a cabo estudios que contribuyen a conocer los efectos que este medicamento ejerce sobre los crustáceos [2], todavía quedan muchos aspectos por explorar. Artemia constituye un genero de crustáceos que presenta una serie de adaptaciones fisiológicas que le permite vivir en medios hipersalinos (ej. las salinas, lagos y lagunas saladas), cuerpos de agua poco favorables para la vida en cuanto a la salinidad, la temperatura y el oxígeno disuelto [3]. Artemia parthenogenetica es una de las dos especies autóctonas que conviven en las salinas del Parque Natural de las Lagunas de La Mata y Torrevieja (Alicante) [4]. El objetivo del presente trabajo es evaluar si la exposición a CBZ puede alterar la termorresistencia natural y la termorresistencia adquirida mediante choque térmico en la especie partenogenética autóctona de la Mata Artemia parthenogenetica. Para ello, quistes recolectados en la Salinas de la Mata se eclosionaron según el procedimiento descrito por Sarabia et al [4]. Tras la eclosión los nauplios fueron recogidos y mantenidos en condiciones estándar de cultivo (agua de mar y 25ºC) durante una semana. A continuación los individuos fueron expuestos a 1 µg/L y 100 µg/L de CBZ durante 7 días. Se encontró una mayor supervivencia en los individuos expuestos a 1 µg/L de CBZ respecto al grupo control. Tras el período de exposición a la CBZ, y en medio carente de fármaco, se determinó la termorresistencia natural siguiendo el procedimiento descrito por Clegg et al [5], observándose que un choque térmico de 42ºC durante 45 minutos provocaba una menor mortalidad (57%) en el grupo expuesto previamente a 100 µg/L de CBZ respecto a los otros dos grupos experimentales (> 95%). Sin embargo, cuando los animales fueron sometidos a un choque térmico de 39ºC durante 45 minutos en el día previo al choque térmico de 42ºC (termorresistencia adquirida), no se encontraron diferencias debidas a la exposición a CBZ. Se están realizando más estudios para establecer la relación concentración-respuesta del efecto de la CBZ sobre la termorresistencia y evaluar los efectos sobre otros parámetros fisiológicos y bioquímicos. REFERENCIAS 1 - Boxall ABA, Keller VDJ, Straub JO, Monteiro SC, Fussell R, & Williams, RJ, 2014. Exploiting monitoring data in environmental exposure modelling and risk assessment of pharmaceuticals. Environ Int, 73:176-185. 2 - Nieto E, Hampel M, González-Ortegón E, Drake P& Blasco J, 2016. Influence of temperature on toxicity of single pharmaceuticals and mixtures, in the crustacean A. Desmarestii. J. Hazard. Mater.,313:159-169. 3 - Amat F, 1985. Biologia de Artemia. Informes Técnicos Instituto Investigaciones Pesqueras., 127: 3-60. 4 – Sarabia R, Del Ramo J, Varó I, Díaz-Mayans, J & Torreblanca, A, 2008. Sublethal zinc exposure has a detrimental effect on reproductive performance but not on the cyst hatching success of Artemia parthenogenetica. Sci Total Environ, 398(1–3):48-52. 5 – Clegg JS, Jackson SA, Van Hoa N & Sorgeloos P, 2000. Thermal resistance, developmental rate and heat shock proteins in Artemia franciscana, from San Francisco Bay and southern Vietnam . J. Exp. Mar. Biol. Ecol., 252: 85–96 93 (2016) Trace metal accumulation in marine macrophytes: Hotspots of coastal contamination worldwide David Sánchez-Quiles1, Núria Marbà1, Antonio Tovar-Sánchez1,2 1 Department of Global Change Research. Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Miguel Marqués 21, 07190 Esporles, Balearic Island, Spain. 2 Department of Ecology and Coastal Management. Andalusian Institute for Marine Science, ICMAN (CSIC). Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz. Spain. ABSTRACT This study compiles, from 155 peer review research articles, almost 23,000 estimates of trace metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) contents in natural populations of marine macrophytes (seagrasses, chlorophytae, phaeophytae and rhodophytae) worldwide. The objective was to explore the distribution of these metals, to examine its trends of accumulation and to identify hotspots of coastal pollution. Our results point out phaeophytae as the group with the maximum accumulation capacity and tolerance to elevated concentrations of metals, and indicate that, despite of the geographic differences and local and regional influences, exist a similar atomic ratio of trace metals accumulation in the four groups of marine macrophytes regardless the species. The mapping of geographic distribution of metal accumulation in marine macrophytes identifies some coastal areas as hotspots of trace metal contamination. This work aims to provide a reference for futures studies. INTRODUCTION MATERIALS AND METHODS Studies of trace metals concentrations in marine macrophytes are essential to elucidate their role in the ecology and oceans. While global assessments of concentrations and requirements of metals in marine organisms have been examined for phytoplankton and for seagrass leaves [1,2], information about the most representative macrophytes is almost nonexistent. In marine macrophytes Co, Cu, Fe, Mn, Ni and Zn act as micronutrients working as cofactors in several enzymes and vitamins, and in several metabolic paths [3,4]. However, As, Cd, Cr, Hg or Pb do not have a essential biological role in plant’s metabolism and even in low concentrations have negative effects on plant growth [5–7]. Since metal accumulation in marine macrophytes depends strongly on the specie, location, and season [8], a global overview of metal composition might help to better understanding of biological requirements and tolerance under different environments conditions. Here, we have assessed the variability in accumulation of major trace metals in seagrasses and in the three groups of macroalgae (phaeophytae, chlorophytae and rhodophytae) and we have identified some hotspots of coastal contamination by compiling reported estimates of trace metal concentrations in marine macrophytes worldwide. Results from this meta-analysis will be useful to compare future results from studies on metal composition in macrophytes and to have a baseline that allows assess and detect natural or anthropogenic environmental changes. The data set includes concentration of eleven trace metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in marine macrophytes worldwide. From each study we recovered latitude and longitude, macrophyte species, macrophyte group, concentration of each metal and year of publication. Due to the great number of observations collected we have used robust statistics estimators to characterize the populations: the 0.2-truncated mean, used as robust measure of the central tendency, and the 0.2-Winsorized Standard Deviation, used as a robust estimation of the variability. As the robust, the resampling methods provide consistent results. These are based on repeated sampling within the same sample. Here we used one of the most implemented resampling techniques: the bootstrap, in order to constructing hypothesis tests through the estimation of intervals to compare differences between two independent populations. For each analysis we performed 1,000 resamples of each sample. RESULTS AND DISCUSSION The data set includes values of trace metal concentrations in marine macrophytes reported in 155 peer review papers published between 1956 and 2014. We compiled a total of 22,969 estimates of concentration for different metals: As (2.4 %), Cd (13.5 %), Co (4.6 %), Cr (6.1 %), Cu (14.0 %), Fe (10.1 %), Hg (4.3 %), Mn (9.2 %), Ni (8.5 %), Pb (12.4 %) and Zn (14.7 %) in seagrasses (34.9 %), chlorophytae 94 (2016) (25.9 %), phaeophytae (22.5 %) and rhodophytae (16.7 %) with a widely geographical distribution. Our results reveals the different capacity of the marine macrophytes to accumulate metals in their tissues with a significance level of 0.05: We have found that 1) phaeophytae present significantly higher concentrations than seagrasses, chlorophytae and rhodophytae of As, Cd, Co and Zn; 2) Chlorophytae shows the highest concentrations of Fe and Mn; 3) Seagrasses present the highest concentration of Cu and the lowest of Hg and Mn; and 4) Rhodophytae have significantly lower concentrations in 5 of the 11 trace metals studied, than the other plants: i.e. Cr, Cu, Fe, Pb and Zn. Moreover, the atomic ratio of metals concentrations in each group show similar pattern of accumulation suggesting that the ability to accumulate trace metal is equal in all macrophytes, regardless the different species and locations. Due to marine macrophytes are good tools to control metal concentrations, we have identified some hotspots of trace metals in coastal areas worldwide (Fig. 1). Some of these areas are clearly influenced by human activities that increase the amount of metals discharged in the marine ecosystem. That is the case of the coasts of the Mediterranean and the Black Sea, where we have found many hotspots of trace metals pollutions (i.e. Cd, Cr, Cu, Fe, Hg, Ni, Pb and Zn). The gulfs region of South Australia (Spencer Gulf and Gulf St Vicent) is another example of metal contamination by anthropogenic activities. We have found in this region, elevated concentrations of As, Cd, Pb and Zn. The Bay of Bengal, in the Indian Sea, is another hotspot of trace metal contamination due to the elevated concentration of metals found in marine macrophytes. Concretely, in the coasts of Andaman Island we have found elevated concentrations of Cr, Cu and Mn. The particular geography of Chile and the upwelling that occurs in its coast could increase the concentrations of trace metals in marine macrophytes. We have found along the coast of Chile hotspots of Cr, Cu, Fe, Ni and Zn. It is remarkable that, although the Antarctic is far from human influence, its coast presents elevated concentrations of As, and Co in plants collected from King George Island. This could be due to natural processes like the volcanic composition of the rocks near the sampling place. This natural origin of As contrast with other hotspots found in other bays from England, France and China. It is also notable that the Gulf of Mexico does not present any hotspot instead of its strong anthropogenic pressure. The extensive database of metal concentration in marine macrophytes compiled in the present work could help in future monitory programs of the coastal pollution and provide a reference for futures studies. Fig. 1. Worldwide hotspots of trace metals. REFERENCES 1. Govers LL, Lamers LPM, Bouma TJ, Eygensteyn J, de Brouwer JHF, Hendriks AJ, Huijbers CM, van Katwijk MM. Seagrasses as indicators for coastal trace metal pollution: A global meta-analysis serving as a benchmark, and a Caribbean case study. Environ. Pollut. 2014 Dec;195:210–217. 2. Twining BS, Baines SB. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 2013;5:191– 215. 3. Fageria NK, Baligar VC, Clark RB. Micronutrients in Crop Production. In: Donald L. Sparks, editor. Adv. Agron. [Internet]. Academic Press; 2002 [cited 2014 Feb 25]. p. 185–268. 4. Marschner H. 9 - Functions of Mineral Nutrients: Micronutrients. In: Marschner H, editor. Miner. Nutr. High. Plants Second Ed. [Internet]. London: Academic Press; 1995 [cited 2014 Apr 26]. p. 313–404. 5. Lamai C, Kruatrachue M, Pokethitiyook P, Upatham ES, Soonthornsarathool V. Toxicity and Accumulation of Lead and Cadmium in the Filamentous Green Alga Cladophora fracta (O.F. Muller ex Vahl) Kutzing: A Laboratory Study. ScienceAsia. 2005;31:121–127. 6. Stewart JG. Effects of lead on the growth of four species of red algae. Phycologia. 1977 Mar;16:31–36. 7. Strömgren T. The effect of lead, cadmium, and mercury on the increase in length of five intertidal fucales. J. Exp. Mar. Biol. Ecol. 1980;43:107–119. 8. Hou X, Yan X. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci. Total Environ. 1998 Oct;222:141–156. 95 (2016) Efecto de la acidificación oceánica en la química del hierro y su interacción con la materia orgánica J. Magdalena Santana-Casiano Instituto de Oceanografía y Cambio Global. Universidad de Las Palmas de Gran Canaria RESUMEN El efecto del incremento del CO2 de origen antropogénico en el sistema de carbonatos en el océano y la consecuente disminución del pH, es una de las líneas de investigación oceanográfica más relevantes en el contexto del cambio global. La variación de pH afecta directamente a la especiación de metales traza esenciales para el desarrollo de los organismos fitoplanctónicos y, por lo tanto, a su comportamiento biogeoquímico en el medio marino, debido a los cambios que se producen en los equilibrios ácido-base, oxidación-reducción, solubilidad-precipitación y complejación. La variación de pH también va a afectar al fitoplancton marino desde una perspectiva química, modificando el grado de protonación de los grupos superficiales de la pared celular y afectando a la especiación de los productos orgánicos excretados. Estos cambios, tanto en la especiación del metal traza, como en los grupos funcionales de los compuestos orgánicos excretados por los organismos y por el propio cambio en la pared celular van a repercutir en el comportamiento del metal y en su interacción con el fitoplancton. Sin embargo, se tiene un gran desconocimiento del efecto que puede tener un cambio de pH en la interacción del hierro con compuestos orgánicos excretados por el fitoplancton, como los compuestos polifenólicos, aminoácidos, polisacáridos y sideróforos en particular, y cómo afectará esto a la biodisponibilidad de hierro en el medio marino. INTRODUCCIÓN Aunque existen numerosas referencias sobre la importancia de los metales traza, sus ciclos y aportes en el medio marino, debido a proyectos internacionales como GEOTRACES, gran cantidad de información sobre el CO2 en los océanos, potenciada por proyectos como CARBOCHANGE, CARBOOCEAN o ATLANTOOS, y sobre los estudios de acidificación oceánica y efecto en las comunidades biológicas, iniciados a partir de los proyectos EPOCA y BIOACID, la investigación sobre la influencia del aumento del CO2, en cuanto a acidificación y calentamiento, y la investigación sobre la biogeoquímica de los metales traza, continúan tratándose como disciplinas independientes. El pH y la temperatura son dos variables que controlan los procesos químicos y biológicos en el medio marino y, por lo tanto, las investigaciones relacionadas con la biogeoquímica de los metales traza, la acidificación océanica y el calentamiento de las aguas superficiales deberían estar ligadas. Las publicaciones relacionadas con estudios en el océano sobre las múltiples interacciones entre el pH, la temperatura y los metales traza son escasas, pero dan cuenta de la complejidad y el significado que tendría el realizar este tipo de estudios [1,2] promovidos también por el programa internacional IMBER (Integrated Marine Biogeochemistry and Ecosystem Research). Dentro de las estrategias del programa IMBER, en el tema correspondiente a la Sensibilidad al Cambio Global, se plantea el conocer cuáles son las respuestas que presentan los ciclos biogeoquímicos claves, ecosistemas y sus interacciones debidas al cambio global y se propone el estudio del efecto del incremento de CO2 atmosférico y cambio de pH en los ciclos biogeoquímicos y sus interacciones. Y en concreto, el efecto que los cambios de pH producen en la biodisponibilidad y especiación de metales esenciales para el desarrollo del fitoplancton marino. En este trabajo se realiza una revisión de los estudios realizados por el grupo QUIMA de la ULPGC para entender el efecto que el calentamiento y la acidificación oceánica tienen en el ciclo del hierro (Fig. 1) en el medio marino. EVOLUCIÓN DE LOS ESTUDIOS PLANTEADOS. RESULTADOS Y DISCUSIÓN Efecto del calentamiento y acidificación oceánica en la especiación y cinética de oxidación del Fe(II) en condiciones oligotróficas y eutróficas [3]. El efecto de los nutrientes (nitratos, fosfatos y silicatos) en la cinética de oxidación de Fe(II) a concentraciones nanomolares se ha evaluado en function del pH (7.2-8.2), la temperatura (5-35 ºC) y la salinidad (10-37.09) observándose que la constante que define la velocidad de oxidación del Fe(II) (kapp) es mayor en presencia de nutrientes produciéndose 96 (2016) las mayores variaciones a temperaturas más altas, en todo el rango de pH considerado. La disminución de pH reduce la velocidad de oxidación del Fe(II). La especiación de Fe(II) que controla el proceso está constituida por Fe2+, FeOH+, Fe(OH)2, FeCO3(OH)-, FeCO3, Fe(CO3)22-, + FeH3SiO3 , FePO4 . Interacción de Fe(II) con otros metales esenciales como el Cu [4,5]. La presencia de Cu(I) y Cu(II) en el medio produce una aceleración en la oxidación de Fe(II) que se explica por un acoplamiento redox entre el Fe y el Cu, por una competición por especies inorgánicas (hidroxilos y carbonatos) y por la formación de precipitados Fe-Cu, jugando los intermedios de oxidación de oxígeno (O2· y H2O2) un papel importante en este proceso. Producción de exudados por el fitoplancton [6,7]. P. tricornutum y D. tertiolecta excretan al medio polifenoles cuyas concentraciones y composición depende de la cantidad de Fe y Cu presente en el medio. Esta respuesta esta relacionada con las necesidades del fitoplancton por estos metales. Efecto de los exudados de fitoplacton en la cinética de oxidación del Fe(II) [8,9]. Los estudios realizado en presencia de exudados de P. tricornutum y D. tertiolecta en diferentes condiciones de pH, temperatura y salinidad demuestran que kapp disminuye con el pH, T y S, por lo que la presencia de estos compuestos orgánicos favorecen la presencia de Fe(II) en el medio. Efecto de los compuestos orgánicos en el ciclo redox del Fe [10,11]. Los compuestos polifenólicos como el catecol producen una reducción del Fe(III) a Fe(II), lo que se ve favorecido por una disminución en el pH. Esto se explica por la competición que se produce entre el Mg(II) y el Fe(III) por el radical semiquinona implicado en el proceso de reducción de Fe(III). Este mismo comportamiento se observa para dos polifenoles excretados por P. tricornutum y D. tertiolecta, el catequin y el ácido sinápico. El estudio se realiza bajo diferentes escenarios de acidificación oceánica. Modelización del comportamiento del hierro en diferentes escenarios de acidificación oceánica Los estudios en mesocosmos [12] y en zonas de emission hidrotermal submarina de CO2, como los realizados en la zona del volcán submarino de El Hierro [13,14], nos permiten ampliar nuestro conocimiento sobre el comportamiento del hierro en condiciones de acidificación, convirtiéndose el area en un laboratorio de experimentación natural en el que se combinan multiples factores. Fig. 1. Ciclo redox del hierro en el medio marino AGRADECIMIENTOS Estos estudios han sido financiados por los proyectos ECOFEMA (CTM2010-19517-mar) y EACFe (CTM2014-52342-P) del Ministerio de Economía y Competitividad. Los estudios en el volcán submarino de El Hierro han sido posibles por CARBOCHANGE (264879) VULCANO (CTM2012-36317) y VULCANA (IEO, 2015-2017). Para entender, explicar y modelizar los procesos que controlan el ciclo biogeoquímico del hierro, es necesario combinar los resultados obtenidos a partir de estudios de laboratorio, en los que se pueden controlar y modificar las condiciones experimentales, con los obtenidos en el medio marino. REFERENCIAS 1 - Boyd PW & Ellwood MJ, 2010. The biogeochemical cycle of iron in the ocean. Nat. Geoscien. 3:675-682. 2 - Hassler CS et al., 2011. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. PNAS. 108:1076-1081. 3 - Samperio G et al., 2016. Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters. Biogeochemistry. DOI 10.1007/s10533-016-0192-x. 4 - González-Dávila et al., 2009. Oxidation of Copper(I) in Seawater at Nanomolar Levels. Mar. Chem. 115:118-124. 5 - González et al. 2016. Redox interaction of Fe and Cu in seawater. Mar. Chem. 179:12-22. 6 - Rico M et al., 2013. Variability of the phenolic profile in Phaeodactylum tricornutum diatom growing under copper and iron stress. Limnol. Oceanogr. 58:144-152. 7 - López A et al., 2015. Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron Environ. Sci. Pollution Res. 22: 14820-14828 97 (2016) 8 - González AG et al., 2012. Effect of organic exudates of Phaeodactylum tricornutum on the Fe(II) oxidation rate constant. Ciencias Mar. 38:245-261. 9 - González AG et al., 2014. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater. Environ. Sci. Technol. 48:79337941. 10 - Santana-Casiano JM et al., 2010. Fe(III) reduction in the presence of Catechol in seawater. Aquatic Geochem. 16:467-482. 11 - Santana-Casiano JM et al., 2014. Characterization of phenolic exudates from Phaeodactylum tricornutum and their effects on the chemistry of Fe(II)-Fe(III). Mar. Chem. 158:10-16. 12 - Breitbarth E. et al., 2010. Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment. Biogeosciences 7:1065-1073. 13 - Santana-Casiano JM et al., 2013. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci. Reports 3:1140 DOI: 10.1038/srep01140 14 - Santana-Casiano JM et al., 2016. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island. Sci. Reports 6:25686 DOI: 10.1038/srep25686 98 (2016) Behaviour of CeO2 nanoparticles and bulk and their toxicity in freshwater and seawater microalgae Marta Sendra1, Ignacio Moreno-Garrido1, Pilar Yeste2, José Manuel Gatica2 & Julián Blasco1. 1 Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC).Campus Río S. Pedro.11510, Puerto Real, Cádiz, Spain. 2 Department of Inorganic Chemistry. Faculty of Sciences. University of Cádiz. Campus Río S. Pedro.11510, Puerto Real, Cádiz, Spain ABSTRACT The production of manufactured nanomaterials has risen exponentially in recent years. Despite this growth, information regarding the fate and behavior of nanoparticles (NPs) in freshwater and marine environment is still limited. CeO2 NPs are used for polishing and decolorizing glass, opacifier in vitreous enamels and photochromic glasses, heat-resistant alloy coatings; as a cracking catalyst, as a catalyst for automobile emission control, in ceramic coatings, in phosphors, in cathodes, in capacitors, in semiconductors, in refractory oxides, gemstone polishing. The aim of the current study was to assess the toxicity of CeO2 in two species of microalgae from freshwater to marine microalgae Three aspects were studied under laboratory conditions, I) CeO2 NPs and Bulk behavior in different culture media used for bioassays, II) toxicity of different type of CeO2 NPs and bulk and III) quantification of intracellular and extracellular NPs and Bulk CeO2. The experiment was performed for two microalgae. Phaeodactylum tricornutum, and Chlamydomonas reinhardtii, seawater and freshwater species respectively. Both studies were carried out under white light illumination. CeO2 aggregation rate was increased by ionic strength. Moreover, the presence of algal cells affects the stability of CeO2 suspensions, where heteroagglomeration process were present as the first mechanism of NP-cell interaction. Both, nano and bulk CeO2 formed aggregates during incubation, but CeO2 NPs formed large aggregates trapped almost completely between algae more than bulk CeO2 did, because NPs are more bioavailable over bioassays. INTRODUCTION The growing use of manufactured nanomaterials in consumer products have as result that engineered nanoparticles (ENPs) are inevitably released into aquatic systems, including oceans; coastal waters are the ultimate sink form (ENPs) (1-3). ENPs is raising questions as to whether nanosized materials should be regulated differently to macroscopic forms of the same compounds in terms of the risks they pose both to human and ecosystem health (4-6). The choice of CeO2 was reinforced by its wide potential usage, particularly as an additive to diesel fuels where it improves the combustion efficiency of engine carbon deposits, reducing particulate emissions and improving fuel efficiency (7). It has also been shown to be an effective photocatalyst for water decomposition (8). In microalgae, the cytotoxicity seems to be due to membrane damage, impairment of the effective quantum yield of PS II and cell cycle (9, 10). The extent and type of damage depend on physicochemical characteristics of CeO2 NPs (e.g., size, charge, crystalline forms and coating) and environmental factors (e.g., ionic strength (IS), pH and dissolved organic materials which governs their bioavailability and reactivity)(11-13). In this work, toxicity of different types of CeO2 NPs (NPs in suspension water and powder) and bulk CeO2 on two phytoplanktonic species (Paeodactylum tricornutm, from marine, and Chlamydomonas reinhardtii, from freshwater environment) were assessed. The joint effect of UV-A radiation has been taken in account in order to improve the knowledge of the mechanism involved in the CeO2 NPs and bulk toxicity in environmental conditions. MATERIAL AND METHODS 99 (2016) Characterization of CeO2 NPs and bulk CeO2. Textural characterization of samples was carried out by measuring the absorption/desorption of N2 at 196 °C, employing a Micromeritics ASAP 2010 automatic device. Before measurements, samples were submitted to a surface cleaning pre-treatment under high vacuum at 200 °C during 2 hours. The obtained isotherms were used to calculate the specific surface area (SBET) as well as the micro- and mesoporosity features of studied samples. Initial particle size of CeO2 NPs, as well as zeta potential of CeO2 in both forms (NPs and bulk) were studied in ultrapure water, freshwater and artificial marine water through Dynamic Light Scattering (Zetasizernano ZS90,Malvern, and its software version 7.10) at 1 mg·L-1. CeO2 NPs dispersion was prepared in ultrapure water, following the Standard protocol CEINT/NIST 1200-3 and 1200-4 (14, 15). Particle size, shape and structure were confirmed by Transmission Electron microscopy (TEM). Agglomeration of CeO2 NPs was evaluated over time (0, 0.5, 1, 3, 6, 24 and 48 h) in different media (ultrapure water, synthetic freshwater and synthetic marine water)(16, 17). Initial concentration in studied samples was 250 mg·L1 in freshwater and marine water, but for ultrapure water concentrations of 250 mg·L-1 and 500 mg·L-1were evaluated. Changes in agglomeration states were measured by a Master Sizer 2000, Malvern with the software version 5.61. Test organisms. Two microalgal species were selected, one of them from freshwater environment (Chlamydomonas reinhardtii P.A. Dangeard (1888), CHLOROPHYCEAE) and another from marine environment (Phaeodactylum tricornutum Bohlin (1897), BACILLARIOPHYCEAE) both obtained from the ICMAN Marine Microalgae Culture Collection (IMMCC). Cells were grown in filtered (0.2 µm) freshwater culture medium and F/2 marine medium lacking EDTA for two weeks prior to the experiment (16, 18). Synthetic marine water used was the Substitute Ocean Water D1141-75 from ASTM (17). Toxicity bioassays Bioassays were carried out using CeO2 NPs or bulk CeO2. Two light treatments were also applied: continuous visible light (300 µE-2s-1) and the same light regime plus 6 h of UV-A (0.20 mWcm-2, Multiple Ray Lamp) per day. The intensity of UV-A was measured with a digital UVX radiometer (UVP, Analytic Jena Company). A series of screening assays were developed to determine the potential for the CeO2 particles to EC 50% of growth inhibition respect to the controls following OECD (1994) Guidelines(19), effective quantum yield of photosynthetic energy conversion in PSII in dark was measured by fluorometry using a Phyto-PAM (Heinz Walz GmbH) (20), reactive oxygen species (ROS) production were measured by FACSCalibur Flow Cytometer (Becton-Dickinson®) (21, 22) and membrane integrity was also quantified, following the Propidium Iodide (PI) method (23) by the flow cytometer. RESULTS AND DISCUSSION. Characterisation of the CeO2 particles (NPs and bulk) was performed using a combination of techniques in order to provide information on the particles, chemistry, surface area, morphological shape, porosity and size distribution. TEM analysis showed the significant difference in particle size of the material studied. Despite all suspensions showing considerable aggregation in different culture media (freshwater and artificial marine water), the primary particle size and aggregates size measured by DLS were smaller for the nanoparticles into water suspension (105.8 and 196.4 nm) than power nanoparticles and bulk (731 and 4567 nm). Zeta potential of NPs were negative charged between -18 and -56 mV. The flow cytometric data indicate that nano CeO2 increases ROS production and membrane permeability more than bulk where growth of culture and effective quantum yield were lower when culture were exposed to NPs. Experiments under UV-A regime showed higher toxicity because its photocatalytic properties, so this condition due to be considered in bioassays which photorreactive substances are used. ACKNOWLEDGEMENTS This work was supported by PE2011-RNM-7812 project and Spanish National Research Plan (MINECO) CTM2012-38720-C03-03. The ERF funds has been supported this project. We would like to thank to Dr. Catalina Fernández from IFAPA-CICEM El Toruño for her support in the DLS measurements. REFERENCES 1. Ratnasekhar C, Sonane M, Satish A, Mudiam MKR. Metabolomics reveals the perturbations in the metabolome of Caenorhabditis elegans exposed to titanium dioxide nanoparticles. Nanotoxicology. 2015;9(8):9941004. 2. Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G. Bivalve molluscs as a unique target group for nanoparticle toxicity. Marine environmental research. 2012;76:16-21. 3. Canesi L, Fabbri R, Gallo G, Vallotto D, Marcomini A, Pojana G. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, NanoTiO 2, Nano-SiO 2). Aquatic Toxicology. 2010;100(2):168-77. 4. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P. Assessing the Risks of Manufactured 100 (2016) Nanomaterials. Environmental Science & Technology. 2006;40(14):4336-45. 5. Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, et al. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environmental Chemistry. 2010;7(1):50-60. 6. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of Engineered Nanoparticles in the Environment. Analytical Chemistry. 2013;85(6):3036-49. 7. Park B, Martin P, Harris C, Guest R, Whittingham A, Jenkinson P, et al. Initial in vitro screening approach to investigate the potential health and environmental hazards of Envirox™–a nanoparticulate cerium oxide diesel fuel additive. Particle and fibre toxicology. 2007;4(1):1. 8. Bamwenda GR, Arakawa H. Cerium dioxide as a photocatalyst for water decomposition to O 2 in the presence of Ce aq 4+ and Fe aq 3+ species. Journal of Molecular Catalysis A: Chemical. 2000;161(1):105-13. 9. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17(5):372-86. 10. Dalai S, Pakrashi S, Joyce Nirmala M, Chaudhri A, Chandrasekaran N, Mandal AB, et al. Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology. 2013;138–139:1-11. 11. Gonzalez L, Lison D, Kirsch-Volders M. Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology. 2008;2(4):252-73. 12. Liu Y, Li S, Chen Z, Megharaj M, Naidu R. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere. 2014;108:42632. 13. Zhao J, Wang Z, White JC, Xing B. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology. 2014;48(17):9995-10009. 14. Taurozzi J, Hackley V, Wiesner M. Preparation of a nanoscale TiO2 aqueous dispersion for toxicological or environmental testing. NIST Special Publication. 2012;1200:3. 15. Taurozzi J, Hackley V, Wiesner M. Preparation of Nanoscale TiO2 Dispersions in Biological Test Media for Toxicological Assessment. NIST Special Publication. 2012;1200:4. 16. Fábregas J, Domínguez A, Regueiro M, Maseda A, Otero A. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Applied Microbiology and Biotechnology. 2000;53(5):530-5. 17. ASTM. Standard specification for substitute ocean water. Designation D 1141-75 American standard for testing and materials. 1975. 18. Guillard RRL, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Canadian Journal of Microbiology. 1962;8(2):229-39. 19. Oecd. OECD Guidelines for the Testing of Chemicals: Organization for Economic; 1994. 20. Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of photosynthesis: Springer; 1995. p. 49-70. 21. He YY, Klisch M, Häder DP. Adaptation of Cyanobacteria to UV‐B Stress Correlated with Oxidative Stress and Oxidative Damage¶. Photochemistry and photobiology. 2002;76(2):188-96. 22. Stachowski-Haberkorn S, Jérôme M, Rouxel J, Khelifi C, Rincé M, Burgeot T. Multigenerational exposure of the microalga Tetraselmis suecica to diuron leads to spontaneous long-term strain adaptation. Aquatic toxicology. 2013;140:380-8. 23. Xiao X, Han Z-y, Chen Y-x, Liang X-q, Li H, Qian Y-c. Optimization of FDA–PI method using flow cytometry to measure metabolic activity of the cyanobacteria, Microcystis aeruginosa. Physics and Chemistry of the Earth, Parts A/B/C. 2011;36(9):424-9 . 101 (2016) Variabilidad estacional de la concentración de N2O en el Golfo de Cádiz: Flujos agua-atmósfera A. Sierra1, *, D. Jiménez-López1, T. Ortega1, R. Ponce1, M.J. Bellanco2, R. Sánchez-Leal2, A. Gómez-Parra1 y J. Forja1 1 Dpto. Química-Física. CACYTMAR.Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 – Puerto Real, Cádiz, Andalucía, España. 2 Instituto Español de Oceanografía. Centro Oceanográfico de Cádiz. Puerto Pesquero, Muelle de Levante s/n. Apdo. 2609. E11006, Cádiz (España). *Correo del autor: [email protected] RESUMEN Se ha determinado la variabilidad estacional de N2O durante 2014 y 2015 y a lo largo de varias secciones (Guadalquivir, Sancti Petri y Trafalgar) en el Golfo de Cádiz. Las concentraciones de N2O se han cuantificado mediante un cromatógrafo de gases. Se ha observado un aumento de la concentración de este gas con la profundidad, provocado por las propias características termodinámicas de la zona y por la remineralización bentónica. La zona de estudio se comporta como una fuente de N2O a la atmósfera con emisiones globales de 0,21 y 0,17 Gg N2O año-1 en 2014 y 2015 respectivamente. Es en la sección de Guadalquivir dónde se producen los flujos medios más elevados durante los dos años de estudio, probablemente relacionado con la mayor producción primaria detectada en la zona. INTRODUCCIÓN El óxido nitroso a pesar de estar presente en menor concentración que el CO2, tiene un efecto en el calentamiento global 298 veces mayor [1] y además una vez emitido, posee un tiempo de residencia en la atmósfera de 114 años [2]. El N2O, se produce de forma natural por diversas fuentes biológicas presentes en el suelo y en el agua, aunque existen también fuentes antropogénicas, como son el uso de fertilizantes, la quema de biomasa y algunas actividades industriales [3]. El N2O generado en el medio marino aparece principalmente por dos procesos microbianos, como son la nitrificación y la desnitrificación. Ambos procesos pueden tener lugar en los sedimentos, la columna de agua o en el interior de partículas en suspensión. La producción oceánica de N2O está principalmente relacionada con los procesos de nitrificación, y sólo un 7% de este gas se genera como intermedio de reacción en los procesos de desnitrificación [4]. MATERIAL Y MÉTODOS El área de estudio es la parte oriental del Golfo de Cádiz, situado al suroeste de la península Ibérica. La hidrodinámica en el Golfo de Cádiz se encuentra dominada por el intercambio de masas de aguas que se produce en el Estrecho de Gibraltar, entre el océano Atlántico y el mar Mediterráneo. A la circulación general que tiene lugar en el Golfo de Cádiz, hay que añadirle la entrada de aguas continentales procedentes de diversos ríos, como el Guadalquivir. Las muestras se tomaron durante la realización de las campañas STOCA de 2014 y 2015 a bordo de los buques oceanográficos Ángeles Alvariño y Ramón Margalef. En cada una de las campañas, se han llevado a cabo tres secciones perpendiculares a costa, con diferentes estaciones de muestreo en cada una y a determinadas profundidades. Estas secciones se localizan en la desembocadura del Guadalquivir, del caño de Sancti Petri y en el cabo de Trafalgar. Para el análisis de N2O, las muestras se tomaron por duplicado en frascos Winkler de 250 mL, se fijaron con HgCl2 para inhibir procesos microbiológicos, y se sellaron con grasa Apiezon® para prevenir el intercambio gaseoso con la atmósfera. La concentración de N2O disuelto se determinó utilizando un cromatógrafo de gases Bruker® GC-450 provisto de un detector de captura electrónica, tomando unos 25 g (±0,01 g) de la muestra mediante el uso de una jeringa de cristal (Agilent P/N 5190-1547) y 25 mL de un gas patrón de concentración conocida (300 ppbv). Tras esto, se agita la jeringa durante 5 minutos (VIBROMATIC Selecta) y se deja reposar para alcanzar una situación de equilibrio. Por último, el gas es inyectado en el cromatógrafo de gases. Esta operación se realizó por duplicado para cada frasco Winkler. La concentración de gases en el agua se calculó a través de las medidas realizadas sobre el espacio de cabeza de las muestras, usando las solubilidades propuestas por Weiss y Price (1980) [5]. Para la estimación de los flujos atmósfera-océano se utilizó la expresión: F = k(CW – C*) -1 donde k (cm h ) es la velocidad de transferencia del gas, Cw (mol L-1) es la concentración del gas en el agua, y C* 102 (2016) (mol L-1) es la solubilidad del gas a la temperatura de equilibración (25 ± 1 °C) y a la salinidad de la muestra. RESULTADOS Y DISCUSIÓN Durante los dos años, se ha observado una variabilidad estacional de la concentración de N2O, además de la misma distribución en todas las secciones, valores más bajos en superficie y más elevados en zonas profundas. Sin embargo, apenas se han apreciado variaciones longitudinales de este gas. Esta distribución coincide a la encontrada por Han et al (2013) [6] en el noroeste del Mar del Sur de China. Tanto en aguas superficiales, como en profundas, se ha observado un control térmico sobre la concentración de N2O, existiendo una relación inversa entre la distribución del N2O y la temperatura (Fig. 1). Este mismo comportamiento, fue encontrado por Morell et al (2001) [7], en un estudio realizado en las costas de Puerto Rico. Ferrón et al (2010a) [8], 7,3 Gg año-1, para una superficie menor del Golfo de Cádiz (15,86 x 102 Km2). Los océanos actúan como fuentes de N2O a la atmósfera, representando la emisión oceánica de este gas, incluyendo las plataformas continentales y los estuarios, el 29% de las emisiones globales de N2O a la atmósfera [6]. Tabla 1. Variación de los flujos medios de N2O para cada sección: Guadalquivir (GD), Sancti Petri (SP) y Trafalgar (TF), diferenciando entre zona costera y distal. Sección Flujo N2O (µmol m-2d-1) Zona costera Zona distal (< 75m) (>75 m) GD 3,82 3,69 SP 3,09 1,30 TF 2,21 0,62 AGRADECIMIENTOS Este trabajo ha sido financiado por los proyectos STOCA (Instituto Español de Oceanografía) y CTM2014-59244C3. REFERENCIAS Fig. 1. Variación de la concentración de N2O (nM) para la sección de Guadalquivir durante junio de 2015. No se han encontrado variaciones importantes de la concentración de N2O entre las diferentes secciones estudiadas, aunque la de Guadalquivir presenta valores ligeramente superiores (10,12 ± 1,02 nM). Este hecho, se puede deber a un mayor aporte continental de materia orgánica y nutrientes proveniente del río Guadalquivir. Las concentraciones globales medidas (9,98 ± 0,89 nM), son más bajas que las determinadas por Ferrón et al (2010 a) [8] (16,58 ± 0,89 nM) en aguas del Golfo de Cádiz, ya que este último estudio se centró en una zona más próxima a costa. Los flujos medios de N2O son positivos, es decir, el Golfo de Cádiz actúa como fuente de estos gases a la atmósfera, exceptuando diciembre de 2015 que presenta un flujo negativo, actuando así la zona como sumidero de dicho gas. Los flujos de este gas, al igual que ocurre con sus concentraciones, presentan una variabilidad estacional, con valores más elevados en las estaciones de verano y otoño y menores en invierno. A su vez, los flujos de N2O, presentan valores mayores cerca de costa y menores en las zonas distales en todas las secciones y para todo el periodo de tiempo estudiado (Tabla 1). Este hecho podría atribuirse al efecto que presentan los mayores aportes continentales y fluviales en zonas más someras, produciendo así una intensificación de los procesos de mineralización de la materia orgánica con la correspondiente liberación de nutrientes y gases a la columna de agua. Las emisiones globales para el área de estudio (43,83 x 102 Km2) son de 0,21 y 0,17 Gg N2O año-1 en 2014 y 2015 respectivamente. Este valor es inferior al calculado por 1 - Houghton, J.T., Jenkins, G.J., Ephramus, J.J., 1990. Climate Change: The Ipcc Scientific Assessment. Cambridge University Press, Cambridge. 365 pp. 2 - Intergovernmental Panel of Climate Change (IPCC), 2014. Climate Change 2014: Synthesis Report. Summary for Policymakers. 31 pp. 3 - Intergovernmental Panel of Climate Change (IPCC), 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 4 - Freing, A., Wallace, D. W., y Bange, H. W., 2012. Global oceanic production of nitrous oxide. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1593): 1245-1255. 5 - Weiss, R. F., y Price, B. A., 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry, 8(4): 347-359. 6 - Han, Y., Zang, J.Z., Zhao, Y.C., Liu, S.M., 2013. Distributions and sea-to-air fluxes of nitrous oxide in the coastal and shelf waters of the northwestern South China Sea. Estuarine Coastal and Shelf Science, 133: 32-44. 7 - Morell, J. M., Capella, J., Mercado, A., Bauzá, J., y Corredor, J. E., 2001. Nitrous oxide fluxes in Caribbean and tropical Atlantic waters: evidence for near surface production. Marine chemistry, 74(2): 131-143. 8 - Ferrón, S., Ortega, T., y Forja, J. M., 2010a. Nitrous oxide distribution in the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula). Marine Chemistry, 119(1): 22-32. 103 (2016) 9 - Seitzinger, S.P., Kroeze, C., Styles, R.V., 2000. Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere: Global Change Sci., 2, 267-279. 104 (2016) Historical record and sources of metals in core sediments from Maó Harbour, Minorca, Spain Antonio Tovar-Sánchez1,2, Marly C. Martínez-Soto3, David Sánchez-Quiles2, Jordi GarcíaOrellana4,5, Antoni Jordi3, Miguel A. Huerta-Diaz6, Gotzon Basterretxea3 1 Department of Ecology and Coastal Management. Andalusian Institute for Marine Science, ICMAN (CSIC). Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz. Spain. 2 Department of Global Change Research. Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Miguel Marqués 21, 07190 Esporles, Balearic Island, Spain. 3 Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies IMEDEA, Universidad de las Islas Baleares (UIB) - Consejo Superior de Investigaciones Científicas (CSIC), Esporles, Spain 4 Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, E- 08193 Bellaterra, Catalonia, Spain 5 Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain 6 Instituto de Investigaciones Oceanologicas. Universidad Autonoma de Baja California. Campus Ensenada, Mexico ABSTRACT Maó (Minorca) is a narrow and semi-enclosed harbour impacted by historic urban and industrial metal pollution. We analyse and compare surficial and long-term sediment records along the Harbour to assess the sources and historical trends in pollution. Trace metal concentrations (Al, Ca, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sr and Zn) measured in sediments of Maó were of the same order of magnitude than those reported in other anthropogenically impacted areas of the Mediterranean Sea. Mercury was the only element that presented significantly higher concentrations in the harbour than other sites (up to 2 orders of magnitude higher). Although surficial concentrations of some metals (e.g. Hg, Pb, Cu and Zn) showed levels lower than those presented in the oldest sedimentary record, they showed concentrations above those recommended for acceptable sediment quality. Enrichment factors (EF) calculations support the anthropogenic origin of these metals in the Maó harbour; however, some variations can be attributed to natural fluctuations in the sediment deposition in the harbour. INTRODUCTION MATERIALS AND METHODS Vertical profiles of metals in sediment cores have been commonly used as "environmental records", providing information on the current system and the geochemical changes that occurred over time in the environment. Chemical composition of sediment cores can be used to establish background conditions and to evaluate how contaminant levels have responded to changes in population, land use and human activities [1-4]. Since the second half of the 19th century and especially along the 20th century, the harbour’s sediments at Maó became a reservoir of the waste generated along its shore, where a continuous increase of demography, industrialisation, construction, tourism and commerce took place (Garcia-Orellana et al 2011). Here we reconstruct the historical contamination of selected elements (Al, Cu, Co, Cr, Fe, Hg, Mn, Ni, Pb, Zn, Ca and Sr) in Maó Harbour using dated sediment cores as archives. Core sediments (up to 55 cm depth) were collected by scuba divers in June 2010 and July 2011 at 10 stations located along the Maó Harbour (Figure 1). Radiometric analyses (210Pb, 137Cs, 226Ra) were carried out on the bulk fraction of sediments following the method described by Garcia-Orellana et al. (2011) [4]. Metals were determined by ICP-OES (Perkin Elmer ICP-OES Optima 5300 DV) previous a microwave acid digestion according to the SW846 EPA Method 3051A [5], which involved the digestion of 0.2 g of sediment sample by triplicate with 10 ml of nitric acid (65%, Suprapur quality). Mercury concentrations were determined by a Direct Mercury Analyzer (Milestone DMA-80). 105 (2016) (with high enrichment factors), most probably associated to the resurgence of the jewellery industry and the introduction of leaded gasoline in the early twentieth century. ACKNOWLODGEMENTS This work was financed by the Ministerio de Economía y Competitividad (MINECO) grants EHRE (CTM200908270). M.C. Martínez-Sotos’s work was funded by a JAEdoc contract from CSIC. REFERENCES Figure 1. Map showing the location of the study area in Minorca Island (north-western Mediterranean Sea), and the sampling stations corresponding to surface (S-) and cores (C-) sediments. RESULTS AND DISCUSSION The length of the collected sediment cores, which ranged from 22 cm (C-3) to 55 cm (C-5), provided information from the 1890's up to the present. Metal concentrations measured in surficial sediments of Maó Harbour were similar to those reported in other anthropogenically impacted Mediterranean Sea bays, except for Hg which showed concentrations of up to 100 times higher. Our results showed that the 1890s and 1900s were characterized by high concentrations of Ca and Sr, indicating the presence of carbonated algal communities in the harbour waters, a characteristic that suggest absence of strong anthropogenic influence. The 1910s, 1920s and 1930s displayed marked increase of Hg and Pb concentrations 1. Dassenakis, M., M. Scoullos & Gaitis, A. 1997. Trace metal transport and behaviour in the Mediterranean estuary of Acheloos river. Mar. Poll. Bull. 34 (2): 103-111. 2. Rubio, B., Nombela M.A., & Vilas, F. 2000. Heavy metal pollution in the Galician Rías Baixas: new background values for Ría de Vigo (NW Spain) Journal of Iberian Geology, 26, 121-149. 3. Tuncer, G., G. Tuncel & Turgut. B. 2001. Evolution of metal pollution in the Golden Horn (Turkey) sediments between 1912 and 1987. Mar. Poll. Bull. 42 (5): 350-360. 4. Garcia-Orellana, J. Cañas L., Masqué P., Obrador B., Olid C., Pretus J. 2011. Chronological reconstruction of metal contamination in the Port of Maó (Minorca, Spain). Mar. Poll. Bull. 62, 1632–1640. 5. US Environmental Protection Agency. 1987. An overview of sediment quality in the United States. EPA 905/9-88-002. Office of Water Regulations and Standards, Washington, DC, and EPA Region 5, Chicago 106 (2016) Distribution and transport of dissolved trace metals in the Gulf of Cádiz, Spain Antonio Tovar-Sánchez1,2, David Sánchez-Quiles2, David Roque1, Antonio Cobelo, Irene Laiz3, Ricardo Sánchez, Miguel Bruno 1 Department of Ecology and Coastal Management. Andalusian Institute for Marine Science, ICMAN (CSIC). Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz. Spain. 2 Department of Global Change Research. Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Miguel Marqués 21, 07190 Esporles, Balearic Island, Spain. 3 Department of Applied Physics, University of Cadiz, Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain ABSTRACT The Gulf of Cadiz plays a key role in the exchange of biogeochemical fluxes between the Mediterranean Sea and the Atlantic Ocean through the Strait of Gibraltar. Oceanographers have carried out many investigations in the Gulf of Cádiz on water mass circulation and mass balance of nutrients and carbon. However, despite its importance in the global ocean functioning, studies on trace metals in the Gulf of Cádiz and Strait of Gibraltar waters are very scarce. Here we show the concentrations of dissolved trace metal composition (i.e. Ag, Cd, Co, Cu, Fe, Mo, Ni, Pb and Zn) in the Gulf of Cádiz and Mediterranean Sea surface waters as obtained from 5 oceanographic campaigns. Our results indicate that the Gulf of Cádiz surface water mass is receiving large amounts of trace metals transported by the different rivers that flow into the Gulf of Cádiz. Thus, dissolved trace metals in these waters were highly variable with the highest ranges measured for Co (0.06 – 3.1 nM), Fe (0.6 – 392 nM) and Pb (0.04 – 512 nM). INTRODUCTION The Gulf of Cádiz is a semi-enclosed basin with an oceanographic dynamics mainly controlled by the exchanges between the Mediterranean Sea, the Atlantic Ocean, the coastal system, the atmosphere and the seafloor. The Gulf of Cádiz water masses are directly influenced by the Iberian pyrite belt (one of the largest sulfide deposits in the world), receiving large amounts of trace metals transported by the different rivers that run through the belt and flow into the Gulf of Cádiz [1-4]. Trace metals play a critical role in the ocean functioning. Some metals, e.g. V, Cr, Mn, Fe, Co, Ni, Cu, Zn or Mo, despite of being present in organisms at trace concentrations, are considered essential for life if ambient concentrations do not exceed a threshold value for toxicity [5]. On the other hand, the presence of some trace metals at high concentrations such as As, Hg, or Pb can damage the ecosystem health. Thus, the distribution of trace metals can enhance or limit primary productivity in some regions of the world ocean. Despite their importance, we do not have a good understanding of the global distribution and cycling of trace metals in many regions of the ocean. We collected surface water samples during 5 oceanographic cruises carried out during 2014 – 2015 in the Gulf of Cadiz and the Mediterranean Sea, providing an opportunity to further advance in the knowledge of both regions, as well as of the distribution of trace elements within the Gulf of Cádiz surface waters and their inflow to the Mediterranean Sea. MATERIALS AND METHODS The sampling was carried out on board different oceanographic vessels, during October and December 2014, and during March, September and November 2015 (Figure 1). Samples for trace metals were collected using a teflon tow-fish sampling system deployed at approximately 2 m depth utilizing established trace metal-clean techniques. After sample collection, the seawater was filtered on board through acid-washed 0.2 µm filter cartridges and acidified using Optima grade HCl to a pH<2. Dissolved samples (<0.2 μm) were double bagged in polyethylene bags and shipped to the trace metal clean laboratories, where they were preconcentrated by an organic extraction procedure using the APDC/DDDC ligand technique [6]. The levels of metals were quantified by ICP-MS. To evaluate the accuracy of our analytical procedures, a certified seawater reference material (CASS5) was preconcentrated and analyzed with the samples. RESULTS AND DISCUSSION 107 (2016) Dissolved metal (Ag, Cd, Co, Cu, Fe, Mo, Ni, Pb and Zn) concentrations measured in surface waters during our study varied broadly with the geographic location. The highest concentrations of most of the metals were measured in areas under the influence of the rivers discharge (e.g. Ag: 11.3 pM, Cd: 0.3 nM, Co: 2.1 nM, Cu: 13.3 nM, Fe: 88.6 nM, Mo: 121.1 nM, Ni: 70.8 nM and Zn: 49.5 nM within the Guadalquivir river area of influence during December 2014). On the other hand the lowest concentrations were measured in offshore waters (e.g. Ag: <1 pM, Cd: 0.17 nM, Co: 60 pM, Cu: 1.9 nM, Fe: 0.6 nM, Mo: 105.5 nM, Ni: 2.3 nM and Zn: 1.1 nM). Currents data were collected with a vessel-mounted ADCP along the ship track (see Fig. 1). At each sampling location, the mean surface alongshore and cross-shore velocities were obtained by spatially averaging the first top valid bin between two consecutive sampling locations. Thus, the horizontal advective fluxes of metals can be estimated by multiplying each velocity component by the different metal concentrations. Figure 1. Sampling locations for the different oceanographic cruises ACKNOWLODGEMENTS This work was financed by the MICCIN grants MEGOCA (CTM2014-59244-C3-3-R). Thanks also to Joaquin Pampin and Antonio Moreno for their collaboration during sampling preparation. REFERENCES [1]. Van Geen A., Boyle E.A., Moore W.S. 1991. Trace metal enrichments in waters of the Gulf of Cadiz, Spain. Geochimica et Cosmochimica Acta 55, 8, 2173-2191 [2]. Elbaz-Poulichet F., Morley N.H., Cruzado A., Velasquez Z., Achterberg E.P., Braungardt C.B. 1999. Trace metal and nutrient distribution in an extremely low pH (2.5) river-estuarine system, the Ria of Huelva (SouthWest Spain). The Science of the Total Environment 227, 73-83 [3]. Elbaz-Poulichet, F., Morley, N., Beckers, J.M., Nomerange, M., 2001a. Metal fluxes through the Strait of Gibraltar: the influence of the Tinto and Odiel rivers (SW Spain). Mar. Chem. 73, 193–213. [4]. Elbaz-Poulichet F., Braungardt C., Achterberg E., Morley N., Cossa D., Beckers J-M, Nomérange P., Cruzado A., Leblanc M. 2001b. Metal biogeochemistry in the Tinto–Odiel rivers (Southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS Project. Continental Shelf Research 21, 1961–1973 [5]. F. J. Stevenson y M. A. Cole, Cycles of soil. Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, Second edition. Wiley, 1999 [6]. Tovar-Sánchez, A. 2012.“1.17 sampling approaches for trace element determination in seawater” in Comprehensive Sampling and Sample Preparation, ed J.Pawliszyn (Oxford:AcademicPress), 317–334. 108 (2016) Contaminación de sistemas costeros por edulcorantes artificiales: fuentes, distribución y persistencia Juan M. Traverso-Soto1, Rosa M. Baena-Nogueras1, Miriam Biel-Maeso1 & Pablo A. LaraMartín1 1 Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, CEI-MAR, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz, 11510. RESUMEN Durante la última década se ha incrementado el uso de edulcorantes artificiales en la dieta como sustituto del azúcar. Una vez consumidos, son excretados sin metabolizar y su eliminación en estaciones depuradoras de aguas residuales (EDARs) es también deficiente. Esto ha llevado a su detección en el medio ambiente, donde aún se desconocen sus efectos. En este sentido hemos realizado una serie de muestreos en la Bahía de Cádiz para medir la concentraciones de los 6 edulcorantes con uso autorizado en la UE: sucralosa (SUC), sacarina (SAC), aspartamo (ASP), acesulfamo (ACE), ciclamato (CYC) y neohesperidina dihidrocalcona (NHDC). Las máximas concentraciones detectadas fueron para SUC (> 2000 ng/L), seguido de ACE (290 ng/L), en el estuario del Guadalete, ambos compuestos presentando un comportamiento conservativo a lo largo de esta área. Su persistencia, confirmada en ensayos de degradación en el laboratorio, los convierte en candidatos para su uso como trazadores de contaminación por aguas residuales en el medio marino. INTRODUCCIÓN Un edulcorante artificial es una sustancia sintética empleada como sustituto del azúcar fundamentalmente por su mayor dulzura y menor aporte calórico. Su producción y uso está en alza (ej.: incrementos superiores al 5% en los últimos años en EE.UU.), particularmente asociado al consumo de productos dietéticos [1]. Hasta la fecha no se ha prestado mucha atención a la presencia y comportamiento de estos y otros ingredientes alimentarios en el medio ambiente. En el caso de los edulcorantes artificiales se trata de compuestos aniónicos con elevada solubilidad acuosa que han sido recientemente detectados en aguas residuales (tanto influentes como efluentes de EDARs, donde presentan bajos porcentajes de eliminación), aguas subterráneas y ríos [2]. Más recientemente, se han medido concentraciones de hasta 32 ng/L en el Mar del Norte [3] para el caso de la sucralosa (SUC). El objetivo de este estudio es incrementar el conocimiento sobre el comportamiento de estos aditivos en el medio marino. Concretamente, se trata de analizar la presencia de los edulcorantes artificiales más usados en la UE (SUC, SAC, ASP, ACE, CYC y NHDC) en aguas costeras, seleccionando para ello diversos puntos de muestreo de aguas superficiales en la Bahía de Cádiz (SO de España). Además de conocer su distribución espacial, se pretende establecer si se trata de sustancias persistentes en el medio marino mediante la realización de ensayos de foto y biodegradación en el laboratorio. MATERIAL Y MÉTODOS Durante la pleamar se recogieron muestras superficiales de agua de mar en distintos puntos de la Bahía de Cádiz (Fig. 1) mediante botellas de vidrio ámbar de 2.5 L. Tras su filtración con filtros de fibra de vidrio de 1 micra de tamaño de poro, se procedió al aislamiento de los edulcorantes mediante extracción en fase sólida (SPE) usando cartuchos Oasis HLB 500 mg y siguiendo una modificación del protocolo desarrollado por Ordoñez et al. [4]. La determinación de los analitos se hizo mediante cromatografía líquida de ultra resolución acoplada a espectrometría de masas en tándem (UPLC-MS/MS). La metodología empleada arrojó recuperaciones superiores al 75% para los compuestos analizados y límites de detección inferiores a 1 ng/L. Adicionalmente, se realizaron ensayos de biodegradación y fotodegradación siguiendo las guías OECD 306 y 316, respectivamente. En el primer caso se incubó agua de mar del área de muestreo a 18ºC durante 28 días en oscuridad, adicionándose edulcorantes al inicio (1 ng/mL) y analizándose muestras a intervalos regulares. Este agua, tras esterilización mediante filtración por 0.22 micras, se usó para experimentos de fotodegradación, con una duración de 24 h. En este caso se usó un fotorreactor Suntest CPS+ irradiando a 500 W/m2 y tubos de cuarzo donde la disolución de agua de mar y edulcorantes (10 ng/mL) se analizó a intervalos regulares. 109 (2016) La persistencia de estos dos edulcorantes quedó también puesta de manifiesto al estudiar el perfil longitudinal de concentración de los mismos a lo largo del río Guadalete (Fig. 2), el cual muestra claramente un comportamiento conservativo para ACE y SUC. En este sentido, se corrobora su idoneidad como trazadores de contaminación por aguas residuales de tipo urbano en sistemas acuáticos, previamente observada en aguas subterráneas y ríos [2]. Fig. 1. Mapa de la Bahía de Cádiz mostrando la localización de las distintas estaciones de muestreo en 3 áreas (Estuario Guadalete, Río San Pedro, Caño Sancti Petri). RESULTADOS Y DISCUSIÓN En la Tabla 1 se muestran los intervalos de concentraciones medidos en aguas superficiales de la Bahía de Cádiz. La zona que presenta una mayor contaminación es del estuario del río Guadalete, alcanzándose concentraciones máximas (> 2000 ng/L) aguas arriba, en las proximidades de la EDAR Jerez del Frontera, uno de los más notables focos de contaminación en la bahía [5]. Se puede observar como la sucralosa (SUC) es el compuesto que presenta una mayor concentración, seguido de acesulfamo (ACE). La mayor concentración en el medio ambiente de estos compuestos es consecuencia tanto de su mayor volumen de uso frente a otros edulcorantes (ej.: NHDC, no detectado en ninguna de las muestras) como debido a su carácter persistente, ya que durante los ensayos de biodegradación (28 días) y fotodegradación (24 h) realizados con agua del área de muestreo no se observó disminución significativa en su concentración. Tabla 1. Concentración de edulcorantes (ng/L) en aguas superficiales de la Bahía de Cádiz. Estuario Río San Caño Guadalete Pedro Sancti Petri SUC 512-2174 517-1536 520-1199 SAC 13-83 5-22 n.d.-22 ASP 8-37 7-26 7-26 ACE 17-290 9-24 n.d.-6 CYC 17-51 10-20 2-14 NHDC n.d. n.d. n.d. Fig. 2. Concentración de edulcorantes (ACE = acesulfamo, SUC = sucralosa) versus salinidad en el estuario del Río Guadalete. AGRADECIMIENTOS La financiación de esta investigación ha sido realizada mediante el proyecto RNM 6613 de la Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía. REFERENCIAS 1 – Sylvetsky, A.C., Rother, K.I., 2015. Trends in the consumption of low-calorie sweeteners. Physiology & Behavior (in press). 2 – Buerge, I.J., Buser, H.R., Kahle, M., Müller, M., Poiger, T., 2009. Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environ. Sci. Technol. 43:4381-4385. 3 – Brumovsky, M., Becanova, J., Kohoutek, J., Thomas, H., Petersen, W., Sorensen, K., Sanka, O., Nizzetto, L. 2016. Exploring the occurrence and distribution of contaminants of emerging concern through unmanned sampling from ships of opportunity in the North Sea. J. Mar. Sys. (in press). 4 - Ordoñez, E.Y., Quintana, J.B., Rodil, R., Cela, F., 2013. Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A., 1256:197-205. 5 – Lara-Martín, P.A., Gómez-Parra, A., González-Mazo, E., 2008. Sources, transport and reactivity of anionic and non-ionic surfactants in several aquatic ecosystems in SW Spain: a comparative study. Environ. Poll. 156:36-45. 110 (2016) Oxidative stress and neurotoxicity in Scrobicularia plana exposed to pharmaceutical mixture Chiara Trombini1, Miriam Hampel2 & Julián Blasco1 1 Instituto de Ciencias Marina de Andalucía (CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, España 2 Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, España ABSTRACT Pharmaceuticals are pollutants of potential concern in the aquatic environment where they are commonly introduced as a complex mixture. In this study we have evaluated the toxic effects produced in clams Scobicularia plana by a mixture of ciprofloxacine, flumequine and ibuprofen, three pharmaceuticals that are produced and used in large quantity and have a wide spread occurrence in aquatic environment. Clams were exposed to two mixture concentrations (at 10 and 100 µg·L-1 levels) during 28 days (21 days of exposure and 7 of depuration) and oxidative and neurotoxic effects were assessed using a multi-biomarker approach: CAT, GR, GPx, GST, SOD, LPO levels and AchE activity were evaluated in gills and digestive gland over time. The present study demonstrated that the combination of three pharmaceutical compounds, particularly at the highest concentration tested, have a considerable effect on the activities of antioxidant and detoxifying enzymes and therefore on the oxidative status of S. plana. INTRODUCTIÓN Nowadays, the presence of pharmaceutical compounds in marine compartments is well documented [1,2] and studies to know effects of these emerging contaminants on aquatic organisms have increased significantly in the last decades [3-5]. However, due to the huge variety of pharmaceutical compounds produced worldwide, toxic effects of most of them are almost unknown. Ciprofloxacin (CIP) and flumequine (FL) are broadspectrum antibiotics of the fluoroquinolones class which exert their bactericidal effects by inhibiting the bacterial DNA gyrase and therefore DNA replication. Fluoroquinolones toxicity was observed in mice where oxidative stress, cyto and neurotoxicity were induced after treatment with CIP (0.5-300 mg·L-1 during 24, 48, 72 y 96 h; 10 µM-1.0 mM during 72 h) [6,7] and hepatocarcinogenesis probably related to oxidative stress was observed in mice treated with 4000 ppm FL during 6 weeks [8,9]. Both have been detected in different aquatic compartments (e.g. rivers, effluents of WWTPs, hospital effluents, groundwater) in concentrations ranging between ng·L-1 and µg· L-1 [10-12]. Ibuprofen (IBU) is one of the most used non-steroidal antiinflammatory drugs (NSAIDs): its effects have been studied in different marine organisms and its toxicity at environmentally relevant concentrations (oxidative stress induction, endocrine disruption, cyto and genotoxicity) has been widely proven [13-15]. The aim of this study was to assess the chronic toxicity of a mixture of CIP, Fl and IBU on the clam Scrobicularia plana. Organisms were exposed to two mixture concentrations of pharmaceuticals (10 and 100 µg·L-1) during 28 days and, to evaluate toxic effects of mixture, a multi-biomarker approach including antioxidant enzyme activities (CAT, GR, GPx, GST, SOD), LPO levels and AchE activity was chosen MATERIALS AND METHODS Specimens of S. plana collected in a reference site (San Pedro River, Cádiz, Spain) were acclimated during 1 week before starting the experiment. Exposure was carried out in tanks with 0.45 µm filtered seawater (1 L/animal), aeration and in semi-static conditions (complete water and chemical renovation every 48 h). Pharmaceuticals were added as a stock solution prepared in DMSO to reach final concentration of 10 and 100 µg·L-1 (for each compound present in the mixture). Clams were exposed for 28 days (21 of exposure and 7 of depuration) and sampling times were set up: 0 (control 0), 1, 7, 21 and 28 days. Triplicates were used for each condition (seawater control, DMSO, 10 µg·L-1 and 100 µg·L-1 mixture). Temperature (18.0 ± 1.5 °C), salinity (31.0 ± 0.3 ppt), pH (7.9 ± 0.4) and dissolved oxygen (8.8 ± 0.6 mg·L-1) were checked daily. Organisms sampled over each selected time were dissected and tissues (gills and digestive gland) quickly frozen in liquid nitrogen and stored at -80 °C until further analysis. Tissues were adequately treated (homogenization in 50 111 (2016) mM Tris-HCl with 150 mM NaCl, 1 mM DTT, 0.1% antiproteolitic cocktail and centrifugation at 12000 x g, 4 °C during 30 min) to obtain S12 fraction that was used to quantify total proteins, antioxidant enzyme activity (CAT, GR, GPx, GST, SOD), LPO and AchE activity. All analyses were performed by spectrophotometry. DISCUSSION To date, few studies have been carried out to investigate CIP and FL toxicity on aquatic organisms [16]. However, toxic effects of IBU are studied in different marine species and its ability to induce general stress and damage to different levels in organism is well shown [15, 17]. No studies have examined the joint effects of these compounds. Activity of enzymes related to oxidative stress was enhanced after exposure to the pharmaceutical mixture, particularly at the highest concentration. Higher activities were reported in digestive gland than in gills indicating a greater importance of this organ in detoxification processes. AKNOWLEDGEMENTS This work has been funded by the Ministerio de Economia y Competitividad of the Spanish Government under Project CTM2012-38720-C03-03, and ERF funds. REFERENCES 1. Li WC, 2014. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 187:193-201 2. Taylor D, Senac T, 2014. Human pharmaceutical products in the environment – The “problem” in perspective. Chemosphere 115:95-9 3. Gonzalez-Rey M, Mattos JJ, Piazza CE, Bainy ACD, Bebianno MJ, 2014. Effects of active pharmaceutical ingredients mixtures in mussel Mytilus galloprovincialis. Aquat. Toxicol. 153:12-26 4. Fabbri E, 2015. Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Ann. N.Y. Acad. Sci. 1340:20-8 5. Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille M-P, 2014. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Polluut. R. 23:4992-5001 6. Gurbay A, Gonthier B, Barret L, Favier A, Hincal F, 2007. Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by Vitamin E. Toxicology 229:54-61 7. Pouzaud F, Bernard-Beaubois K, Thevenin M, Warnet JM, Hayem G, Rat P, 2004. In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J. Pharm. Exp. Ther. 308:394-402 8. Kenmochi YTM, Moto M, Muguruma M, Nishimura J, Jin M, Kohno T, Yokouchi Y, Mitsumori K, 2007. Reactive oxygen species are possibly involved in the machenism of flumequine-induced hepatocarcinogenesis in mice. J. Toxicol. Pathol. 20:55-64 9. Yoshida M. MK, Shiraki K., Ando J., Kudoh K., Nakae D., Takahashi M., Maekawa A, 1999. Hepatotoxicity and consequently increased cell proliferation are associated with flumequine hepatocarcinogenesis in mice. Cancer Lett. 141:99-107 10. Lee W-N, Lin AY-C, Wang X-H, 2014. The occurrence of quinolone and imidazole antibiotics in rivers in Central Taiwan. Desalin. Water Treat. 52:1143-52 11. Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K, 2014. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Sci. Tot. Environ. 500–501:250-69 12. Frade VMF, Dias M, Teixeira ACSC, Palma MSA, 2014. Environmental contamination by fluoroquinolones. Braz. J. Pharm. Sci. 50:41-54 13. Serrano MAS, Gonzalez-Rey M, Mattos JJ, FloresNunes F, Mello ÁCP, et al. 2015. Differential gene transcription, biochemical responses, and cytotoxicity assessment in Pacific oyster Crassostrea gigas exposed to ibuprofen. Environ. Sci. Pollut. Res. 22:17375-85 14. Gonzalez-Rey M, Bebianno MJ, 2012. Does nonsteroidal anti-inflammatory (NSAID) ibuprofen induce antioxidant stress and endocrine disruption in mussel Mytilus galloprovincialis? Environ Toxicol Pharmacol 33:361-71 15. Parolini M, Binelli A, Provini A, 2011. Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol. Environ. Saf. 74:1586-94 16. Robinson AA, Belden JB, Lydy MJ, 2005. Toxicity of fluoroquinolones antibiotics to aquatic organisms. Environ. Toxicol. Chem. 24 (2): 423-430 17. Aguirre-Martínez GV, DelValls TA, Martín-Díaz ML, 2016. General stress, detoxification pathways, nuerotoxicity and genotoxicity evaluated in Ruditapes philippinarum exposed to human pharmaceuticals. Ecotoxicol. Environ. Saf. 124:18-31 112 (2016) 113 (2016) 114 (2016) 115