Soluciones

Anuncio
TERCER TRABAJO EN GRUPO
Grupo 10
Problema 1.- Se considera la ecuación x3 + x2 + mx − 6 = 0. Utilizando el Teorema
de Bolzano demostrar que:
(i) Si m > −3 la ecuación tiene al menos una raíz real menor que 2.
(ii) Si m < −3 la ecuación tiene al menos una raíz real mayor que 2.
SOLUCIÓN Sea f (x) = x3 + x2 + mx − 6. Dicha función es continnua por ser
polinómica, por lo que podemos aplicar el teorema de Bolzano en cualquier intervalo
cerrado en el que haya cambio de signo.
(i) Si m > −3 consideramos el intervalo [0, 2]. Entonces,

f (0) = −6 < 0


=⇒ existe x0 ∈ (0, 2) tal que f (x0 ) = 0.
f (2) = 6 + 2m > 0 

(ii) Si m < −3 consideramos el intervalo [2, −m], ya que −m > 3. Entonces,

f (0) = −6 < 0


=⇒ existe x0 ∈ (2, −m) tal que f (x0 ) = 0.
f (−m) = −m3 − 6 > 21 > 0 

Problema 2.- Dar un intervalo en el que se pueda asegurar que existe una raíz de la
ecuación
x − 1 = sen x.
SOLUCIÓN Sea g(x) = x − 1 − sen(x). La función es continua por ser diferencia
de funciones elementales que lo son.
)
g(0) = −1 < 0
=⇒ existe x0 ∈ (0, π) tal que g(x0 ) = 0.
g(π) = π − 1 > 0
Problema 3.- Encontrar la raíz de f (x) = ex + x − 3 con un error más pequeño que
media décima.
SOLUCIÓN Sea f (x) = ex + x − 3. Se trata de una función continua por lo que
podemos aplicar el método de la bisección.
x1 = 0
f (x1 ) = −2
x3 =
f (x3 ) = −0,8513
f (x4 ) = −0,1330
f (x4 ) = −0,1330
x2 = 1
f (x2 ) = 0,7183
x5 = 0,875
f (x5 ) = 0,2739
x3 + x5
= 0,8125 =⇒ ε < 0,0625
2
f (x6 ) = 0,066
x3 = 0,75
f (x4 ) = −0,1330
x7 =
f (x2 ) = 0,7183
x3 + x2
= 0,875 =⇒ ε < 0,125
2
f (x5 ) = 0,2739
x3 = 0,75
x6 =
x2 = 1
x 3 + x2
= 0,75 =⇒ ε < 0,25
2
f (x4 ) = −0,1330
x3 = 0,75
x5 =
f (x2 ) = 0,7183
x1 + x2
= 0,5 =⇒ ε < 0,5
2
f (x3 ) = −0,8513
x3 = 0,5
x4 =
x2 = 1
x6 = 0,8125
f (x6 ) = 0,066
x3 + x6
= 0,78575 =⇒ ε < 0,03125
2
f (x7 ) = −0,0202
La raíz de la función es 0.78575 con un error más pequeño que 0.03125.
TERCER TRABAJO EN GRUPO
Grupo 20
Problema 1.- Se considera la ecuación x3 − 3x + 1 = 0. Utilizando el Teorema de
Bolzano demostrar que la ecuación anterior tiene al menos una raíz.
SOLUCIÓN Sea f (x) = x3 −3x+1. Dicha función es continnua por ser polinómica,
por lo que podemos aplicar el teorema de Bolzano en cualquier intervalo cerrado en el
que haya cambio de signo.
)
f (0) = 1 > 0
=⇒ existe x0 ∈ (−2, 0) tal que f (x0 ) = 0.
f (−2) = −1 < 0
Problema 2.- Dar un intervalo en el que se pueda asegurar que existe una raíz de la
ecuación
x3 − 1 = arctan(x).
SOLUCIÓN Sea g(x) = x3 −1−arctan(x). La función es continua por ser diferencia
de funciones elementales que lo son.


g(0) = −1 < 0
√
=⇒ existe x0 ∈ (0, 3) tal que g(x0 ) = 0.
√
√
g( 3) = 3 3 − 1 − π/3 > 0 
Problema 3.- Encontrar una raíz de f (x) = cos(x) − 2x − 2 con un error más
pequeño que media décima.
SOLUCIÓN Sea f (x) = cos(x) − 2x − 2. Se trata de una función continua por lo
que podemos aplicar el método de la bisección.
x1 = −1
f (x1 ) = 0,5403
x3 =
f (x1 ) = 0,5403
f (x3 ) = 0,2316
f (x5 ) = 0,061
x3 = −0,5
f (x3 ) = −0,1224
x3 = −0,5
f (x3 ) = −0,1224
x5 + x3
= −0,5625 =⇒ ε < 0,0625
2
f (x6 ) = −0,0291
x5 = −0,625
f (x5 ) = 0,061
x7 =
f (x3 ) = −0,1224
x4 + x3
= −0,625 =⇒ ε < 0,125
2
f (x5 ) = 0,061
x5 = −0,625
x6 =
x3 = −0,5
x1 + x3
= −0,75 =⇒ ε < 0,25
2
f (x3 ) = 0,2316
x4 = −0,75
x5 =
f (x2 ) = −1
x1 + x2
= −0,5 =⇒ ε < 0,5
2
f (x3 ) = −0,1224
x1 = −1
x4 =
x2 = 0
x6 = −0,5625
f (x6 ) = −0,0291
x5 + x6
= −0,59375 =⇒ ε < 0,03625
2
f (x7 ) = 0,0163
La raíz de la función es -0.59375 con un error más pequeño que 0.03125.
TERCER TRABAJO EN GRUPO
Grupo 40
Problema 1.- Se considera la ecuación t2 + ln (t) = 0. Utilizando el Teorema de
Bolzano demostrar que la ecuación anterior tiene al menos una raíz en el intervalo
(0, +∞).
SOLUCIÓN Sea g(x) = t2 + ln (t). La función es continua en (0, +∞) por lo que
podemos aplicar el teorema de Bolzano en cualquier intervalo cerrado en el que haya
cambio de signo.
)
g( 1e ) = −1 + e12 < 0
1
=⇒ existe x0 ∈ ( , 1) tal que g(x0 ) = 0.
e
g(1) = 1 > 0
Problema 2.- Dar dos intervalos en el que se puedan localizar dos raíces de la ecuación
x2 = x sin(x) + cos(x).
SOLUCIÓN Sea f (x) = x2 − x sin(x) − cos(x). La función es continua en IR por
lo que podemos aplicar el teorema de Bolzano en cualquier intervalo cerrado en el que
haya cambio de signo.
)
f (−π) = π 2 + 1 > 0
=⇒ existe x1 ∈ (−π, 0) tal que f (x1 ) = 0.
f (0) = −1 < 0
f (0) = −1 < 0
f (π) = π 2 + 1 > 0
)
=⇒ existe x2 ∈ (0, π) tal que f (x2 ) = 0.
Problema 3.- Encontrar una raíz de f (x) = sin(x)−ex +2 con un error más pequeño
que media décima.
SOLUCIÓN Sea f (x) = sin(x) − ex + 2. Se trata de una función continua por lo
que podemos aplicar el método de la bisección.
x1 = 1
f (x1 ) = 0,1232
x3 =
f (x1 ) = 0,1232
f (x1 ) = 0,1232
f (x1 ) = 0,1232
x4 = 1,25
f (x4 ) = −0,5414
x5 = 1,125
f (x5 ) = −0,1779
x1 + x5
= 1,0625 =⇒ ε < 0,0625
2
f (x6 ) = −0,02
x5 = 1
f (x1 ) = 0,1232
x7 =
f (x3 ) = −1,4842
x1 + x4
= 1,125 =⇒ ε < 0,125
2
f (x5 ) = −0,1779
x1 = 1
x6 =
x3 = 1,5
x 1 + x3
= 1,25 =⇒ ε < 0,25
2
f (x4 ) = −0,5414
x1 = 1
x5 =
f (x2 ) = −4,4798
x1 + x2
= 1,5 =⇒ ε < 0,5
2
f (x3 ) = −1,4842
x1 = 1
x4 =
x2 = 2
x6 = 1,0625
f (x6 ) = −0,02
x1 + x6
= 1,03125 =⇒ ε < 0,03125
2
f (x7 ) = 0,0534
La raíz de la función es 1.03125 con un error más pequeño que 0.03125.
TERCER TRABAJO EN GRUPO
Grupo 30
Problema 1.- Se considera la ecuación x4 + 2x2 − x − 1 = 0. Utilizando el Teorema
de Bolzano demostrar que la ecuación anterior tiene al menos una raíz.
SOLUCIÓN Sea g(x) = x4 +2x2 −x−1. La función es continua por ser diferencia de
funciones elementales que lo son. Por tanto, podemos aplicar el Teorema de Bolzano.
)
g(0) = −1 < 0
=⇒ existe x0 ∈ (0, 1) tal que g(x0 ) = 0.
g(1) = 1 > 0
Problema 2.- Dar un intervalo en el que se pueda localizar una raíz de la ecuación
et = 2 − t2 .
SOLUCIÓN Sea g(t) = et − 2 + t2 . La función es continua por ser diferencia de
funciones elementales que lo son. Podemos aplicar el Teorema de Bolzano a cualquier
intervalo cerrado.
)
g(0) = −1 < 0
=⇒ existe x0 ∈ (0, 1) tal que g(x0 ) = 0.
g(1) = e − 1 > 0
Problema 3.- Encontrar una raíz de f (x) = x + arctan(x) − 1 con un error más
pequeño que media décima.
SOLUCIÓN Sea f (x) = x + arctan(x) − 1. Se trata de una función continua por
lo que podemos aplicar el método de la bisección.
x1 = 0
f (x1 ) = −1
x3 =
f (x3 ) = −0,0364
f (x3 ) = −0,0364
f (x3 ) = −0,0364
x4 = 0,75
f (x4 ) = 0,3935
x5 = 0,625
f (x5 ) = 0,1836
x3 + x5
= 0,5625 =⇒ ε < 0,0625
2
f (x6 ) = 0,0749
x3 = 0,5
f (x3 ) = −0,0364
x7 =
f (x2 ) = 0,7854
x3 + x4
= 0,625 =⇒ ε < 0,125
2
f (x5 ) = 0,1836
x3 = 0,5
x6 =
x2 = 1
x 3 + x2
= 0,75 =⇒ ε < 0,25
2
f (x4 ) = 0,3935
x3 = 0,5
x5 =
f (x2 ) = 0,7854
x1 + x2
= 0,5 =⇒ ε < 0,5
2
f (x3 ) = −0,0364
x3 = 0,5
x4 =
x2 = 1
x6 = 0,5625
f (x6 ) = 0,0749
x3 + x6
= 0,53125 =⇒ ε < 0,03125
2
f (x7 ) = 0,0196
La raíz de la función es 0.53125 con un error más pequeño que 0.03125.
Descargar