CALCULUS Trancedental Functions. Velocity and Acceleration 1. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = 3 log(−t) 2. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = −3e2t 3. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = −3 ln(−2t) 4. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = −5 sin(2t) 5. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = −4 cos(t) 6. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = −3 ln(5t) 7. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = − ln(−2t) 8. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = −2 sin(t) 9. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = −(10)−4t 10. Find the velocity, acceleration, and jerk functions for the following position function: s(t) = 4 cos(−t) 10. v(t) = 4 sin(−t) 9. v(t) = 4(ln 10)1 10−4t a(t) = −4 cos(−t) j(t) = −4 sin(−t) a(t) = −16(ln 10)2 10−4t 5. v(t) = 4 sin(t) a(t) = 4 cos(t) 3 −3 a(t) = 2 j(t) = 6. v(t) = t t 1 −1 a(t) = 2 7. v(t) = j(t) = t t 8. v(t) = −2 cos(t) a(t) = 2 sin(t) j(t) = 64(ln 10)3 10−4t j(t) = 2 cos(t) j(t) = −4 sin(t) −6 t3 −2 t3 2. v(t) = −6e2t a(t) = −12e2t j(t) = −24e2t 3 −6 −3 a(t) = j(t) = 3. v(t) = t t2 t3 4. v(t) = −10 cos(2t) a(t) = 20 sin(2t) j(t) = 40 cos(2t) 1. v(t) = 3 (ln 10)t a(t) = −3 (ln 10)t2 1 of 3 Answers: j(t) = 6 (ln 10)t3 c 2009 La Citadelle www.la-citadelle.com CALCULUS Trancedental Functions. Velocity and Acceleration Solutions: 1. Apply the formula(s): d f (t) d b = (ln b)bf (t) f (t) dt dt d n t = ntn−1 dt s(t) = 3 log(−t) d d 3 s(t) = [3 log(−t)] = dt dt (ln 10)t d d 3 −3 a(t) = v(t) = = dt dt (ln 10)t (ln 10)t2 d 6 d −3 j(t) = a(t) = = 2 dt dt (ln 10)t (ln 10)t3 v(t) = 2. Apply the formula(s): d f (t) d e = ef (t) f (t) dt dt s(t) = −3e2t d s(t) = dt d a(t) = v(t) = dt d j(t) = a(t) = dt v(t) = 3. d −3e2t = −6e2t dt d −6e2t = −12e2t dt d −12e2t = −24e2t dt 1 d d ln f (t) = f (t) Apply the formula(s): dt f (t) dt d n t = ntn−1 dt s(t) = −3 ln(−2t) d −3 [−3 ln(−2t)] = dt t d −3 3 = 2 dt t t d d 3 −6 j(t) = a(t) = = 3 dt dt t2 t d s(t) = dt d a(t) = v(t) = dt v(t) = 4. Apply the formula(s): d d sin f (t) = (cos f (t)) f (t) dt dt d d cos f (t) = −(sin f (t)) f (t) dt dt s(t) = −5 sin(2t) d s(t) = dt d a(t) = v(t) = dt d j(t) = a(t) = dt d [−5 sin(2t)] = −10 cos(2t) dt d [−10 cos(2t)] = 20 sin(2t) dt d [20 sin(2t)] = 40 cos(2t) dt d d 5. Apply the formula(s): sin f (t) = (cos f (t)) f (t) dt dt s(t) = −4 cos(t) v(t) = d s(t) = dt d a(t) = v(t) = dt d j(t) = a(t) = dt v(t) = d d cos f (t) = −(sin f (t)) f (t) dt dt d [−4 cos(t)] = 4 sin(t) dt d [4 sin(t)] = 4 cos(t) dt d [4 cos(t)] = −4 sin(t) dt c 2009 La Citadelle 2 of 3 www.la-citadelle.com CALCULUS 6. Trancedental Functions. Velocity and Acceleration Apply the formula(s): d 1 d ln f (t) = f (t) dt f (t) dt d n t = ntn−1 dt s(t) = −3 ln(5t) d −3 [−3 ln(5t)] = dt t d −3 3 = 2 dt t t d −6 d 3 j(t) = a(t) = = 3 2 dt dt t t d s(t) = dt d a(t) = v(t) = dt v(t) = 7. Apply the formula(s): d 1 d ln f (t) = f (t) dt f (t) dt d n t = ntn−1 dt s(t) = − ln(−2t) d −1 [− ln(−2t)] = dt t d −1 1 = 2 dt t t d d 1 −2 j(t) = a(t) = = 3 2 dt dt t t d s(t) = dt d a(t) = v(t) = dt v(t) = 8. Apply the formula(s): d d sin f (t) = (cos f (t)) f (t) dt dt d d cos f (t) = −(sin f (t)) f (t) dt dt s(t) = −2 sin(t) d s(t) = dt d a(t) = v(t) = dt d j(t) = a(t) = dt d [−2 sin(t)] = −2 cos(t) dt d [−2 cos(t)] = 2 sin(t) dt d [2 sin(t)] = 2 cos(t) dt d d f (t) 10 = (ln 10)10f (t) f (t) 9. Apply the formula(s): dt dt s(t) = −(10)−4t d d v(t) = s(t) = −(10)−4t = 4(ln 10)1 10−4t dt dt d d 4(ln 10)1 10−4t = −16(ln 10)2 10−4t a(t) = v(t) = dt dt d d j(t) = a(t) = −16(ln 10)2 10−4t = 64(ln 10)3 10−4t dt dt d d 10. Apply the formula(s): sin f (t) = (cos f (t)) f (t) dt dt s(t) = 4 cos(−t) v(t) = d s(t) = dt d a(t) = v(t) = dt d j(t) = a(t) = dt v(t) = d d cos f (t) = −(sin f (t)) f (t) dt dt d [4 cos(−t)] = 4 sin(−t) dt d [4 sin(−t)] = −4 cos(−t) dt d [−4 cos(−t)] = −4 sin(−t) dt c 2009 La Citadelle 3 of 3 www.la-citadelle.com