GUÍA: EL ADN NIVEL: 4º MEDIO La molécula de ADN está constituída por dos largas cadenas de nucleótidos unidas entre sí formando una doble hélice. Las dos cadenas de nucleótidos que constituyen una molécula de ADN, se mantienen unidas entre sí porque se forman enlaces entre las bases nitrogenadas de ambas cadenas que quedan enfrentadas. La unión de las bases se realiza mediante puentes de hidrógeno, y este apareamiento está condicionado químicamente de forma que la adenina (A) sólo se puede unir con la Timina (T) y la Guanina (G) con la Citosina (C) La estructura de un determinado ADN está definida por la “secuencia” de las bases nitrogenadas en la cadena de nucleótidos, residiendo precisamente en esta secuencia de bases la información genética del ADN. El orden en el que aparecen las cuatro bases a lo largo de una cadena en el ADN es, por tanto, crítico para la célula, ya que este orden es el que constituye las instrucciones del programa genético de los organismos. Conocer esta secuencia de bases, es decir, secuenciar un ADN equivale a descifrar su mensaje genético La estructura en doble hélice del ADN, con el apareamiento de bases limitado ( A-T; G-C ), implica que el orden o secuencia de bases de una de las cadenas delimita automáticamente el orden de la otra, por eso se dice que las cadenas son complementarias. Una vez conocida la secuencia de las bases de una cadena ,se deduce inmediatamente la secuencia de bases de la complementaria. El modelo de la doble hélice de Watson y Crick ha supuesto un hito en la historia de la Biología. Empaquetamiento del ADN Las proteínas asociadas al ADN se conocen colectivamente con el nombre de histonas. Son polipéptidos relativamente cortos cargados positivamente (básicos) y por lo tanto son atraídos por las cargas negativas del ADN (ácido) Las histonas son sintetizadas en cantidad durante la fase S ( S por síntesis) del ciclo celular. Una de las funciones de esas proteínas está relacionada con el empaquetamiento del ADN en la forma del cromosoma: los 2 metros de ADN de la célula humana son empaquetados en 46 cromosomas de un largo combinado de aproximadamente 200 nm. La célula tiene unas 90 millones de moléculas de histonas siendo la mayoría perteneciente a un tipo conocido como H1. Secuencia que va desde el ADN hasta el cromosoma: El número 1 corresponde a la molécula de ADN, En el número 2 , vemos el ADN unido a proteínas globulares, formando una estructura denominada “collar de perlas”, formado por la repetición de unas unidades que son los “nucleosomas”, que corresponderían a cada perla del collar. En el número 3 se pasa a una estructura de orden superior formando un “solenoide”. En el número 4, se consigue aumentar el empaquetamiento, formando la fibra de cromatina, nuevos “bucles”. En el número 5, llegamos al grado de mayor espiralización y compactación, formando un denso paquete de cromatina, que es en realidad, un cromosoma. REPLICACIÓN DEL ADN Es la capacidad que tiene el ADN de hacer copias o replicar su molécula. Este proceso es fundamental para la transferencia de la información genética de generación en generación. Las moléculas se replican de un modo semiconservativo. La doble hélice se separa y cada una de las cadenas sirve de molde para la síntesis de una nueva cadena complementaria. El resultado final son dos moléculas idénticas a la original MECANISMO DE REPLICACIÓN DEL ADN En el momento de la replicación de ADN, la doble hélice se abre (por actuación del enzima helicasa, que rompe los puentes de hidrógeno entre las dos hebras de ADN), formando la horquilla de replicación. A medida que la helicasa abre la cadena, se replican sus dos hebras. Cada hebra nueva de ADN empieza a partir de un cebador de ARN sintetizado por la primasa, mediante la ADN polimerasa III. También actúan las girasas y topoisomerasas que eliminan la tensión generada por la torsión en el desenrrollamiento. Además actúan las proteínas SSB que se unen a las hebras molde para que no vuelva a enrollarse. La enzima ADN polimerasa añade los nuevos nucleótidos en dirección 5' 3' pero ambas cadenas son antiparalelas. En una de las cadenas la enzima actúa a medida que se abre la horquilla (cadena continua), sin embargo en la otra cadena (cadena discontinua) la adición de los nuevos nucleótidos no puede llevarse a cabo de forma continua ya que tiene el sentido 3' 5'. A medida que la helicasa abre la doble hélice original, debe agregarse un cebador en el extremo 3' de la cadena discontinua, luego sintetizar ADN hasta el ARN cebador anterior. Esta función la ejerce la ARN primasa. La ARN primasa es un tipo de ARN polimerasa, una enzima que sintetiza pequeños fragmentos de ARN, de unos 10 nucleótidos, conocidos como cebadores, complementarios a la hebra de ADN que se copia durante la replicación. Estos cebadores son necesarios para que la ADN polimerasa III tenga un punto de partida en la síntesis 5' a 3' de la hebra molde y agregue los desoxinucleótidos. La ARN primasa tiene la particularidad de no necesitar cebador para comenzar la síntesis. Los cebadores son retirados o degradados por la ADN polimerasa I, gracias a su capacidad de exonucleasa, y rellenados con fragmentos de ADN, gracias a su capacidad de polimerasa. Una vez han sido retirados los cebadores de ARN, la ADN ligasa une los extremos de los fragmentos de Okazaki y da lugar a una cadena continua de ADN. Los fragmentos de Okazaki son cadenas cortas de ADN recién sintetizadas en la hebra discontinua. Éstos se sintetizan en dirección 5’→ 3’ a partir de cebadores de ARN que después son eliminados. Están formados por 1000 a 2000 nucleótidos en Escherichia coli y entre 100 y 200 nucleótidos en eucariotas. Están separados por cebadores de ARN de aproximadamente 10 nucleótidos de longitud. SÍNTESIS PROTEICA Las reacciones bioquímicas están controladas por enzimas. Las enzimas, están a menudo involucradas en cadenas de reacciones conocidas como vías. La pérdida de actividad de una enzima puede inactivar todo el ciclo. La biosíntesis de aminoácidos (los ladrillos que forman las proteínas) es un complejo proceso con muchas reacciones químicas mediadas por enzimas que si mutan, tornándose inactivas, detendrán la vía biosintética y por lo tanto el crecimiento. Beadle y Tatum propusieron la hipótesis “un gen una enzima” y, dado que un gen codifica para la producción de una proteína. “Un gen una enzima” ha sido modificado a “un gen un polipéptido” dado que muchas proteínas (como la hemoglobina) están formadas por mas de un polipéptido. La información fluye del ADN al ARN por vía del proceso llamado transcripción, y luego a la proteína por el proceso de traducción. Transcripción es el proceso de fabricación de ARN usando el ADN como molde. Traducción es la construcción de una secuencia de aminoácidos (polipéptido) con la información proporcionada por la molécula de ARN. El esquema de este “dogma” ha sido encontrada repetidamente y se considera una regla general (salvo en los retrovirus). El Ácido RiboNucleico mensajero (ARNm) es el molde para la construcción de la proteína. El Ácido RiboNucleico ribosómico (ARNr) se encuentra en el sitio donde se construye la proteína: el ribosoma. El Ácido RiboNucleico de transferencia (ARNt) es el transportador que coloca el aminoácido apropiado en el sitio correspondiente. El ARN tiene el azúcar ribosa en vez de desoxirribosa. La base uracilo (U) reemplaza a la timina (T) en el ARN. El ARN tiene una sola hebra, si bien el ARNt puede formar una estructura de forma de trébol debido a la complementariedad de sus pares de bases. La transcripción: haciendo una copia de ARNm de la secuencia de ADN La ARN polimerasa dependiente de ADN abre la parte del ADN a ser transcripta. Solo una de las hebras del ADN (la hebra codificante ) se transcribe. Los nucleótidos de ARN se encuentran disponibles en la región de la cromatina (este proceso solo ocurre en la interfase) y se unen en un proceso de síntesis similar al del ADN. El Código Genético: Traducción del ARN en proteína Fue el astrónomo George Gamow quien señaló que el código que representa a los aminoácidos debía consistir en grupos de al menos tres de las cuatro bases del ADN. En efecto, los 20 aminoácidos están representados en el código genético por la agrupación de tres letras (triplete) de las cuatro existentes. Si uno considera las posibilidades de arreglo de cuatro letras agrupadas de a tres (43) resulta que tenemos 64 posibilidades de palabras a codificar, o 64 posibles codones (secuencia de tres bases en el ARNm que codifica para un aminoácido específico o una secuencia de control). El código genético fue “roto” por Marshall Nirenberg y Heinrich Matthaei (del NIH), 10 años después que Watson y Crick “rompieran” el misterio de la estructura del ADN. Nirenberg descubrió que el ARNm, independientemente del organismo de donde proviene, puede iniciar la síntesis proteica cuando se lo mezcla con el contenido del homogenado de Escherichia coli. Adicionando poli-U (un ARNm sintético) a cada uno de 20 tubos de ensayo (cada uno de los cuales tenía un aminoácido diferente) Nirenberg y Matthaei determinaron que el codón UUU , el único posible en el poli-U, codificaba para el aminoácido fenilalanina. Gradualmente se fue confeccionando una lista completa del código genético. El código genético consiste en 61 codones para aminoácidos y 3 codones de terminación, que detienen el proceso de traducción. El código genético es por lo tanto redundante, en el sentido que tiene varios codones para un mismo aminoácido. Por ejemplo, la glicina es codificada por los codones GGU, GGC, GGA, y GGG. Si un codón muta por ejemplo de GGU a CGC, se especifica el mismo aminoácido. Los ribosomas son los organelos de la célula donde se sintetizan la proteínas. Los ribosomas están formados por una subunidad liviana (30S) y una pesada (50S), el ARNr difiere en cada uno de ellos. La subunidad 30S tiene un ARNr 16S y 21 proteínas diferentes. La subunidad 50S consiste en ARNr 23S y 5S y 34 proteínas diferentes. La subunidad liviana tiene el sitio para que se pegue el ARNm. Tiene un rol crucial en la decodificación del ARN pues monitorea el apareamiento de bases entre el codón del ARNm y el anticodón de ARNt. La subunidad pesada tiene dos sitios para el ARNt. (el sitio A y el Sitio P). Cataliza la formación de la unión peptídica. Existen 61 ARNt diferentes, cada uno posee un sitio diferente para pegar el aminoácido y un anticodón diferente. Para el codón UUU, el codón anticomplementario es AAA. El ARNt tiene forma de trébol y es el que lleva el aminoácido apropiado al ribosoma cuando el codón lo "llama". En la parte terminal del brazo más largo del ARNt se encuentran tres bases, el anticodón, que son complementarias con el codón. La unión del aminoácido apropiado al ARNt esta controlado por una enzima: la aminoacilARNt sintetasa.La energía para la unión del aminoácido al ARNt proviene de la conversión de ATP (adenosín-trifosfato) a AMP (adenosín-monofosfato). La traducción es el proceso de convertir las secuencias del ARNm en una secuencia de aminoácidos. El código de iniciación es el AUG que codifica para el aminoácido metionina (Met). La traducción no ocurre si no está el codón AUG, por lo tanto la metionina (en realidad la formil-metionina, f-Met ) es siempre el primer aminoácido de la cadena polipeptídica, y frecuentemente se elimina al final del proceso. El complejo formado por ARNt/ARNm/subunidad ribosómica pequeña es llamado “complejo de iniciación”. La subunidad grande se pega al complejo de iniciación. Luego de esta fase el mensaje progresa durante la elongación de la cadena polipeptídica. Un nuevo ARNt lleva otro aminoácido al sitio P vacío del complejo ribosoma /ARNm y posteriormente se forma un enlace peptídico con el aminoácido del sitio ocupado. El complejo se mueve a lo largo del ARNm hasta el próximo triplete, liberando el sitio A. El nuevo ARNt entra en el sitio A y se repite el proceso. Cuando el codón es un codón de terminación, un factor de liberación se pega al sitio, parando la traducción y liberando al complejo ribosómico del ARNm. A menudo muchos ribosomas leen el mismo mensaje y forman una estructura conocida como polisoma. De esta manera la célula puede rápidamente fabricar varias proteínas similares. La secuencia de los aminoácidos determina la interacción entre los mismos y por lo tanto define la manera en que la proteína recientemente formada se pliega y adopta su conformación en el espacio. ACTIVIDAD: I) Formar grupos de 4 alumnos como máximo II) Contestar en hoja ordenada, sin borrones y con una sola letra. 1.-¿Qué se entiende por replicación del ADN? 2.-¿Por qué se dice que la replicación del ADN es semiconservativa? 3.-Nombre las enzimas que participan en el proceso de replicación del ADN e indique las funciones de cada una. 4¿Qué son los fragmentos de Okasaki? 5.-¿Qué es un gen? 6.-Indique dos diferencias entre transcripción y traducción. 7.-Haga un cuadro comparativo(semejanzas y diferencias) entre ADN y ARN. 8.-Explique el significado de los codones de terminación. 9.-¿Qué diferencias puede establecer entre las dos subunidades del ribosoma? 10.-Explique el papel de la enzima llamada Aminoacil-ARNt sintetasa. 11.-¿De dónde proviene la energía que permite la unión del aminoácido con el ARNt respectivo? 12.-Defina los siguientes conceptos: a) codón de iniciación b) codón c) anticodón d) complejo de iniciación e) codón de terminación f) polisoma El código genético Desde que se demostró, que las proteínas eran producto de los genes, y que cada gen estaba formado por fracciones de cadenas de ADN, los científicos llegaron a la conclusión de que, debe haber un código genético, mediante el cual, el orden de las cuatro bases nitrogenadas en el ADN, podría determinar la secuencia de aminoácidos en la formación de polipéptidos. En otras palabras, debe haber un proceso mediante el cual las bases nitrogenadas transmitan la información que dicta la síntesis de proteínas. Este proceso podría explicar cómo los genes controlan las formas y funciones de las células, tejidos y organismos. Como en el ADN sólo hay cuatro tipos de nucleótidos, y, sin embargo, las proteínas se constituyen con 20 clases diferentes de aminoácidos, el código genético no podría basarse en que un nucleótido especificara un aminoácido. Las combinaciones de dos nucleótidos sólo podrían especificar 16 aminoácidos (42 = 16), de manera que el código debe estar formado por combinaciones de tres o más nucleótidos sucesivos. El orden de los tripletes, o como se han denominado, codones, podría definir el orden de los aminoácidos en el polipéptido.Diez años después de que Watson y Crick determinaran la estructura del ADN, el código genético fue descifrado y verificado. Su solución dependió en gran medida de las investigaciones llevadas a cabo sobre otro grupo de ácidos nucleicos, los ácidos ribonucleicos (ARN). Se observó que la obtención de un polipéptido a partir del ADN se producía de forma indirecta a través de una molécula intermedia conocida como ARN mensajero (ARNm). Parte del ADN se desenrolla de su empaquetamiento cromosómico, y las dos cadenas se separan en una porción de su longitud. Una de ellas actúa como plantilla sobre la que se forma el ARNm (con la ayuda de una enzima denominada ARN polimerasa). El proceso es muy similar a la formación de una cadena complementaria de ADN durante la división de la doble hélice, salvo que el ARN contiene uracilo (U) en lugar de timina como una de sus cuatro bases nucleótidas, y el uracilo (similar a la timina) se une a la adenina en la formación de pares complementarios. Por esta razón, una secuencia de adenina-guanina-adenina-timina-citosina (AGATC) en la cadena codificada de ADN, origina una secuencia de uracilocitosina-uracilo-adenina-guanina (UAUAG) en el ARNm. Transcripción La formación de una cadena de ARN mensajero por una secuencia particular de ADN se denomina transcripción. Antes de que termine la transcripción, el ARNm comienza a desprenderse del ADN. Finalmente un extremo de la molécula nueva de ARNm, que ahora es una cadena larga y delgada, se inserta en una estructura pequeña llamada ribosoma, de un modo parecido a la introducción del hilo en una cuenta. Al tiempo que el ribosoma se desplaza a lo largo del filamento de ARNm, su extremo se puede insertar en un segundo ribosoma, y así sucesivamente. Utilizando un microscopio de alta definición y técnicas especiales de tinción, los científicos pueden tomar fotografías de las moléculas de ARNm con sus unidades de ribosomas asociados. Los ribosomas están formados por una proteína y ARN. El grupo de ribosomas unidos a un ARNm recibe el nombre de polirribosoma o polisoma. Como cada ribosoma pasa a lo largo de toda la molécula de ARNm, “lee” el código, es decir, la secuencia de bases de nucleótidos del ARNm. La lectura, que se denomina traducción, tiene lugar gracias a un tercer tipo de molécula de ARN de transferencia (ARNt), que se origina sobre otro segmento del ADN. Sobre un lado de la molécula de ARNt hay un triplete de nucleótidos y al otro lado una región a la que puede unirse un aminoácido específico (con la ayuda de una enzima específica). El triplete de cada ARNt es complementario de una secuencia determinada de tres nucleótidos —el codón— en la cadena de ARNm. Debido a esta complementariedad, el triplete es capaz de “reconocer” y adherirse al codón. Por ejemplo, la secuencia uracilo-citosina-uracilo (UCU) sobre la cadena de ARNm atrae al triplete adenina-guanina-adenina (AGA) del ARNt. El triplete del ARNt recibe el nombre de anticodón.Como las moléculas de ARNt se desplazan a lo largo de la cadena de ARNm en los ribosomas, cada uno soporta un aminoácido. La secuencia de codones en el ARNm determina, por tanto, el orden en que los aminoácidos son transportados por el ARNt al ribosoma. En asociación con el ribosoma, se establecen enlaces químicos entre los aminoácidos en una cadena formando un polipéptido. La nueva cadena de polipéptidos se desprende del ribosoma y se repliega con una forma característica determinada por la secuencia de aminoácidos. La forma de un polipéptido y sus propiedades eléctricas, que están también determinadas por la secuencia de aminoácidos, dictarán si el polipéptido permanece aislado o se une a otros polipéptidos, así como qué tipo de función química desempeñará después en el organismo.En las bacterias, los virus y las algas verdeazuladas, el cromosoma se encuentra libre en el citoplasma, y el proceso de la traducción puede empezar incluso antes de que el proceso de la transcripción (formación de ARNm) haya concluido. Sin embargo, en los organismos más complejos los cromosomas están aislados en el núcleo y los ribosomas sólo se observan en el citoplasma. Por esta razón, la traducción del ARNm en una proteína sólo puede producirse después de que el ARNm se ha desprendido del ADN y se ha desplazado fuera del núcleo. Intrones Un descubrimiento reciente e inesperado es que, en los organismos superiores, los genes están interrumpidos. A lo largo de una secuencia de nucleótidos que codifican un polipéptido, en particular, puede haber una o más interrupciones formadas por secuencias sin codificar. En algunos genes pueden encontrarse 50 o más de estas secuencias, o intrones. Durante la transcripción, los intrones son copiados en el ARN junto con las secuencias codificadas, originando una molécula de ARN extra larga. En el núcleo, las secuencias que corresponden a los intrones son eliminadas del ARN por unas enzimas especiales para formar el ARNm, que se exporta al citoplasma.Las funciones de los intrones (si existen) son desconocidas, aunque se ha sugerido que el procesamiento del ARN mediante la eliminación de las secuencias interrumpidas tal vez esté implicado en la regulación de la cantidad de polipéptidos producidos por los genes. También se han encontrado intrones en genes que codifican ARNs especiales, como los que forman parte de los ribosomas. El descubrimiento de los intrones ha sido posible gracias a nuevos métodos que determinan la secuencia exacta de nucleótidos en las moléculas de ADN y ARN, métodos desarrollados por el biólogo molecular británico Frederick Sanger, quien recibió en 1980 por este trabajo el segundo Premio Nobel de Química. Secuencias repetidas Los estudios directos del ADN han demostrado también que en los organismos superiores ciertas secuencias de nucleótidos se repiten muchas veces en todo el material genético. Algunas de estas secuencias repetidas representan copias múltiples de genes que codifican polipéptidos, o de genes que codifican ARNs especiales (casi siempre existen muchas copias de genes que producen el ARN de los ribosomas). Parece que otras secuencias que se repiten no codifican polipéptidos o ARNs, y su función se desconoce. Entre ellas existen secuencias que, al parecer, son capaces de saltar de una zona a otra de un cromosoma, o de un cromosoma a otro. Estos “transposones”, o elementos que se transponen, pueden originar mutaciones en los genes adyacentes a sus puntos de partida o llegada.