GEOLOGIA ESTRUCTURAL FORMACION DE MONTAÑAS • Nociones básicas • Deformación de las rocas (elástica y plástica) • Identificación de estructuras • Estructuras rocosas: descripción y procesos de formación • Formación de montañas: orogénesis en el límite de placas • Ejemplos y representaciones gráficas en geología estructural Montañas: Relieves positivos ocasionalmente aislados (volcanes); más comúnmente forman parte de extensas cordilleras. 1 2 •Orogénesis: Proceso que en conjunto produce un sistema montañoso •oro = montaña; •génesis = pasar a existir Muestran evidencias de enormes fuerzas: •plegamiento, •fallamiento •deformación de grandes porciones de la corteza, •luego erosión que las aplana. ALZAMIENTO CORTICAL Evidenciado por la presencia de fósiles marinos en zonas cordilleranas: las rocas que constituyen la montaña estuvieron bajo el nivel del mar y también recientemente. Ejemplo romano: las columnas del templo de Pozzuoli tiene perforaciones hechas por moluscos bivalvos hasta 6 m sobre el nivel del agua indicando que el terreno sobre el que se construyó el templo se hundió y se volvió a levantar. No son cambios en el nivel del mar porque no se registran en zonas cercanas 3 • La corteza, menos densa, “flota” en balance gravitacional sobre un manto más denso Æ isostacia (concepto Æ troncos), mientras más alta la montaña, mayor la raíz (datos sísmicos y gravitacionales). El espesor cambiaría en respuesta a la carga o descarga (similar a un barco) Æ ajuste isostático Æ (figura) hasta aplanarse. Montañas: Porciones de la corteza terrestre inusualmente gruesa, que se mantiene elevada sobre su entorno por isostacia Æ ¿Cómo se forman? 4 Deformación de las rocas • Si se someten a esfuerzos mayores que su propia resistencia comienzan a deformarse Æ pliegan o fracturan Æ estilos de deformación establecidos en formas experimental. • Deformaciones a distintas escalas Æ montañas a microscópicas Æ estructuras rocosas. ESFUERZOS 5 ESFUERZOS - Confinante -Extensionales -Compresionales -Cizalle •Esfuerzo lento y baja Presión Î deformación elástica Æ reversible pero si se sobrepasa en el límite elástico Æ ruptura o deformación Æ temblores, chasquean y vuelven al original. •Deformación plástica Æ Cambio permanente, a altas presiones y temperaturas. Tiempo influye 6 7 8 Rumbo y manteo El trabajo geológica implica, entre otros, la identificación y descripción de las estructuras principales de una zona. Comúnmente segmentos de ellas están ocultas, por lo que hay que reconstruir de su forma a través del mapeo geológico, el cual es más fácil donde se exponen. De estar los estratos inclinados indican un período de deformación después de su depositación Se hacen dos medidas para establecer la orientación de los estratos: Rumbo Manteo 9 Rumbo: Tendencia o dirección del estrato; se define como la dirección de la línea producida por la intersección de la superficie representada por el estrato inclinado con una superficie horizontal, en el caso del ejemplo representada por el terreno horizontal Manteo: Angulo de inclinación máxima, es perpendicular al rumbo. Este dato se plotea en un mapa sobre un color que representa un código de descripción de la roca Æ de la orientación de los estratos se puede inferir la orientación y forma de las estructuras. 10 PRINCIPALES ESTRUCTURAS ROCOSAS Pliegues PLIEGUES • • Anticlinal: Dobladas hacia abajo con el estrato más antiguo al centro Sinclinal: Dobladas hacia arriba, con los estratos más jóvenes al centro 11 PLIEGUES • Sinclinal • Dobladas hacia arriba • con los estratos más jóvenes al centro Elementos de un pliegue Flancos • son los lados que forman un pliegue Charnela: • línea de máxima incurvación de un pliegue donde se articulan sus flancos. Plano axial • plano de simetría de un pliegue en el que están contenidas todas las charnelas. • La situación de ese plano con la superficie del terreno es lo que determina el eje del pliegue. Eje del pliegue • intersección de un plano axial y de un plano horizontal. • La inclinación de los flancos es el plano perpendicular al plano axial; • puede variar desde “0” en la cresta hasta un máximo dependiendo del pliegue 12 TIPOS DE PLIEGUES • Las características de los pliegues varía con la naturaleza de las rocas y de los esfuerzos que han registrado. • En función del plano axial podemos definir – Pliegues simétricos, – Pliegues asimétricos – Pliegues recumbentes (plano axial cerca de la horizontal) PRINCIPALES ESTRUCTURAS ROCOSAS • • • Pliegues simétricos, Pliegues asimétricos Pliegues recumbentes (plano axial cerca de la horizontal) 13 14 Thrust faults and associated fold. Near Klamath Falls, OR Ramp Anticline, southern British Columbia, Canada. Pliegue recumbente o tumbado 15 MONOCLINAL • • • flexuras amplias en respuestas a fracturas en una basamento rígido, asociados a fallas causadas por desplazamiento vertical. 16 PRINCIPALES ESTRUCTURAS ROCOSAS Ejes o pliegues buzantes • • cuando el eje del pliegue no es horizontal se entierra en la tierra. 17 18 PRINCIPALES ESTRUCTURAS ROCOSAS • Domos : • Estructura circular o alargada producida por el levantamiento amplio del basamento. • Cuenca: • Idem hacia abajo, hundimiento moderado y amplio. Domo • Frecuentemente con rocas ígneas y metamórficas más resistentes aflorando en el núcleo 19 FALLAS • • Fracturas en la corteza terrestre a lo largo de las cuales ha ocurrido movimiento. Se clasifican en base al movimiento relativo entre los bloques a ambos lados del plano de fallas – horizontal, – vertical – oblicuo. • Movimientos verticales – Fallas normales – Fallas inversas – Sobrescurrimientos • Movimientos horizontales – Fallas dextrales – Fallas sinistrales 20 Fallas de Movimiento vertical • Fallas de ángulo • ya que el movimiento es a lo largo del manteo, hacia arriba o hacia abajo. • pared colgante o techo: la ubicada sobre la falla • pared yacente o muro: la que está bajo la falla. Fallas normales • Cuando las roca sobre el plano de falla se mueve hacia abajo en relación a las rocas del pie • esfuerzos tensionales que separan la corteza • movimientos relativos que pueden llegar a formar una montaña 21 FALLAS NORMALES . • La erosión puede modificar el bloque elevado • Respuesta a desequilibrio, cambio superficial • Al dejar de moverse la falla, termina la etapa de deformación y alzamiento • Erosión pasa a ser predominante 22 23 FALLAS INVERSAS Cuando la muralla colgante o techo se mueve hacia arriba en relación a la yacente o piso. 24 SOBRESCURRIMIENTOS Fallas inversas de bajo ángulo Æ 50 Km, asociados a grandes pliegues recumbentes. 25 Thrust faults and associated fold. Near Klamath Falls, OR Ramp Anticline, southern British Columbia, Canada. 26 FALLAS NORMALES • Esfuerzos tensionales • levantamiento que inducen a la superficie a estirarse y quebrarse o por fuerzas horizontales que efectivamente desgarran la corteza • Centros divergentes de expansión prevalente • Horsts : bloque central limitado por fallas normales, se hunde a medida que se separa. • Graben : Valles elongados limitados por estructuras levantadas Graben: bloque central limitado por fallas normales, se hunde a medida que se separa. 27 FALLAS de Movimiento horizontal A lo largo del rumbo de la falla; se distinguen entre destrales y sinestral, dependiendo del movimiento relativo. Muchas grandes fallas transcurrentes o de rumbo ocurren asociadas a los límites de placa. 28 The Blanco, Mendocino, Murray, and Molokai fracture zones are some of the many fracture zones (transform faults) that scar the ocean floor and offset ridges (see text). The San Andreas is one of the few transform faults exposed on land. The San Andreas fault zone, which is about 1,300 km long and in places tens of kilometers wide, slices 29 Canal Morale da Archip iélago Los Ch onos Pe ní n Ta su ita la o de Go lf Pe o de nas Campo de Hielo San Andreas fault and Pt. Reyes Peninsula, California. The San Andreas trends northwestward up the narrow Tomales Bay. 30 Aerial view of right-lateral fault. Near Las Vegas, Nevada . 31 DIACLASAS • • • • • • Fracturas a lo largo de las cuales no ha habido movimiento. Distribución al azar aunque mas comúnmente es grupos paralelos. Resultado de la deformación cuando las rocas son deformadas por esfuerzos tensionales y de cizalle asociado a movimiento corticales. Ej.: En eje de pliegues, diaclasas tensionales, también asociadas a grandes levantamientos o hundimientos regionales. frecuente sets de una o más diaclasas que se interceptan y rompen la roca en bloques regulares facilita meteorización química, también control de ríos. 32 33 DICONTINUIDADES ESTRATIGRAFICAS DISCORDANCIAS • Estratos concordantes: depositados sin interrupción • Discontinuidades estratigráficas: Interrupciones en la sedimentación y/o rupturas en el registro geológico – – – – Interrupción de a sedimentación Erosión que elimina parte de las rocas ya formadas Reinicio de depositación El levantamiento y la erosión son seguidos de subsidencia y nueva erosión – Acontecimientos geológicos significativos en la historia de la Tierra 34 Discordancia angular: la más fácil de reconocer por la diferencia de angularidad entre los depósitos inferiores, comúnmente plegados y los superiores 35 Discordancia angular: la más fácil de reconocer por la diferencia de angularidad entre los depósitos inferiores, comúnmente plegados y los superiores 36 37 FORMACION DE MONTAÑAS • Muchas formadas por intensa compresión y como resultado de deformación cortical: fallas y pliegues. • Todas son distintas, pero pueden clasificarse de acuerdo a sus características más dominantes. • Cadenas del mismo tipo se encuentran comúnmente cerca formando sistemas montañosos. • Otras regiones con topografías montañosas se producen sin deformación apreciable. • Ej. Zonas de plateau con rocas esencialmente horizontales, profundamente disecadas dan origen a terrenos muy irregulares. • terrenos elevados tienen la expresión topográfica de montañas, pero no están asociadas a orogénesis. • Lo contrario ocurre con zonas intensamente deformadas con topografía muy suave, 38 TIPOS DE MONTAÑAS: Montañas plegadas • mayores y más complejos sistemas montañosos. • plegamiento es lo más notorio, • acompañado de fallamiento, metamorfismo y actividad ígnea, en proporciones variables. • Ej.: Alpes, Urales, Himalayas, Apalaches. AMBIENTES TECTONICOS DONDE SE FORMAN MONTAÑAS PLEGADAS 39 AMBIENTES TECTONICOS DONDE SE FORMAN MONTAÑAS PLEGADAS TIPOS DE MONTAÑAS: Montañas de bloques fallados: • • • al menos uno de sus márgenes corresponde a una falla normal de alto ángulo (creada por fuerzas tensionales). Algunas formadas por alzamiento general el que causa elongación que induce el fallamiento (Ej. Rift de Africa). Otras formadas cuando un bloque se levanta en forma vertical por sobre los valles adyacentes sin deformar. 40 El RIFT africano 41 TIPOS DE MONTAÑAS: Montañas ascendidas: • Tipo de montaña que muestra la mayor diversidad. • Resultan de alzamientos a nivel de la corteza, a veces con desplazamiento a lo largo de fallas de alto ángulo. • En general rocas del basamento Precámbrico cubiertas por capas relativamente delgadas de estratos de rocas precámbricas más jóvenes o paleozoicas muy erodadas, especialmente en las partes altas del bloque elevado, donde se expone el núcleo Precámbrico 42