Ahí viene la plaga

Anuncio
Ahí viene la plaga...
Natalia Martínez Ainsworth
Las plagas pueden causar enormes pérdidas de producción agrícola y pecuaria, pueden
atentar contra nuestra salud, nuestra alimentación, el funcionamiento de los ecosistemas
de los cuales dependemos e incluso provocar la extinción de especies nativas endémicas.
Ocurren por la proliferación desmedida de alguna especie, que causa daños y cambios en
las densidades de otras especies. Las plagas conducen a
situaciones con las que
debemos tener mucho cuidado y que en ocasiones hemos provocado y alentado. Cuando
las queremos arreglar algunas veces las cosas mejoran, pero muchas veces empeoran
¿Cómo ha sido la interacción del humano con estas modificaciones radicales en las
densidades de especies?
Las plagas se definen como tales a partir del daño antropocéntrico que causan, en
Ahí viene la plaga… / CIENCIORAMA 1
el presente texto se abordarán los daños que causan a las actividades productivas más
no enfermedades como la peste. Las plagas pueden estar constituidas de virus, bacterias,
gusanos, insectos, hierbas y hasta vertebrados que afectan tanto a cultivos agrícolas
como a ecosistemas acuáticos o terrestres. Una plaga puede ser una especie que ataca
usualmente determinado cultivo o ecosistema, pero también puede ser un organismo que
no se encuentra de manera natural en una localidad; es decir, una especie exótica. Por
ejemplo, la rápida expansión de conejos europeos silvestres (Oryctolagus cuniculus)
introducidos en Australia en 1859 y 1879 causó daños considerables a la biota local,
incluyendo cultivos y huertos, así como modificaciones al paisaje por un aumento de la
erosión pues arrasaron con la cubierta vegetal. Estos conejos fueron una especie exótica
invasora pues al llegar al nuevo hábitat hallaron condiciones adecuadas para su
supervivencia y reproducción, entre ellas la ausencia de sus depredadores naturales que
les permitió proliferar y distribuirse de una manera descontrolada y competir con ventaja
con las especies oriundas del sitio.
Figura 1: (A) Avance veloz del conejo europeo en el continente australiano a partir de su introducción en
1859 y de su invasión en 1860 (punto morado) (Modificado de Fenner, 2010). (B) En morado, la distribución
de Oryctolagus cuniculus, el conejo silvestre europeo, en Australia para el 2008. Fuente: IUCN Red List
Ahí viene la plaga… / CIENCIORAMA 2
Figura 2: Conejo silvestre europeo Oryctolagus cuniculus en Australia. Fuente:
www.environment.gov.au
¿Qué es el control biológico?
Por control biológico se entiende el uso de especies que son enemigas naturales de las
plagas para reducirlas o mitigar sus efectos. Estos organismos pueden estar atacando a
las plagas con compuestos químicos que son producto de la expresión de genes
específicos en ellos; cuando estos químicos son utilizados por separado no se consideran
control biológico, el control debe provenir de los organismos vivos.
Naranjas libres
Un caso emblemático del control biológico lo podemos encontrar en la producción de
naranja en California, EUA. Este cultivo es relativamente reciente en la zona, pues fue
hasta 1841 cuando se sembraron los primeros huertos y hasta 1870 alcanzó un auge.
Ahí viene la plaga… / CIENCIORAMA 3
Figura 3: La principal variedad de naranja cultivada
en California EUA
En 1869 hubo sin embargo ciertas complicaciones, pues se introdujeron a la zona árboles
de acacia traídos de Australia que llevaban un polizón a bordo: la cochinilla acanalada
Icerya purchasi. Este insecto al verse libre de sus depredadores y competidores naturales
australianos tuvo un impacto brutal en los naranjos californianos. Aunque se acudió a
fumigaciones muy venenosas, éstas no tuvieron el efecto deseado, así que en 1888 se
introdujo como control biológico a otro insecto,
la catarina Rodolia cardinalis también
australiana. En unos meses la plaga quedó controlada y así se ha mantenido hasta la
fecha, colocando a Estados Unidos como el segundo productor de naranjas más grande
del mundo. Esta catarina se ha utilizado como control de plagas en huertos de cítricos en
muchos otros países.
Ahí viene la plaga… / CIENCIORAMA 4
Figura 4: Catarina Rodolia depredando una
cochinilla acanalada: Icerya purchasi. Fuente:
Applied Biological Control
Es claro que las plagas han afectado y moldeado la distribución de los cultivos agrícolas
en el mundo. El caso mencionado es un control biológico clásico porque el agente de
control que se introdujo (la catarina) evolucionó junto a la especie que se busca controlar
(la cochinilla acanalada) en Australia y ambas no provenían de América. Es necesario
aclarar que en estos casos se está buscando restablecer un equilibrio entre especies a
conveniencia humana; no habría naranjas en América si no fuera por la capacidad de
dispersarse de los seres humanos cuyo impacto en los ecosistemas aumenta cuando
refuerzan el establecimiento de especies exóticas como las naranjas. En este caso definir
cuál es una especie invasora mala o buena, cuál es el cultivo y cuál la plaga corre a cargo
de los seres humanos.
Sapos imparables
La evolución de la biota así como sus interacciones y redes están ligadas a la evolución
geológica del planeta. Australia se ha mantenido, en general, aislada de otros continentes
desde que al principio de la formación de Godwana, a mediados del Triásico (hace 254206 millones de años), chocó con la Antártica y se separó de ella hace 85 millones de
años. Es por esto que su biota está conformada por especies distintas a las que
Ahí viene la plaga… / CIENCIORAMA 5
presentan otras masas terrestres, pues ha seguido caminos evolutivos independientes. Ello
significa que las especies exóticas introducidas en Australia pueden proliferar de manera
incontrolada por no tener depredadores nativos y desplazar especies cuyo alimento y
nicho sea similar. Esto fue lo que pasó cuando en 1935 se importaron a Australia 100
sapos marinos (Rhinella marina) desde Hawaii, con el objeto de controlar los escarabajos
que estaban atacando los cultivos de caña de azúcar. La distribución natural de estos
sapos abarca del sur de Estados Unidos a la Amazonia de Bolivia, Colombia y Venezuela.
Figura 5: Sapo marino Rhinella marina. Fuente: FraserSmith CONABIO
Los sapos fueron reproducidos intencionadamente y 3000 ejemplares se liberaron en
campos de cultivo en la parte norte de Queensland. En ese momento se liberó una
especie cuyo potencial invasor no se ha podido detener hasta la fecha, y que alcanza
actualmente más de 1.2 millones de km2 correspondientes a gran parte del estado de
Queensland e incluso áreas del parque nacional Kakadu. Este sapo posee toxinas
venenosas para las serpientes y otros animales nativos que consumen ranas; además de
alimentarse de abejas melíferas y ser un problema para la producción apícola, compite
por alimento con otros vertebrados insectívoros. Este es un caso famoso donde el control
biológico deseado (de los sapos sobre los escarabajos) fue contraproducente y promovió
Ahí viene la plaga… / CIENCIORAMA 6
la proliferación del agente como una segunda plaga. Ante esta situación se ha propuesto
como medida de control el uso de nemátodos (un tipo de gusano) que atacan a los sapos
invasores pero no a los locales.
Figura 6: (A) En colores, el avance en la invasión del sapo marino en Australia desde su introducción en 1935
hasta el 2006 (Urban, et al., 2008) (B) En morado, la distribución de Rhinella marina, el sapo marino, en
Australia en el 2009. Fuente: IUCN Red List
Devastación del cultivo de mandioca en África
Después de la devastadora introducción de sapos, durante la década de los 80
en el
continente africano se presentó una situación que atentó contra la alimentación de la
población humana de 27 países. La mandioca o cassava es una planta originaria de
Sudamérica llevada a Asia para después ser introducida en África. En este continente
cubre más de nueve millones de hectáreas cultivadas en pequeña escala y se usa
primordialmente para consumo humano pues es altamente resistente a sequías. La
mandioca representa el alimento básico de unos 200 millones de personas.
Ahí viene la plaga… / CIENCIORAMA 7
Figura 7: Distribución de mandioca. Puntos negros:
localidades puntuales, zona sombreada:
distribución regional. Fuente: Parsa et al., 2012
Figura 8: Mandioca, alimento humano.
Fuente: CIAT
A principios de 1970, cundió el pánico cuando se detectó la presencia del piojo harinoso
Phenacoccus manihoti en Zaire y del áfido verde Mononychellus tanajoa en Uganda,
ambos parásitos voraces de la mandioca. Para 1987 estas plagas habían invadido 31
Ahí viene la plaga… / CIENCIORAMA 8
países. P. manihoti tiene capacidades de reproducción partenogenética; es decir que las
hembras pueden reproducirse a sí mismas sin contacto con piojos masculinos, formado
clones; esto les permite generar brotes poblacionales exponenciales a partir de un solo
individuo.
Figura 10: Áfido verde, Mononychellus
tanajoa. Fuente: infonet biovisión
Figura 9: Piojo harinoso Phenacoccus manihoti atacando plantas de Mandioca Fuente: Parsa et al., 2012
Ahí viene la plaga… / CIENCIORAMA 9
Figura 11: Avispa parasitoide atacando a un piojo
harinoso. Fuente: Museo de Historia Natural
Londres.
Para combatir estas plagas la estrategia fue introducir una avispa parasitoide argentina
(Apoanagyrus lopezi), que ataca al piojo harinoso. El éxito fue rotundo ya que, gracias a
su dispersión natural, el parasitoide logró controlar el 95% de la plaga en una década,
evitando los costos y toxicidades de pesticidas químicos.
Figura 12. Typhlodromalus aripo, áfido depredador.
Fuente: Universidad de Florida
Ahí viene la plaga… / CIENCIORAMA 10
Para controlar a los áfidos verdes se probó la liberación de siete especies de áfidos
depredadores de los áfidos verdes en diez países, pero sin éxito. Más tarde se usó un
áfido brasileño (Typhlodromalus aripo) que sí lo logró. Sus facultades de dispersión de
hasta 12 km por temporada le permitieron reducir la plaga al 50% en cuatro años hasta
abarcar actualmente 500,000 km2.
Con esta acción, no sólo se salvaguardó la subsistencia de gran parte del pueblo
africano, sin afectar competitivamente a los depredadores nativos, sino que hubo un
impacto positivo en la protección del hábitat, pues las pérdidas de este cultivo habrían
significado considerables deforestaciones adicionales para sembrar cultivos de
emergencia que compensaran las pérdidas de mandioca.
Los programas de control biológico abarcaron toda África y consideraron análisis
económicos así como análisis de impacto ambiental asociados a las campañas y
estrategias de control biológico utilizadas. Es evidente que parte del éxito de dicha
campaña requirió de la cooperación de varios países, pues las especies obviamente no
consideran las fronteras políticas.
Versiones y matices
Para elegir a la especie que va a actuar como control biológico son necesarios estudios
autoecológicos; esto es, estudiar la interacción entre la plaga y el agente de control
biológico en diferentes escalas y contextos, en el laboratorio, en campos experimentales y
por último en el campo. También resulta importantísimo evaluar los efectos colaterales
sobre otras especies del hábitat y sus dinámicas de relación y regulación. Por ejemplo, las
características de las plantas del ecosistema o agroecosistema en cuestión pueden
afectar la efectividad del agente de control. Adicionalmente al control biológico clásico,
en la actualidad existen otros tres tipos: por inoculación, por inundación y de
conservación.
Ahí viene la plaga… / CIENCIORAMA 11
La inoculación es similar al control biológico clásico con la diferencia de que el agente de
control debe encontrarse previamente en el área de aplicación y su efecto de control
sobre la plaga dura un periodo extendido (semanas o meses) pero no es permanente.
Figura 12: Control biológico de inoculación (modificado de
Eilenberg, 2006)
El recurso de la inundación se usa cuando el organismo de control biológico es aplicado
cuantiosamente. Por ello tiene resultados inmediatos en el control de la plaga; sin
embargo puede suceder que la plaga y el agente de control biológico reduzcan sus
densidades y la plaga se fortalezca. Este método es considerado menos natural por ser
intempestivo.
Ahí viene la plaga… / CIENCIORAMA 12
Figura 14: Control biológico de inundación (modificado de
Eilenberg, 2006)
Control biológico de conservación y agroecología
Los casos mencionados podrían parecer obsoletos o ajenos, sin embargo con el actual
renacimiento de la agricultura conscientemente orgánica y la reivindicación de los
agroecosistemas se vuelve a discutir la implementación del control biológico y los
aprendizajes de experiencias previas cobran gran relevancia. Ahora bien, cuando se
modifica el medio o las prácticas locales de aprovechamiento de manera que ciertos
enemigos naturales sean protegidos y promovidos in situ para reducir el efecto negativo
de las plagas, se estará llevando a cabo control biológico de conservación. El efecto
deseado con este control puede lograrse en escalas temporales de años. Difiere de los
otros tipos de control biológico en que no se liberan organismos propios ni exóticos al
ambiente en cuestión, sino que se realiza a partir de los individuos que se encuentren
previamente en el sitio.
Ahí viene la plaga… / CIENCIORAMA 13
Figura 13: Control biológico de conservación (modificado de
Eilenberg, 2006)
Se ha procurado que la práctica del control biológico se realice con base en la teoría
ecológica de las poblaciones y comunidades, así como en estudios de efectos de la
fragmentación y restauración del hábitat. De hecho se ha propuesto que se requieren
estrategias de manejo a nivel paisajístico porque muchas veces las especies involucradas
(como los artrópodos) desarrollan su hábitat a escalas espaciales mayores que la parcela
de cultivo. Por ejemplo, se suele considerar que los paisajes complejos cuyos mosaicos
de parcelas cultivadas y no cultivadas sean heterogéneos y de alta conectividad serán la
mejor forma de ejercer un control biológico de conservación bajo condiciones climáticas
inestables.
Bibliografía
1.
Dubey, S. y R. Shine, “Origin of the parasites of an invading species, the Australian cane toad (Bufo
marinus): are the lungworms Australian or American? Molecular Ecology”, 17(20): 4418-4424, 2008.
2.
Eilenberg, J. “Concepts and visions of biological control”, en Eilenberg, J. y H. M. T. Hokkanen
(coordinadores), An Ecological and Societal Approach to Biological Control , Springer, Holanda, 2006,
pp. 1-12.
Ahí viene la plaga… / CIENCIORAMA 14
3.
Fenner, F. “Deliberate introduction of the European rabbit, Oryctolagus cuniculus, into Australia”,
Revue scientifique et technique 29(1):103- 111, 2010.
4.
Menzler-Hokkanen, “Socioeconomic significance of biological control”, en Eilenberg, J. y H. M. T.
Hokkanen (coordinadores), An Ecological and Societal Approach to Biological Control . Springer,
Holanda, 2006, pp. 13-27
5.
Teja Tscharntke, T.,
R. Bommarco, Y. Clough, T. Crist, D. Kleijn, T. Rand, J. Tylianakis, S. van
Nouhuys, y S. Vidal, “Conservation biological control and enemy diversity on a landscape scale”,
Biological Control 43: 294–309, 2007.
6.
Urban, M. C., B. Phillips, D. K. Skellv y R. Shine, “A toad more traveled: the heterogeneous invasion
dynamics of cane toads in Australia”, The American Naturalist. 17(3): E134-E148, 2008.
Ahí viene la plaga… / CIENCIORAMA 15
Descargar