parámetros del transistor

Anuncio
13
PARÁMETROS DEL
TRANSISTOR
0.-
INTRODUCCIÓN (2)
1.-
SONDA DETECTORA (4)
2.-
MEDIDA DE LA fT (5)
2.1 Realización práctica (7)
3.-
PARÁMETRO DE TRANSFERENCIA
INVERSA (10)
3.1 Realización práctica (10)
4.-
CAPACIDAD DE LA UNIÓN “COLECTORBASE” (11)
4.1 Realización práctica (12)
Capítulo 13. Medida de parámetros del transistor
Página
2
0 - INTRODUCCION
Esta práctica es un complemento de la que se realiza en electrónica con el nombre de
«medida de los parámetros híbridos».
Su finalidad es determinar los valores de los componentes del circuito equivalente híbrido
en π.
El circuito en su versión intrínseca es el siguiente:
Ilustr. 1 Circuito en parámetros híbridos π
El circuito equivalente en parámetros "h":
Ilustr. 2 Circuito en parámetros "h"
Capítulo 13. Medida de parámetros del transistor
Página
3
Los parámetros de estos circuitos se pueden calcular según la siguiente tabla:
FORMULA MEDIDA DE
gm=
Q Ic
Ic
=
K ⋅T
26 mV
r b′e =
Ic
β0
β 0 = h fe
gm
r b′b = hie-r b′e
r b′e
r b′c =
h re
1
ro _
h oe
gm
- C cb
C b′e =
h ie = h 11
h re = h12
h oe = h 22
fT
ωT
C cb
Q = 1,60219 . 10-19 Culombios
K = 1,38062 . 10-23 J.KT = 273+25 = 298 º C
K .T
Q
= 26mV
Ccb = Capacidad entre colector-base.
Cb'e = Capacidad entre base emisor.
NOTA: Entre esta práctica y la hecha en primero se realiza todo el conjunto de medidas
siendo las que se van a realizar en el "laboratorio de Medidas" las que presentan una
mayor dificultad.
Capítulo 13. Medida de parámetros del transistor
Página
4
1.- SONDA DETECTORA
Los polímetros digitales suelen tener una limitación importante en cuanto a las medidas
en alterna, y es que suelen responder correctamente hasta unos 100K. Como en esta
práctica hay algún apartado que tenemos que trabajar a bastantes MHz. y no podemos
utilizar el Osciloscopio por las capacidades, que también tienen que ser pequeñas y la
sonda detectora también cumple este requisito.
Para superar esta limitación lo más sencillo es utilizar una sonda detectora también
llamada demoduladora que lo que hace es detectar la señal, esto es rectificarla y luego
filtrarla dando un nivel de continua igual al valor eficaz de la alterna presente en la
entrada. Pero la precisión de las sondas suele ser baja (10%) y además variable con la
tensión.
En nuestro caso veremos que la precisión no tiene importancia pues se trata de hallar el
punto en que la tensión es máxima.
Esta señal de continua se medirá con el osciloscopio o con el voltímetro, en continua, que
dan una buena precisión y no tienen problemas.
Ahora bien, las sondas suelen funcionar correctamente a partir de los 100 KHz hasta
bastantes MHz. Por lo tanto no es correcto utilizar la sonda Detectora para frecuencias
inferiores a los 100 KHz.
La sonda que se utiliza aquí tiene un margen de funcionamiento de 100KHz a 100MHz
con un error de ± 1dB ≈ 10%.
Otra limitación de la sonda es que no es capaz de medir cualquier tensión, sólo funciona
correctamente para un margen de tensiones de entrada, que van de 250 mV a 30 V.
Una buena medida de precaución es comprobar que la sonda funcionará bien para las
condiciones en que deseemos medir. Esto se puede hacer utilizando como medidor patrón
un osciloscopio, y comparando la medida realizada directamente con el osciloscopio y la
realizada con la sonda y el voltímetro u osciloscopio.
Capítulo 13. Medida de parámetros del transistor
Página
5
2.- MEDIDA DE LA fT
La medida de la fT, consiste en hallar la frecuencia para la cual la ganancia del transistor
se hace la unidad. La respuesta en frecuencia de un amplificador transistorizado está
determinada en primer lugar por el propio transistor y luego por el circuito exterior.
El transistor es un elemento activado básicamente por corriente. Para cambiar la
corriente a través del transistor se necesita el movimiento de cargas de una región a otra
de la base del transistor.
Este movimiento de cargas precisa un tiempo finito. Si tenemos un montaje de un
amplificador normal en emisor común, como el de la figura 1, cuando la señal senoidal
tiende a positiva las corrientes de base y de colector aumentarán.
Ilustr. 3 Amplificador en emisor común
Esto significa un movimiento de cargas a través de la región de base del transistor. Este
movimiento necesita tiempo. Por lo tanto no podemos subir la frecuencia
indefinidamente sin que haya modificaciones importantes en la salida.
A bajas frecuencias, la salida será una versión amplificada de la entrada y estará
exactamente desfasada 180º. Pero si se aumenta la frecuencia de manera continuada,
manteniendo constante la tensión de entrada, la señal de salida no sólo disminuirá sino
que aumentará el desfase respecto a señal de entrada. Si representamos las gráficas de
la tensión y de la fase de salida en función de la frecuencia nos dará unas curvas como
las de la Ilustr. 4
Analicemos porqué cae la ganancia del transistor cuando se aumenta la frecuencia.
Primero observemos lo que sucede a baja frecuencia. Cuando la onda senoidal tiende a
positiva, las cargas se mueven hacia la región de la base y en consecuencia aumenta la
corriente de colector.
Debe tenerse en cuenta que las cargas circulan hacia dentro y hacia fuera de la región de la
base por difusión. Este es un proceso errático que necesita un tiempo apreciable para
mover las cargas hacia dentro y hacia fuera de la base.
Capítulo 13. Medida de parámetros del transistor
Página
6
Ilustr. 4 Gráficas de ganancia y fase
Cuando aumenta la frecuencia, el tiempo entre las partes positiva y negativa de la onda
se hace más y más corta. Si se alcanza una frecuencia en que la parte positiva de la onda
persiste durante un tiempo más corto que el necesario para mover la cantidad de carga
apropiada en la región de la base, sucede que cuando la onda empieza a disminuir, la
carga en la base está aún tratando de aumentar.
En este momento el transistor no está respondiendo correctamente a las variaciones
de entrada, dando lugar a una disminución en la ganancia y a una desviación de fase entre
las señales de entrada y salida, como se indica en la Ilustr 3.
La frecuencia de corte superior de -3 dB, en un montaje en emisor común, se designa por fß.
Por encima de esta frecuencia la ganancia cae 6 dB/octava, es decir, cada vez que se
duplica la frecuencia la tensión de salida cae 6 dB.
Otro parámetro importante que ahora nos interesa y que se muestra en la Ilustr.3 es la
fT.
La fT es la frecuencia a la cual la ganancia de corriente en emisor común es igual
a 1.
Si se mide la ganancia de corriente a cualquier frecuencia a lo largo de la zona de caída de
6 dB/octava, el producto de la frecuencia por la ganancia a esa frecuencia será una
constante llamada fT.
O sea, se cumple que: f ω ⋅ β ω = f T ⋅ 1 2
Capítulo 13. Medida de parámetros del transistor
Página
7
Por otra parte si conocemos la ganancia a frecuencias intermedias ßo y la fT podemos
conocer la ganancia a cualquier frecuencia mediante la relación:
β=
β0
⎛β • f
1+ ⎜⎜ 0
⎝ fT
⎞
⎟⎟
⎠
2
2.1.- REALIZACIÓN PRÁCTICA
NOTA:
En estas tres prácticas, principiar por identificar bien los circuitos con los
esquemas teóricos. Fijarse bien en los puntos donde hay que aplicar la tensión
y los aparatos de medida.
Se trata de hallar la frecuencia para la cual la ganancia del transistor se hace la unidad.
basándose en el hecho deque en la zona de caída de 6 dB/octava se cumple que:
f ω ⋅βω= f T
Mediremos la ganancia de corriente a una frecuencia comprendida en dicha zona. Y
mediante el producto, frecuencia por ganancia, hallamos fT.
Para conocer mejor el comportamiento del transistor hallaremos una serie de valores de la
curva y trazaremos la curva, observando entre que valores se cumple la condición de que
al doblar la frecuencia la ganancia de corriente disminuye 6 dB.
Para ello representaremos, en una hoja semilogarítmica de unas 6 décadas, frecuencias
desde 1K a 1000 MHz y en el eje Y, la ganancia en corriente expresada en dB. nºdB =
20 log Gi.
Haremos unas cuantas medidas desde 125 KHz a 8 MHz procurando tomar valores dobles
unos de otros, por ejemplo 125 KHz, 250 KHz, 500 KHz, 1M, 2M, 4M, 8M.
Nota: No conviene trabajar a frecuencias superiores a los 8MHz, porque los elementos
exteriores al transistor principian a influir en el comportamiento del transistor
De las anteriores medidas podemos deducir fT ya sea por cálculo o gráficamente,
prolongando la gráfica hasta cortar el eje de las X. En este punto tendremos:
0 dB = 20 ⋅ log (
Despejando:
i2
)
i1
Capítulo 13. Medida de parámetros del transistor
log (
Página
8
0
i2
)=
20
i1
i2
= antilog de 0 = 1
i1
Proceso:
1.2.3.4.-
Comprobar si Vce está comprendido entre 4,5V y 5,5V si no avisar para ajustarla.
Para esta tensión la corriente Ic = (12-5) / 3K6 ≈ 2mA.
Por tratarse de parámetros para pequeña señal aplicaremos señales a la entrada
tales que la forma de onda de la salida no se deforme sino que sea senoidal.
De la ecuación: i 2 = h 21 ⋅ i 1 + h 22 ⋅ v 2 ; si v 2 = 0 :
h
21
= β
ac
=
i 2⏐
⏐
i 1⏐
v2= 0
Mediremos las corrientes i1 e i2 sobre las resistencias Rm y R´m respectivamente (Ilustr.3)
La caída de tensión en Rm se medirá por diferencia entre los puntos 1 y 2 respecto masa.
Aunque la salida tendría que estar en cortocircuito para alterna, tenemos que poner una
pequeña resistencia (20Ω) para medir la caída y de ella deducir la i2. Al ser despreciable
frente a Rc no introduce modificación apreciable.
NOTAS:
1ª Las medidas se harán con el osciloscopio y no con la sonda, pues los
niveles de tensión son inferiores a los requeridos por la sonda.
2ª Por tratarse de señales muy pequeñas puede haber problemas de
sincronismos, por lo que se recomienda sincronizar externamente
tomando la señal directamente del punto 1 o del generador y ajustar bien
el nivel de trigger.
3ª Para obtener valores más precisos conviene aprovechar todas las
posibilidades del osciloscopio como el filtro y el promediado.
Capítulo 13. Medida de parámetros del transistor
Página
9
Ilustr. 5 fT en función de Ic
3.- MEDIDA DEL PARÁMETRO DE
TRANSFERENCIA INVERSA (h12 ó hre)
De la ecuación: v 1 = h 11 ⋅ i 1 + h 12 ⋅ v 2 ; si i 1 = 0 :
h 12 = h re =
v 1⏐
⏐
v 2⏐
i1 = 0
Se trata pues de deducir h12 midiendo v1 y v2.
3.1.- REALIZACIÓN PRÁCTICA
Ilustr. 6 Esquema de montaje
Las condiciones de medida son:
a)
Vce = 5V. para ello se ajustará la resistencia Rb2 (está debajo).
b)
Ic = 2 mA; teniendo en cuenta los 12 voltios de alimentación y los 5 Vce
tendremos:
Ic = 7V/3,6K ≈ 2mA.
Capítulo 13. Medida de parámetros del transistor
Página 10
c)
La frecuencia de medida ha de ser de 1 KHz, si queremos comparar el resultado
obtenido con el que nos da el fabricante ( para el SC 108 y el BC 108 está comprendida entre 1,5x10-3 y 3x10-4). Para darse cuenta de la influencia de la
frecuencia, se hará una gráfica de la variación de hre con la frecuencia, para las
siguientes frecuencias 1, 5, 10, 20, 40, 80 y 100 KHz.
d)
La tensión del generador ha de ser tal que la señal que aparece en la entrada
no se deforme dando unos picos raros. Pero deberá ser lo más grande
posible para poder medirla sin mucho error. Quizá la manera más práctica
sea mediante el osciloscopio, que nos permite ver la forma de onda.
Una de las mayores dificultades es que la señal que aparece en la entrada es
muy pequeña. De medirla con el voltímetro de alterna cuidar de hacer la
corrección de la tensión que aparece cortocircuitando las puntas, que no
siempre es cero cuando se trata de tensiones muy pequeñas.
4.- CAPACIDAD DE LA UNIÓN “COLECTOR - BASE”
(Ccb)
En el circuito de la Ilustr. 7 se muestra la capacidad Ccd entre colector y base. La
presencia de esta capacidad produce una realimentación negativa entre la salida y la
entrada del transistor.
Puesto que el amplificador en emisor común presenta un desfase de 180º entre la entrada y
la salida, el efecto de Ccb es introducir realimentación negativa, que al sumarse con la
señal de entrada, hace que disminuya la salida. Además, puesto que la reactancia
capacitiva de Ccb disminuye al aumentar la frecuencia, los efectos de realimentación se
harán más pronunciados al aumentar la frecuencia.
Ilustr. 7 Amplificador emisor común
Hay otro factor importante, a tener en cuenta, producido por Ccb. La corriente que
abandona el colector al llegar al punto A se divide, de acuerdo con la impedancia, por los
distintos caminos de corriente.
Capítulo 13. Medida de parámetros del transistor
Página 11
El efecto de Ccb es importante porque la corriente de realimentación está realmente
multiplicada por ß. respecto a la que tenemos en la entrada
Ejemplo:
Supongamos un transistor con ß=50 y una señal de salida 1 mA. Si el 1% de esta señal de
salida, es decir, 0,01 mA se realimenta a la base, la cual base tenía una corriente de :
I c = 1mA = 0,02mA
50
β
La corriente neta de base después de realimentado será 0,02-0,01=0,01 mA.
La corriente de colector disminuirá desde 1 mA a 0,01 * 50 = 0,5mA. O sea que con un
factor de realimentación del 1 % reduce la salida en un 50 %. Lo que nos da idea de la
importancia de Ccb .
4.1.- REALIZACIÓN PRÁCTICA
Ilustr 8 Esquema de montaje
Vamos a medir la Ccb que es la capacidad de la unión colector-base más la capacidad de
los terminales
Esta medida es la que presenta mayor dificultad por ser muy pequeña (entre 2,8 y 4,5 pF).
El montaje tiene que ser compacto. Se medirá por resonancia, mediante una bobina
cuya capacidad entre espiras se conozca.
Para no tener que utilizar una bobina muy grande se ha de obtener la resonancia a una
frecuencia elevada. Para poder medir tensiones a estas frecuencias y además pequeñas
capacidades, necesitamos un milivoltímetro de radiofrecuencia o una sonda detectora de
Capítulo 13. Medida de parámetros del transistor
Página 12
capacidad conocida.
Se utilizarán dos fuentes de 5 y 12 voltios respectivamente para la polarización del
transistor. ¡¡ Cuidado, las polaridades !!.
Cd es para desacoplar más perfectamente la fuente principal.
El circuito resonante queda formado por la bobina y por las capacidades (Ccb // Cs // CL).
Dado que la capacidad que hemos de medir es pequeña importa mucho conocer la
capacidad del instrumento que utilizamos , por este motivo usaremos la sonda detectora
que tiene una capacidad pequeña y conocida.
Cs = Capacidad de la sonda detectora está comprendida entre 6 a 8 pF.
CL = Capacidad distribuida de la bobina está comprendida entre 1 y 1,7 pF.
L = Inductancia de la bobina =Entre 0,33 y 0,34 µH.
Se hallará entre qué valores está comprendida la capacidad Ccb tomando los
valores de la capacidad de la sonda y de la bobina y la inductancia de la bobina de forma a
obtener los valores máximo y mínimo posibles
Llamando C a la capacidad paralelo de (Ccb + Cs + CL) el circuito resonante esta formado
por el paralelo de la bobina con los condensadores. En un circuito resonante paralelo la
tensión es máxima en la resonancia.
Dado que la frecuencia de resonancia es la misma para el circuito paralelo que para
el serie con los mismos elementos, podemos utilizar el circuito equivalente serie el de
la Ilustr. 9
El condensador de acoplamiento C0 no influye
apenas por estar en serie con otro mucho más
pequeño y el equivalente sería aproximadamente
el más pequeño.
En este apartado utilizaremos la sonda.
Aquí no importa la precisión de la sonda, porque
lo que nos interesa es sencillamente un valor
máximo. Lo que importa es que tenga una
capacidad pequeña y conocida.
Ilustr. 9 Circuito resonante
equivalente
Tampoco hay problemas de tensión mínima, pues podemos variar el generador.
Colocaremos la sonda en el punto 1 e iremos variando la frecuencia del generador
hasta obtener una tensión máxima, que sucederá en el momento de la resonancia,
debido a ser un circuito LC paralelo , en la resonancia la impedancia es máxima , la
corriente será mínima, y por tanto la tensión en el punto 1 es máxima..
De la fórmula:
f r=
1
2π L ⋅ C
Capítulo 13. Medida de parámetros del transistor
Podemos deducir C, y por tanto, Ccb:
C cb ≈ C µ = C - ( C s + C L )
Página 13
Descargar