Enzymatic networks and toric steady states

Anuncio
Enzymatic networks and toric steady states
Mercedes Pérez Millán∗ and Alicia Dickenstein
Dto. de Matemática–FCEyN–Universidad de Buenos Aires
Dto. de Cs. Exactas–CBC–Universidad de Buenos Aires
IMAS-CONICET
Buenos Aires – Argentina
SIAM AG13, August 2, 2013
Aim
I
To find a graphical method for detecting toric steady states.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
2 / 17
Aim
I
To find a graphical method for detecting toric steady states.
We will construct some graphs from the reaction network and give
some sufficient conditions on these graphs to guarantee toric
steady states.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
2 / 17
What are toric steady states?
(Enzymatic) Chemical
Reaction Network
k1
k3
S + E Y1 → P + E
k2
k4
−→
Polynomial dynamical
system
mass action
kinetics
k
6
P + F Y2 →
S +F
k5
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
dx
= f (x)
dt
SIAM AG13, August 2, 2013
3 / 17
What are toric steady states?
(Enzymatic) Chemical
Reaction Network
k1
k3
S + E Y1 → P + E
k2
k4
−→
Polynomial dynamical
system
mass action
kinetics
k
6
P + F Y2 →
S +F
k5
dx
= f (x)
dt
Steady states
They are the nonnegative zeros of a set of polynomial equations,
f1 (x) = 0, · · · , fs (x) = 0.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
3 / 17
What are toric steady states?
(Enzymatic) Chemical
Reaction Network
k1
k3
S + E Y1 → P + E
k2
k4
−→
Polynomial dynamical
system
mass action
kinetics
k
6
P + F Y2 →
S +F
k5
dx
= f (x)
dt
Steady states
They are the nonnegative zeros of a set of polynomial equations,
f1 (x) = 0, · · · , fs (x) = 0.
Toric steady states
We say the system has toric steady states if the steady state ideal
is a binomial ideal and it admits nonnegative zeros.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
3 / 17
Why do we want toric steady states?
If the system has toric steady states, then
I
the steady states can be explicitly parametrized by monomials
(or shown to be empty).
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
4 / 17
Why do we want toric steady states?
If the system has toric steady states, then
I
the steady states can be explicitly parametrized by monomials
(or shown to be empty).
I
there are necessary and sufficient conditons that allow to
decide about multistationarity and they take the form of linear
inequality systems.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
4 / 17
Known example
We showed in [–,Dickenstein,Shiu,Conradi(2012)] that the system
associated to the multisite phosphorylation of a protein by a
kinase/phosphatase pair in a sequential and distributive mechanism
has toric steady states
E
S0
E
F
M. Pérez Millán, A. Dickenstein
F
(UBA)
...
S2
S1
E
E
F
Enzymatic networks and toric s. states
Sn
F
SIAM AG13, August 2, 2013
5 / 17
Are there more?
We want to find more “seeable” examples.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
6 / 17
Are there more?
We want to find more “seeable” examples.
Toric steady states ⇒ rational parametrization of steady states.
M. Thomson and J. Gunawardena. J. Theor. Biol. 261, (2009), pp. 626–636.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
6 / 17
Are there more?
We want to find more “seeable” examples.
Toric steady states ⇒ rational parametrization of steady states.
M. Thomson and J. Gunawardena. J. Theor. Biol. 261, (2009), pp. 626–636.
I
They ask for {Enzymes} ∩ {Substrates} = ∅
consider cascades.
I
We want more than a rational parametrization: we want
binomials.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
we want to
SIAM AG13, August 2, 2013
6 / 17
Running example
k1
k
S000 + E1 Y1 →3 S100 + E1
k2
k9
k5
k7
k
k
14
S010 + F2 Y5 →
S000 + F2
k10
k13
k18
k17
k
20
S001 + F3 Y7 →
S000 + F3
S000 + E3 Y6 → S001 + E3
k16
k21
k6
k12
k
11
S000 + E2 Y4 →
S010 + E2
k15
k4
S100 + F1 Y2 Y3 →8 S0000 + F1
k19
k24
k
23
S + S100 Y8 →
P + S100
k
26
P + F4 Y9 →
S + F4
k22
k25
S100
S100
S
P
F4
E2
S010
(UBA)
F1
E3
S000
F2
M. Pérez Millán, A. Dickenstein
E1
S001
F3
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
7 / 17
Running example
k1
k
S000 + E1 Y1 →3 S100 + E1
k2
k9
k5
k7
k
k
14
S010 + F2 Y5 →
S000 + F2
k10
k13
k18
k17
k
20
S001 + F3 Y7 →
S000 + F3
S000 + E3 Y6 → S001 + E3
k16
k21
k6
k12
k
11
S000 + E2 Y4 →
S010 + E2
k15
k4
S100 + F1 Y2 Y3 →8 S0000 + F1
k19
k24
k
23
S + S100 Y8 →
P + S100
k
26
P + F4 Y9 →
S + F4
k22
k25
S100
S100
S
P
F4
E2
S010
(UBA)
F1
E3
S000
F2
M. Pérez Millán, A. Dickenstein
E1
S001
F3
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
7 / 17
Intermediate species
The equations:
dy1 /dt = k1 s000 e1 − (k2 + k3 )y1
dy2 /dt = k4 s100 f1 − (k5 + k6 )y2 + k7 y3
dy3 /dt = k6 y2 − (k7 + k8 )y3
dy4 /dt = k9 s000 e2 − (k10 + k11 )y4
dy5 /dt = k12 s010 f2 − (k13 + k14 )y5
dy6 /dt = k15 s000 e3 − (k16 + k17 )y6
dy7 /dt = k18 s001 f3 − (k19 + k20 )y7
dy8 /dt = k21 s.s100 − (k22 + k23 )y8
dy9 /dt = k24 pf4 − (k25 + k26 )y9
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
8 / 17
Intermediate species
The equations:
0 = k1 s000 e1 − (k2 + k3 )y1
0 = k4 s100 f1 − (k5 + k6 )y2 + k7 y3
0 = k6 y2 − (k7 + k8 )y3
0 = k9 s000 e2 − (k10 + k11 )y4
0 = k12 s010 f2 − (k13 + k14 )y5
0 = k15 s000 e3 − (k16 + k17 )y6
0 = k18 s001 f3 − (k19 + k20 )y7
0 = k21 s.s100 − (k22 + k23 )y8
0 = k24 pf4 − (k25 + k26 )y9
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
8 / 17
Intermediate species
All of them are binomials except for...
0 = k1 s000 e1 − (k2 + k3 )y1
0 = k4 s100 f1 − (k5 + k6 )y2 + k7 y3
0 = k6 y2 − (k7 + k8 )y3
0 = k9 s000 e2 − (k10 + k11 )y4
0 = k12 s010 f2 − (k13 + k14 )y5
0 = k15 s000 e3 − (k16 + k17 )y6
0 = k18 s001 f3 − (k19 + k20 )y7
0 = k21 s.s100 − (k22 + k23 )y8
0 = k24 pf4 − (k25 + k26 )y9
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
8 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k5
k7
k8
k1
k
S000 + E1 Y1 →3 S100 + E1
k2
E1
k1 s000
Y1
k2 + k3
k6
Y3
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k5
k7
k8
k
k2
E1
k1 s000
Y1
k2 + k3
k6
Immediate binomial.
Y3
M. Pérez Millán, A. Dickenstein
k1
S000 + E1 Y1 →3 S100 + E1
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k7
k
k2
E1
k5
k8
k1
S000 + E1 Y1 →3 S100 + E1
k1 s000
Y1
k2 + k3
k6
Immediate binomial.
Y3
Binomials at s.s.:
ρ2 f1 − ρ1 y2 = 0
ρ3 f1 − ρ1 y3 = 0, where
Condition I: Strongly connected.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k7
k
k2
E1
k5
k8
k1
S000 + E1 Y1 →3 S100 + E1
k1 s000
Y1
k2 + k3
k6
Immediate binomial.
Y3
Binomials at s.s.:
ρ2 f1 − ρ1 y2 = 0
ρ3 f1 − ρ1 y3 = 0, where
ρ1 = k5 k8 + k7 k5 + k6 k8 ∈ R
Condition I: Strongly connected.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k7
k
k2
E1
k5
k8
k1
S000 + E1 Y1 →3 S100 + E1
k1 s000
Y1
k2 + k3
k6
Immediate binomial.
Y3
Binomials at s.s.:
ρ2 f1 − ρ1 y2 = 0
ρ3 f1 − ρ1 y3 = 0, where
ρ1 = k5 k8 + k7 k5 + k6 k8 ∈ R
Condition I: Strongly connected.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k7
k
k2
E1
k5
k8
k1
S000 + E1 Y1 →3 S100 + E1
k1 s000
Y1
k2 + k3
k6
Immediate binomial.
Y3
Binomials at s.s.:
ρ2 f1 − ρ1 y2 = 0
ρ3 f1 − ρ1 y3 = 0, where
ρ1 = k5 k8 + k7 k5 + k6 k8 ∈ R
Condition I: Strongly connected.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k7
k
k2
E1
k5
k8
k1
S000 + E1 Y1 →3 S100 + E1
k1 s000
Y1
k2 + k3
k6
Immediate binomial.
Y3
Binomials at s.s.:
ρ2 f1 − ρ1 y2 = 0
ρ3 f1 − ρ1 y3 = 0, where
ρ1 = k5 k8 + k7 k5 + k6 k8 ∈ R
ρ2 = k8 k4 s100 + k7 k4 s100
Condition I: Strongly connected.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k5
k7
k8
k1
k
S000 + E1 Y1 →3 S100 + E1
k2
E1
k1 s000
Y1
k2 + k3
k6
Y3
Immediate binomial.
Binomials at s.s.:
ρ2 f1 − ρ1 y2 = 0
ρ3 f1 − ρ1 y3 = 0, where
ρ1 = k5 k8 + k7 k5 + k6 k8 ∈ R
ρ2 = (k8 k4 + k7 k4 )s100 ←monomial
Condition I: Strongly connected.
Condition II: Only one directed path from the enzyme to the each
intermediate.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
k4
k6
k5
k7
k
S100 +F1 Y2 Y3 →8 S0000 +F1
k4 s100
F1
Y2
k5
k7
k8
k1
k
S000 + E1 Y1 →3 S100 + E1
k2
E1
k1 s000
Y1
k2 + k3
k6
Y3
Immediate binomial.
Binomials at s.s.:
ρ2 f1 − ρ1 y2 = 0
ρ3 f1 − ρ1 y3 = 0, where
ρ1 = k5 k8 + k7 k5 + k6 k8 ∈ R
ρ2 = (k8 k4 + k7 k4 )s100 ←monomial
ρ3 = k6 k4 s100 ←monomial
Condition I: Strongly connected.
Condition II: Only one directed path from the enzyme to the each
intermediate.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
9 / 17
Intermediate species
dyi /dt = 0
1≤i ≤9
⇐⇒
ρ1 e1 − ρe1 y1 = 0
ρ2 f1 − ρf1 y2 = 0
ρ3 f1 − ρf1 y3 = 0
ρ4 e2 − ρe2 y4 = 0
ρ5 f2 − ρf2 y5 = 0
ρ6 e3 − ρe3 y6 = 0
ρ7 f3 − ρf3 y7 = 0
ρ8 s100 − ρs1000 y8 = 0
ρ9 f4 − ρf4 y9 = 0
|
{z
}
binomials
We can solve for yi :
y2 =
M. Pérez Millán, A. Dickenstein
ρ2
λ2 s100
f1 =
f1 = ξ2 s100 f1 ,
ρf1
ρf1
(UBA)
Enzymatic networks and toric s. states
ξ2 ∈ R
SIAM AG13, August 2, 2013
10 / 17
Enzymes and Substrates
de1 /dt = −dy1 /dt
de2 /dt = −dy4 /dt
de3 /dt = −dy6 /dt
df1 /dt
df2 /dt
df3 /dt
df4 /dt
= −(dy2 /dt + dy3 /dt)
= −dy5 /dt
= −dy7 /dt
= −dy9 /dt
ds100 /dt = − dy8 /dt + k3 y1 − k4 s100 f1 + k5 y2
ds000 /dt = − k1 s000 e1 + k2 y1 + k8 y3 − k9 s000 e2 + k10 y4 + k14 y5 −
− k15 s000 e3 + k16 y6 + k20 y7
ds010 /dt = − k12 s010 f2 + k13 y5 + k11 y4
ds001 /dt = − k18 s001 f3 + k19 y7 + k17 y6
ds/dt = − k21 s.s100 + k22 y8 + k26 y9
dp/dt = − k24 pf4 + k25 y9 + k23 y8
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
11 / 17
Enzymes
and Substrates
(
((
de(
=(
−dy
((
1 /dt
1 /dt
(
(
((
de(
=(
−dy
((
2 /dt
4 /dt
(
(
((
de(
=(
−dy
((
3 /dt
6 /dt
(
((((
((
(
(
df1 /dt
=
−(dy
/dt
+
dy3 /dt)
(
2
(
((((((((
df
/dt
=
−dy
/dt
(
5
(2(
(
((
(
(
df
/dt
=
−dy
/dt
(
3
7
(
(
(
(
( /dt
df4(
/dt
=(
−dy
((
9
(
ds100 /dt =
−dy
8 /dt + k3 y1 − k4 s100 f1 + k5 y2
ds000 /dt = − k1 s000 e1 + k2 y1 + k8 y3 − k9 s000 e2 + k10 y4 + k14 y5 −
− k15 s000 e3 + k16 y6 + k20 y7
ds010 /dt = − k12 s010 f2 + k13 y5 + k11 y4
ds001 /dt = − k18 s001 f3 + k19 y7 + k17 y6
ds/dt = − k21 s.s100 + k22 y8 + k26 y9
dp/dt = − k24 pf4 + k25 y9 + k23 y8
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
11 / 17
Enzymes
and Substrates
All of them are binomials except for...
(
((
de(
=(
−dy
((
1 /dt
1 /dt
(
(
((
de(
=(
−dy
((
2 /dt
4 /dt
(
(
((
de(
=(
−dy
((
3 /dt
6 /dt
(
((((
((
(
(
df1 /dt
=
−(dy
/dt
+
dy3 /dt)
(
2
(
((((((((
df
/dt
=
−dy
/dt
(
5
(2(
(
((
(
(
df
/dt
=
−dy
/dt
(
3
7
(
(
(
(
( /dt
df4(
/dt
=(
−dy
((
9
(
ds100 /dt =
−dy
8 /dt + k3 ξ1 s000 e1 − (k4 − k5 ξ2 )s100 f1
ds000 /dt = − (k1 − k2 ξ1 )s000 e1 + k8 ξ3 s100 f1 − (k9 − k10 ξ4 )s000 e2 +
+ k14 ξ5 s010 f2 − (k15 − k16 ξ6 )s000 e3 + k20 ξ7 s001 f3
ds010 /dt = − (k12 − k13 ξ5 )s010 f2 + k11 ξ4 s000 e2
ds001 /dt = − (k18 − k19 ξ7 )s001 f3 + k17 ξ6 s000 e3
ds/dt = − (k21 − k22 ξ8 )s.s100 + k26 ξ9 pf4
dp/dt = − (k24 − k25 ξ9 )pf4 + k23 ξ8 s.s100
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
11 / 17
Enzymes
and Substrates
S100
S010
M. Pérez Millán, A. Dickenstein
(UBA)
S000
S
P
S001
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
12 / 17
Enzymes
and Substrates
S100
S010
S000
S
P
S001
Condition III: multiple directed edges are not allowed
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
12 / 17
Enzymes
and Substrates
S100
S010
S000
S
P
S001
Condition III: multiple directed edges are not allowed
Condition IV(a): reversible + forest
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
12 / 17
Enzymes
and Substrates
S100
S010
S000
S
P
S001
Condition III: multiple directed edges are not allowed
Condition IV(a): reversible + forest
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
12 / 17
Enzymes
and Substrates
S100
S010
S000
S
P
S001
Condition III: multiple directed edges are not allowed
Condition IV(a): reversible + forest
Condition IV(b): outdegree, indegree ≤ 1
S0 →
M. Pérez Millán, A. Dickenstein
(UBA)
S1 →
S2
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
12 / 17
Theorem
Theorem
Given an enzymatic chemical reaction network G = (V , R, ki ).
Assume Conditions I and II hold for each digraph GT and
Condition III holds for G , if the digraph GS satisfies either
Condition IV(a) or Condition IV(b), then the mass action system
arising from G has toric steady states.
GS
GT
k4 s100
F1
k5
k8
k7
S100
Y2
k6
Y3
M. Pérez Millán, A. Dickenstein
S010
S000
S
P
S001
···
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
13 / 17
More examples
E. Feliu and C. Wiuf. Enzyme sharing as a cause of multistationarity in signaling systems.
J. Roy. Soc. Interf., 9:71, (2012), pp. 1224–1232.
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
14 / 17
Another relevant example
Cascades such as the MAPK/ERK pathway:
E
S0
S1
F1
P0
P1
F2
P2
F2
R0
R1
F3
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
R2
F3
SIAM AG13, August 2, 2013
15 / 17
GT and GS :
GS :
GT :
k1 S0
E Y1
k4 S1
F1 Y2
k2 +k3
S0
S1
P0
P1
P2
R0
R1
R2
k5 +k6
k7 P 0
k10 P1
k8 +k9
k11 +k12
k13 P2
k16 P1
k14 +k15
k17 +k18
k19 R0
k22 R1
k20 +k21
k23 +k24
Y3 S1 Y4
Y5 F2 Y6
Y7 P2 Y8
k25 R2
k28 R1
k26 +k27
k29 +k30
Y9 F3 Y10
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
16 / 17
Thanks for your attention!
M. Pérez Millán, A. Dickenstein
(UBA)
Enzymatic networks and toric s. states
SIAM AG13, August 2, 2013
17 / 17
Descargar