Planetologı́a comparada: Interiores, atmósferas ∗ Interiores de los planetas terrestres y la Luna. Fuentes de energı́a interna. Achatamiento polar. Interiores de otros objetos ricos en hielos. ∗ Interiores de los planetas gigantes. ∗ Distintos tipos de atmósferas en el sistema solar. ∗ Capacidad de un objeto planetario de retener una atmósfera. ∗ Condiciones fı́sicas de las atmósferas: Equilibrio hidrostático, perfiles de temperaturas. ∗ Atmósferas de los planetas terrestres y Titán. ∗ Atmósferas de los planetas gigantes. ∗ Atmósferas extremadamente tenues: casos de Plutón, Tritón, Io. CTE 1 - clase 13 1 Interiores de los planetas terrestres ∗ El achatamiento polar esta dado por la relación: = (RE − RP )/RE y es un paramétro importante para deducir la distribución interna del material. ∗ Fuentes de calor interior: (1) decaimiento radioactivo de los radioisótopos contenidos en los minerales. (2) Calor primordial proveniente de la acreción del material. Energı́a potencial del material: M2 EP ∼ G R la cual se transforma en energı́a cinética (aceleración de las partı́culas al confluir hacia el centro) y, finalmente, en calor disipado en colisiones mutuas. CTE 1 - clase 13 2 Interiores de objetos ricos en hielos: caso de los satélites galileanos de Júpiter CTE 1 - clase 13 3 Interiores de los planetas jovianos ∗ El hidrógeno en el interior de los planetas más masivos, Júpiter y Saturno, se convierte en una variedad sólida conductora, debido a las altas presiones allı́ reinantes, que se denomina hidrógeno metálico. CTE 1 - clase 13 4 formation and otller density instabilities, large impacts, the decay of raclionuclides, and tidal interactions. We can also ask how heat is distributed within the interior over timc, what is kno\.vn as a As our closest neighbor in space, the Moon IV the attention of g:eologist~ ~tudying other pi Proceso de diferenciación interior de un planeta 10). planet's thermal history. We can estimate the rates of change of (sec Chapter 'j'he Moon is the largest satd parent body, in tlle solar system, and it has lOll! if it were a planet in its own right Apollo an remote sensing, and surface seismic data shO' has been internaJlv differentiated into a ru~t, II bly a small core (P~qure 7), Seismic data and g show that the Innar maria are relatively thin mum thickncss) and perched on a globally COil rich crust This crust is thinner on the central a) Interior inicial homogéneo. b) La energı́a cinética impartida 55 km, but may be up to 100 km tl1ick on tlle por los impactos Following its formation, believed to have rderrite el material impact of a Mars-sized body with Earth, the Me y provoca la segregación del más to a period of heavy bombardment tl13.t result melting. Opinions diller on whnher the mel denso hacia el núcleo. La corteza extensive (a magma "ocean") ur regional (I Whatever the melting was accol liviano que, esexact eldetaib, material más tional crystallization and separation of plagiocJa como escoria, queda flotando density stlicate mineral. una This floated to tlIe primary crust, which survives today as the luna sobre el manto. c) El decaimiento ure 8) and the residual upper-mantle layers. T below the crust denser than the underlyil dewere isótopos radioactivos mantiene probably caused them to sink to\\ard the inter el During manto parcialmente derretido to form a core. this latter period, partl mantic created magmas that flooded the Il (magma): el más liviano asciende hacia la superficie provocando derrames de lava y volcanes. ~lIr FigUl'C 3. Differentiation is the process by which a body's initially CTE homogeneous primitive materials (a) become segregated in planetary interiors. A number of dif 'erent mechanisms contribut<: to differentiation. For example, the kinetic energy delivered by impact 1 bombardment - clase 13 (b) can cause widespread - eveJl global -melting of near­ surface layers. Denser mar.:ria! collects and sinks to form a core (c), aJld Figure 4. PlaJ1etary bodies are commonly divided compositionaHy discrete layers (left half), such as dominated core, a mantle rich in iron- and magm 5 ain~' ~ 111 d can he agen ami 'occurr 'd . metallic­ nkdc 'per '1 sho\\u" III tal/I( ji solve ,It . solar sy\ ,,,ledge of morucsllf ',and [he . -section ionfi'om : ro<.:k or o probe, essure of bstantial are than is is :tho Saturn, <l',~' comes mostly from the slow decay of radioactive iso­ Jupiter, Saturn, and Neptune have detectable internal sources of heat. This has proved to be one of the most interesting revela­ '11 Uj]l!!; of heat would be difficult to detect from space, tions of modern planetary science. ·lu~e it is overwhelmed by sunlight's warming effect on Some clues to tlle ol'igin of the giant-planet heat flows can be icql/anet surfaces. obtained by computing the speciflc luminosity of each planet, that is, the average power released per unit of planetary mass II. lile' outer solar system, the situation is different. There . lilT healin)!: contributes much less to a planet's atmospheric (Figureis9). The luminosity of the Sun, by the ther­ monuckar fusion ofhycL'ogen, enormous compared with :tn)'powered hydrogen, which powers the Sun, is not possible insi 'I't', I\Korporated when the planets formed. Such a modest Fuentes internas de calor other solar-system object. At the other extreme are primitive planets beLJusc their c,l!culated central tempCl nowhw:: nt'.lr tlie 10,000,000° K required for h dre rocky bodies, such as the carbonaceous chondrite lllcrcorites, whose internal heat comes only from the radioactive decay of to occur, or el en the 500,000° K needed for deutcrit what little uranium, potassium, and thorium they contain. The Therdore, b)' diminanon, only one process cOlild I Earth's specific luminosity lies very close to the earbonaceous­ bie for tlle luminosities on upiter, SJtUrJ1, and, 'cprun liberated when mass in a gravitationally bound object chondrite value, suggesting that most of its internaJ heat derives from radioactive decay. to thc center of attraction, that is, when the object bel Among the giant planets, only anomalous Uranus lies close to centralIv condensed. In effect, potential enugy beco the very loll' power-to-mass ratio of carbonaceous chondrites energy. This process causes the tempcrallire 11··rhit body to rise. Gaseous stars like the 011n become so Jupiter, Saturn, and Neptune release far more energy per kilo­ gram of mass, so they must derive tlleir luminosities from some­ contract that hydrogen fusion begins to occur. At cl13 F;glm8. Heat flow in the Jovian planets. The blue rays denote interior (red), this is the heat observed escaping at the sW'face of tbing other than radioactive decay. The thermonuclear of detected cannot radiate accumulating heat into space fast \ ~Kidcnt solar energy, some of which (dashed) is scattered back into each planet. No interior heathlsion has been COOling from the Uranns, contraction stops. In liquid bodies (giant plane 'PIlC by the planet's atmosphere. The remaining fraction is absorbed even though Voyager 2 flew by at close rangethe i.n 1986. However, it 3 r---------~-----------, /Od convcrted into infrared energy (yellow)10-deeper in the atmosphere. must surely be present because of radioactivesolid decaybodies in the planet's (terrestrial planets), pressures depend c Tog ther with the infrared energy flowing out from the planet's deep preSW1lably chondritic (rocky) core. on temperature, so rhey contr,lCt as they slowly cae Sun pl~u)ets and brown dwarfs evolve in this manner, sloll INTERIORS OF THE Gif\NT PLANETS heat to space. This slow, self-regulated coupling of E L 2 and cooling, called the Ke[;Jin-Helmholtz mahllllisl "" ..2 represents the 1,1 t phase ofthe giant planets' vioknt ~ ...'lJ 10- 6 ­ perature origin. By itself, the Kell'lll-Helmholtz mec' .Q be insufficient to cxplain Saturn's luminosity. The c 13CJ may be coming from the sinking of dense componel ~ >­ or perhaps ice) toward the planet's center. f--­ Vi Although tlle escape of primordial heat frOIll JuP 0 z and Nephl11e is ver\' s[ow, it appears to be enough tc ~ :::) 10- 9 ­ the hydrogen Ia)'ers throughout much of their in! --J Jupiter Saturn U C,lUses the hot, liquid hydrogen to convect al the I' u:: G centimeters per second. Thus, the convective OVer! f­ lJJ Neptune a.. cloud tops of Jupiter and SaturtJ probabl\- has dee Uranus • '­ and may extend virtuallv to these planets' centers I cc Earth Decp inside Jupiter and Saturn, convection crea 10-12 L ­ --' tains powcrful dvnamos in the metallic-hydrogenz, in turn generate immense rn~lgnerie tields (sec ( Figul"e 9. With the exception of Uranus, dIe Jovian planets emit more Uranus ~lpjlears to lack the heat flow required to i energy per unit of mass than other solar-system bodies do. The value labeled CC(carbonaceous chondrite) is that expected for a body of deep-seated convection, so perhaps it is no coincide approximately chondritic (rocky) composition. planet's enigmatic magnetic field difters markedly it rry f!'Om those ofJupiter and SaturtJ. Researchers hal to simulate the conditions inside Uranus and Nepn shock-compression experiments on water and orh considered likely to exist in the planers' inreriors. T tions show tllat high pressure and temperature cau increase in the materials' electrical conductivity. Th, though neither Uranus nor l 'eptune has a Illetalli layer, slow convection within their inrerior fluids Ill; enuugh for their global magl1etic fields observed by One clue to dynamic processes at work inside a comes, oddly enough, h'om noting how the orbits a evolve over time. The connection is as follows: A 1110 tional 6e1d creates smaJl, periodic tidal distortions in its parenr body (as the Moon does 011 Eart11). The I Figlwe 10. The gravitational attraction of a nearby sateJlite raises bulges are nor directly "under" the satellite, because symmetric tidal bulges on a giant planet. Because d1e planet is rotating planets rotate raster than their major moons orbit t with respect to the satellite, fluid CLU'rents (red arrows) ccur in its 10). As the bulges slide backward in JOJlgirude to rw interior. This motion results in a net loss of cncrgy, as dissipated heat, satellite, they encounter resistJnce and generate "fi-i, dnt very graduaJly slows the planet's rotation. A fracrion of this foml of f1uid currents in the planet's interior. Cor energy also serves to speed up the satellite, thus moving its orbit displacement or phase lag develops between I\her outward. (The bulges' size and angular displacement, Or phase lag, from d1e planet-satellite line are shown much exaggerated.) should be and where rhey are, and its magnitude is • • • 1 V) • • • ... ∗ Mecanismo de Kelvin-Helmholz: Lenta contracción de los planetas en su fase final y migración de los materiales más densos hacia el centro. Energı́a gravitacional ⇒ Energı́a térmica: GM 2 ∆E ∼ − 2 ∆R R CTE 1 - clase 13 CHAPTER fOURTEEN 6 Capacidad de un planeta de retener gases De acuerdo a la teorı́a cinética de los gases, la velocidad cuadrática media de las moléculas gaseosas de masa µ está dada por: s v̄ = 3kT µ Por otro lado, la velocidad de escape de un planeta es: s ve = 2GMP RP Es obvio que la condición mı́nima para que el planeta retenga las moléculas gaseosas es que v̄ < ve. De esta desigualdad, obtenemos la condición de que la masa del planeta MP debe ser mayor que: 1/2 3k 3/2 T 3/2 2 MP > 4πρP 2G µ 3 donde ρP es la densidad media del planeta: MP = 4/3πRP ρP . CTE 1 - clase 13 7 ∗ También hay que tener en cuenta qué sustancias se encuentran en estado gaseoso a una cierta temperatura ∗ En realidad, las moléculas gaseosas escapan desde la exósfera, que es la capa más externa de la atmósfera donde la trayectoria libre media de las moléculas es mayor que las dimensiones del planeta. Debido a que las moléculas gaseosas no tienen todas la misma velocidad v̄, sino una distribución de velocidades maxwelliana, siempre habrá moléculas con velocidades mayores que la de escape del planeta. CTE 1 - clase 13 8 tmospheres that span nse air masses. The Componentes principales de algunas atmósferas ferences. Mercury's is occasionally hidden Atmospheric Compositions Compared cent of Earth is II Planet Molecule Abundance Fraction face of Venus is never (bars) Venus CO 2 N2 rate to the surface. There s either removes them to erior. Ar H 2O Earth N2 E T STATES °2 ed from similar materi<lls esses, the atmospheres of e same gases - though in ions (Table I). The most re are nitrogen (N 2 ) and r more than 98 percent of re present in the <ltmos­ are not the predominant n composition appears to does it dominate the gas CTE 1 - clase 13 portant role in determin- AI" Hp CO 2 Mal"s CO 2 N2 Ar H 2O 86.4 3.2 0.0063 0.009 of total rtl if I I IJn I Ll 0.96 0.035 0.000070 0.000 I00 0.78 0.21 0.01 0.94 0.000355 0.77 0.21 0.01 0.0093 0.00035 0.0062 0.00018 0.00010 3.9xI0-7 0.95 0.027 0.016 0.00006 .l III III I Jar In j \1r~ Table 1. The atmospheres of Earth, Venus, aod Mars contain many of the s:une gases - hut in very different absolute and relative abundances. SOUle values are lower limits only, rcllen;' the past escape of gas to space and other factors. ra 'J,e~) i IUl I J I mOll III .11 lUll 9 Distintos tipos de atmósferas planetarias Paisajes planetarios de Mercurio, Venus, Tierra y Marte con sus diferentes atmósferas. CTE 1 - clase 13 10 Visión desde la superficie marciana CTE 1 - clase 13 11 r studies is to understand what the his­ f gas has been, and what the atmos­ e throughout time, , the gases help to determine the sur­ planet. In their absence, the tempera­ alance between sunlight absorbed at (heat) energy emitted by the surface solar energy that is absorbed, or the Sun, rhe hotter the surface will be, If mosphere, this energy balance would out 255 0 1<.. This is about 30 0 Kless ace temperatu re and 18 0 K below the bands) that the other planets do not share. In addition, the upper atmospheres of Venus and Earth exhibit a striki.ug diurnal cycle (day· night pairs of ClIl'\'es). Arrows indicate the cooler surface temperamres that would occur in the absence of any greenhouse warming. Distribución de la energı́a solar incidente Solar radiation 100% AU:teclto • 16 7 = 33% Reflected to 5" ce (2 ) S"attered by clouds (47) r, absorb infrared energy emi tted by ly and thereby trap it in the atmosually is lost back to space, but nor as e ;][mospheric temperature increases, t similar to what happens in a green­ very easily, but heat has a difficult time erature rises, The planetary-scale ver­ ed the greenhouse effect, Carbon diox­ e Earth's atmosphere to retain heat, re, The atmosphere of Venus contains of CO 2 - 260,000 times more than ere. Consequently, CO 2 (and other mperature of Venus to about 750 0 K, odlerwise be, By contrast, the Mart­ Ol1.ly 6 millibars of CO 2 and very small As a result, greenhol1se warming raises dle average surface temperature ). CTE 1 - clase 13 Reflected to space by air and by ground Absorbed in atmosphere (22%) Scattered to ground (21) Absorbed by ground (24) Figure 3. The interaction of sunlight with the atmospheric gases, clouds, and surface of Earth has many avenues. Ultimately, about one-third of t.he solar energy reaching our globe is reflected back to space. ATMOSPHERES or TlfE TERRESTRIAL PLANETS 12 Condiciones fı́sicas de las atmósferas Equilibrio hidrostático: dP = −gρdh (1) h: altura sobre el nivel del mar; g: aceleración de la gravedad. Ecuación de estado de un gas ideal: P = ρ kT µ (2) µ: masa de las moleculas gaseosas. Si asumimos ρ, g y T constantes, podemos hallar la altura de escala H de la atmósfera. De las ecuaciones (1) y (2) obtenemos: P = +gρH =⇒ kT H= µg Ejemplo para la atmósfera terrestre: Altura de escala del H2O (µ = 18 × 1, 67 × 10−24 g), asumimiendo una temperatura T = 270 K =⇒ H = 12, 6 km. CTE 1 - clase 13 13 Disminución de la densidad con la altura Si diferenciamos la ecuación de estado de los gases ideales obtenemos: kT dρ µ Combinando esta ecuación con la de equilibrio hidrostático nos queda: dP = kT dρ −gρdh = µ dρ µg dh = − dh = − ρ kT H Z ρ ρo dρ =− ρ ln CTE 1 - clase 13 Z h 0 dh H ρ h =− ρo H 14 =⇒ ρ = ρoe−h/H Ejemplo: ¿Cuánto disminuye la concentración de H2O a 20 km de altura en la atmósfera de la Tierra? ρ = e−20/12,6 = 0, 20 ρo ¿Y a 40 km? ρ = e−40/12,6 = 0, 04 ρo CTE 1 - clase 13 15 Caso de la atmósfera de la Tierra: perfil de temperaturas CTE 1 - clase 13 16 pushed e CO 2 back to ch as at natubo f CO 2 resen ts nd loss Reciclado de gases entre la atmósfera y la corteza CO 2 in the atmosphere I Infusion into ocean I , Formation of sediments ~ \ Chemical weathering Of~ Release by voIcanrsn1 atures, xide is wed to or sed­ h make s), car­ mply by Figure 16. On Earth, carbon dioxide cycles between land and sky. with a Gaseous COl is removed from rhe atmosphere to form sea-floor CTE 1 - clase 13 y, cold sediments; plate tectonism C<luses these sediments to be subducted ) 17 Atmósferas de Venus y Marte: perfiles de temperaturas y presiones CTE 1 - clase 13 18 Perfiles de temperaturas de los planetas jovianos CTE 1 - clase 13 19 Titán: La misión Cassini-Huygens ∗ Composición de la atmósfera (tropósfera): N2 (95%), CH4 (4,9%), trazas de otros hidrocarburos, p.ej. etano, propano, acetileno, y otros gases como el cianuro de hidrógeno (HCN), cianoacetileno, etc. ∗ Presión superficial: 1,45 atm. Trayectoria de la nave Cassini-Huygens. CTE 1 - clase 13 Maniobra de descenso del módulo Huygens en la superficie de Titán. 20 La atmósfera de Titán: perfil de temperaturas y presiones CTE 1 - clase 13 21 Cuerpos con atmósferas tenues: Casos de Io, Tritón y Plutón Composición: dióxido de azufre (SO2), monóxido de azufre (SO), cloruro de sodio (NaCl) Presión superficial: 0, 3 − 3 × 10−9 atm., hasta 40 × 10−9 atm. cerca de plumas volcánicas. Superfie de Io reciclada. Se observa el volcán activo Prometeo (disco oscuro a la izquierda del centro. CTE 1 - clase 13 22 La tenue atmósfera de Tritón ∗ Composición: nitrógeno (N2), trazas de metano (CH4) ∗ Presión superficial: 1, 4 × 10−5 atm. ∗ Tritón es geológicamente activo: muestra geysers potenciados por la débil radiación solar que vaporiza el nitrógeno sólido del subsuelo. Zona polar de Tritón mostrando una escarcha de nitrógeno congelado altamente reflector. (albedo = 0,76). Radio = 1353 km CTE 1 - clase 13 Nubes tenues asoman sobre el horizonte de Tritón. 23 El caso de Plutón ∗ Composición: nitrógeno (N2), metano (CH4), monóxido de carbono (CO). ∗ Presión superficial: 6, 5 − 24 × 10−6 atm. El alto albedo de Plutón (0,49-0,66) también sugiere una atmósfera tenue que condensa formando una escarcha altamente reflectora. CTE 1 - clase 13 24