Tema 7: Método de Intersección Simple

Anuncio
!
!
"
"
$
#
%
&
'
!
(
)
$
$
#
!
&
%
*
+
1
"
3
4!
#
' ,-. /0
#
(
#
' ,20
5
(
67
$
)
$$
$&
#
!
+
' ,-. /0
(
+
4
$*
"
$1
4!
' ,20
&
&
8
5
67
5
67
(
)
&$
#
!
&&
+
' ,-. /0
&*
"
&1
4!
' ,20
*
(
2
*
(
+
8
$
!
!
"
"
$
#
%
&
'
%
!
(
!
5#
9
7
(
'
:
;
$
!
#
!
(
(
.
8
#
.
:
%
:
(
7
!
!
:
:
!(
!
;
.
.
!
:
+
8
.
#
:
5
#
9
*
<
!
5 !
> =? (
(
#
5
=+
8
(
!
. 5:
(
.
;
>
:
!
!
5
!
&
9
(
5
#
(
. 8
'
!
% 7
!
:(
:
'
!
!
!
(
.
:
!
:
.
!
!
"
"
#
.
(
!
:
@
@
@
@
+
5
.
!
:
.
@
@
!
(
@
!
:
#
(
(
!
#
8
9
#
;
!
@
(
(
.
5
*
%
(
(
(
%
#
:
.
(
!
.
!
;
,
< ;
2
0 5
(
(
A
#
!
(
5
(
B
!
:
#
.:
!
.:
!
8
!
:
5
#
!
9
(
(
!
8
<
:
#
(
#
'
(
%
(
. :
:
:
!
!
(
!
!
@
(
(
%
8 !
8 ;
(
!
;
:
:
!
!"! "#$%#&'"#(!)
*
+!, #
:
!
!
1
"
(
(
8 ;
"5
.
@ C.
;
.
:
. 5
5 D
!
:
.
;
! #:
" '
.
.
:
!
9
%
8 ;
#
!
5
#@
0
e≤
(
:
8
. 5 :
'5
(
e 2p + e 2l
)
,
2
'5
"
.
5
!
@ . 9.
.
. C 5 D5
:
) *
8
! #
9
!
!
;
!
#
#
α.
8
.
#
@
α=
E
#
200 g
n
#
:
8 !# :
;
3
9
7
'
!
#
.
G 5 GG
!"! "# -()
#*
.#)
/0')
#11!.)
#%,')
#2
#)
#,-*
'
9
(
. 5:
). :
!
8
) 5C
8
)5
9
#
8
8!
!
8 ;
"
+
(!
!
;
5
(
(
!
# #
!
;
5
8 ;
"
5
!
)
!
;
:
!
(
9
.
:
5
%
5
+
8 ;
85:
:
)
+
.
:
;
!
8
@
LR = 49 g ,33
LB = 81g ,67
1º
LC = 158 g ,02
2º
LR = 49 g ,35
LE = 327 g ,91
LF = 376 g ,22
LD = 213 g ,91
)
H # :
.
I
#
LR = 49 g ,33
LB = 81g ,67
LC = 158 g ,02
LD = 213 g ,91
LE = 327 g 89
LF = 376 g 20
+
;
(
'
!
!
@
F
A"%C69B"
6)KB. L% D 4% B9)4 +4M". + D K9M 9 6N")79. )
, JJ&0@ O
9
(
4!
"
8 ! P
' +
' A
- B 1*. B
!
!
JJ&.
&G *F
(
,
#
$
!
&
%
-
.
#
'/
0123
#
(
4
"
#
'/
53
6!
+
A
9
5
7
:
5" 5C
(
@
:
#
!
" 5
;
@
,
0
A
:
#
!
C 5
;
@
,
0
A
3
9
" 5C 5
8
"
!
,
0
θ BA 5
'
+
#
.
!
" 5 C
'
J
θ BA . !
5
LBA 6
θ
".
;
V
A
#
N#
θ VB
C.
A
:
θ
" 5C.
9
V
B
5
θ
V
A
!
:
%
!
(
(
:
#
" 5C ,
!
0
9
:
A
8
)
Q% B
%
#
5
#
#
:
5
'
"A 5 CA
#
B 5 Q%
BQ
!
5
! 5
#
"A 5 :
ε" 5 εC
:
% ;
.
Q% B
B 5 Q%
8
ε" 5 εC
#
A
CA +
"A 5
#
#
2 ⋅ AV ⋅ ε B
: <
'
:
% 5
!
G
ε" 5εC
%
!
#
8 ;
!
" 5C.
" #
CA 5
.
;
8
BQ 5 %
2 ⋅ BV ⋅ ε A
#
!
(.
;
#
!!
:
!
#
.
GG
A :
#
!
"
!
:
5
.
@
e=
V
9
L ⋅ ea
Vˆ
sen
2
#
!
A
#
!
%
!
%.
G$ .
&
#
' J1 .3FF1 9
5A 9
!
@
0
!0
0
!(
5
#
#
5 :
:
#
#
5
B
!
. 5
!
:
#
:
:
!
#
:
#
$G
3
9
.
.
#
:
:
'
!
+
!
+
8
#
#
!
!
,
#
#
#
0
0
,G
.
!
%
#
#
!
:
'
C
.
!
8 ;
L=
e ⋅ sen
ea
Vˆ
2
4 567
9
(
@
",-". /"0
C,-C. /C0
!
8!
!
@
desde A : LVA , LBA
desde B : LVB , LAB
"
:
85
θ BA . !
5
B
A
L
θ
θ BA . 5
" 5C.
6
".
;
V
A
;
C.
θ VB
9
.
(
:
!
.
%
!
(
'7
;
:
!"! "#)
#1!&
%-*
8, "#& )
*
9,:%&
! '0&
*
-',"! #& #!)
#;'"#&1#,!
"
.
!
#
(
@
A = θ AB − θ AV
B = θ BV − θ BA
%
"C
!(
5 : @
( X B − X A )2 + (YB − YA ) 2
D AB =
9
!
:
5
"A 5CA %
9
#
"CA.
#
@
v
B
V
Dr A
D
D
= rA = rB
senB senV senAˆ
V
Dr A =
senBˆ
B
Dr A
senV
$
V
Dr B =
9 #
#
senA B
Dr A
senV
(
8
9
#
GG
Aˆ + Bˆ + Dˆ = 200 g
Vˆ = 200 − ( Aˆ + Bˆ )
#
!
#
%
-. /
0
. 5
.
8 :
+
A
!
@
"@
" 5A@
∆ x VA = Dr A ⋅ senθ AV
V
∆ y VA = Dr A ⋅ cosθ AV
V
%
A
#
@
X V = X A + ∆ x VA
YV = Y A + ∆ y VA
!0
+
C@
∆ x VB = Dr B ⋅ senθ BV
V
∆ y VB = Dr B ⋅ cosθ BV
V
X V = X B + ∆ x VB
YV = YB + ∆ y VB
%
:
!
!
B
.7
#
:
" 5
.
C 8
85
!
9
!"! "#&
'1 ',:#, #1
9
(
. :
- /
!
&
+
@
tan θ AV =
XV − X A
YV − Y A
(YV − Y A ) ⋅ tan θ AV = X V − X A
X V = (YV − Y A ) ⋅ tan θ AV + X A
+
@
tan θ BV =
XV − X B
YV − YB
(YV − YB ) ⋅ tan θ BV = X V − X B
8
-A
@
(YV − YB ) ⋅ tan θ BV = (YV − Y A ) ⋅ tan θ AV + X A − X B
YV (tan θ BV − tan θ AV ) = YB ⋅ tan θ BV − Y A ⋅ tan θ AV + X A − X B
YV =
6
!
;: 8 5
:
+
/.
(
-. 5
!
:
#
YB ⋅ tan θ BV − Y A ⋅ tan θ AV + X A − X B
tan θ BV − tan θ AV
8
,
#
.
;
0
*
9
'
;
(
(
+
!
85
;
8
9
@
;
;
" 5
C
%
2
A
!
#
!
;
(HV ) A ⋅
HV =
1
1
+ (HV ) B ⋅ V
V
DA
DB
1
1
+ V
V
D A DB
<
6
6
:
'
#
N
67
9
:
'
.
!
+
5
5
. 5
:
:
8
!
67 .
#
;
.
#
8
;
!
6
:
#
!
(
.
A = O AB − O VA
B = OBV − OBA
%
5
!
(
( D AB )UTM =
9
#
"CA.
(X UTM B − X UTM A )2 + (YUTM B − YUTM A ) 2
@
( D Av )UTM ( D AB )UTM ( D BV )UTM
=
=
senB
senV
senAˆ
1
( D VA )UTM =
senA B
( D A )UTM
senV
( D BV )UTM =
9 #
senBˆ
( D AB )UTM
senV
(
.
GG
Aˆ + Bˆ + V = 200 g
Vˆ = 200 − ( Aˆ + Bˆ )
56
%
-67 . /67
0
+
A
!
@
"@
%
" 5A
#
@
(∆ x VA )UTM = ( D VA )UTM ⋅ senO VA
∆ y VA )UTM = ( D VA )UTM ⋅ cos O VA
( X V )UTM = ( X A )UTM + (∆ x VA )UTM
(YV )UTM = (Y A )UTM + (∆ y VA )UTM
!0
+
C@
(∆ x VB )UTM = ( D BV )UTM ⋅ senOBV
(∆ y VB )UTM = ( D BV ) TM ⋅ cos O BV
( X V )UTM = ( X B )UTM + (∆ x VB )UTM
(YV )UTM = (YB )UTM + (∆ y VB )UTM
%
:
!
"5
C8
=
5
'
%
'
5
!
:
!
67
'
.
(
9
!
:
. 5
3
!
". 5 :
C 9
<
:
#
. 5:
#
#
@
#
:
∆H BA = t BA + i A − m B + (0.5 − K)
(D BA )
R
" 5C.
# !
2
(
67 5
(
!
5
!
#
9
!
5
@
DUTM = K
8 58 .
DG2 − ∆h 2
h
h
1+ 1 1+ 2
R
R
5
!
)
. 5R8
7
.
:
1$3GS
%
(
(
DG2 =
%
2
DUTM
h
h
1 + 1 1 + 2 + ∆h 2
2
k
R
R
!
R8
@
+ #
@
DG2 = ∆h 2 + Dr2
F
Dr = DG2 − ∆h 2
"
!
" 5C.
#
#
v
B
#
@
V
Dr A
D
D
= rA = rB
senB senV senAˆ
V
Dr A =
Dr B =
senA B
Dr A
senV
!
#
V
%
A
(HV ) A ⋅
HV =
$
senBˆ
B
Dr A
senV
1
1
+ (HV ) B ⋅ V
V
DA
DB
1
1
+ V
V
D A DB
(
$
,
#
$$
!
$&
.
'/
0123
(
6
$-
"
$4
6!
. )
'/
53
+
%
!
!
+
8
#
:
7
'5
!
(
J
%
(
%
!
.
!
(
.
5
5
+". +C. +
!
#
#
@
" ,-". /"0
%
C,-C./C0
,- ./ 0
#@
LAP , LBP , LCP
3
%
#
;
:
(
+
9
)
A
9
5
5
!
(
(
#
9
:
8
:
#
8
T 5U
8
5
" ' !
+
9
#
(
#
T
5U
G
9
!
:
,
0
5
#
9
. 5
@
T V U V C W GG
9
:
%
!
(
+
.
(
;
;
;
"
:
.5
"I. CI.
!
I
CI
I
"I
6
"I. CI.
!
:
I
!
e =
#
@
ea ⋅ 2
(lado mayor) 2 + (lado intermedio) 2
2⋅ S
9
! @
!
o
;
"I. CI.
o
!
:
I:
5
o
#
o
%
!
!
#
, 0
+
5
:
#
!
!
#
#
9
@
:
#
9
#
! 0
5 #
%
8
:
#
#
'
: #
!0
!
+
:
5
!
:
'
!
'
9
0
'
,
:
#@
@
#
%
5
:
@
1GX
. 5 :
'
@
/
5
#
B
: #
%
!
!
:
5
,
!
:
0
#
4 567
8
!
(
5
@
" ,-". /"0
/
C,-C./C0
@
LAP , LBP , LCP
4C 9)A"
YB 9
" +4
,- ./ 0
5
%
+". +C. +
!
#
9 ?69 "
9
"% 6%4
+
#
T W %+C
%+"
U W %+
%+C
"
5
"C 5 C
". C 5 .
9 #
T 5U
C
@
Bˆ = θ BA − θ BC
9
#
!
#
+
!
.5
'
"5
%
!
@
$
(
(
+
8
#
;"
)
'
")L
"
"C" Z
".
'+
, JJ 0@ [
+
' A
9)BKB 9M "B7YB.
[
9
!
, JJ 0@ [
B
'+
@
+ 8
@
BX&* L
"
[
JJ
(
' A
. X&* L
"
JJ
:
!
+C
D BP
sen A
=
!
#
!
@
D BA
sen A
→ D BP = D BA
sen α
sen α
DPB
DC
sen C
= B → D BP = DBC
senC senβ
senβ
+C
D BA
%
sen A
sen C
= D CB
sen β
sen α
!
:
(
:
:
," 5 0 !
. 5
@
&
sen C D BA ⋅ sen β
= C
sen A D B ⋅ sen α
9
!
#
δ@
:
+
#
D AB ⋅ senβ
= tan δ
D BC ⋅ senα
"
!
#
#
\ ,:
#
(
0 .
(
+
@
senCˆ tan δ
=
senAˆ
1
A
@
a c
=
b d
9
!
@
b+a d +c
=
b−a d −c
4
@
senA + senC 1 + tan δ
=
senA − senC 1 − tan δ
4
(
@
1 = tan 50 g
1 + tan δ
tan 50 g + tan δ
=
1 − tan δ 1 − tan 50 g ⋅ tan δ
/
!
@
tan(a + b) =
9
.
tan a + tan b
1 − tan a ⋅ tan b
@
*
tan 50 g + tan δ
= tan(50 g + δ )
g
1 − tan 50 ⋅ tan δ
9
@
1 + tan δ
= tan(50 g + δ )
1 − tan δ
!
:
senA + senC
= tan(50 + δ )
senA − senC
2
(
a+b
sena + senb
2
=
a+b
sena − senb
2 cos
2
2
!
sen
.5
@
@
a−b
2
a−b
sen
2
cos
@
senA + senC
=
senA − senC
senA + senC 2
=
senA − senC 2
%
A+C
2
A+C
cos
2
1
1
2 sen ( A + C ) cos ( A − C )
2
2
1
1
2 cos ( A + C ) sen ( A − C )
2
2
A−C
2 = tan 1 ( A + C ) ⋅ c tan g 1 ( A − C )
A−C
2
2
sen
2
sen
cos
@
senA + senC 1 + tan δ
=
senA − senC 1 − tan δ
5
!
senA + senC
1
1
= tan ( A + C ) ⋅ c tan g ( A − C )
senA − senC
2
2
1 + tan δ
= tan(50 g + δ )
1 − tan δ
1
@
1
1
tan ( A + C ) ⋅ c tan ( A − C ) = tan(50 + δ )
2
2
/
@
1
1
tan ( A − C ) = tan ( A + C )c tan(50 g + δ )
2
2
9
@
9
A+C
tan
1
2
tan ( A − C ) =
2
tan(50 g + δ )
1
(A − C) . 5 :
2
:
9
#
+"C
&GG @
8
:
δ
#
A + C + α + β + B = 400 g
A + C = 400 g − (α + β + B)
1
1
(A + C) = 200 g − (α + β + B)
2
2
1
(A + C) .
2
+
@
1
(A + C)
2
1
N = (A − C)
2
M=
"5 @
A=M +N
C=M −N
/
!
(
8 :
3
9
:
.
,"C+ 5 C +0 5
@
(
#
:
+C
D BP
=
sen A
!
D BA
sen A
→ D BP = D BA
sen α
sen α
D BP
D BA
sen C
=
→ D BP = D CB
sen β
sen C sen β
@
D BA
sen A
sen C
= D CB
sen β
sen α
%
(
:
," 5 0 5
@
:
D C ⋅ senα
senA
= BB
=M
senC D A ⋅ senβ
+
&GG
8
:
#
A + C + α + β + B = 400 g
B
:
.
(
@
C = (400 − B − β − α ) − A = E − A
D BA ⋅ sen A ⋅ sen β = D CB ⋅ sen C ⋅ sen α
D BA ⋅ sen A ⋅ sen β = D CB ⋅ sen(E − A) ⋅ sen α
[
]
D BA ⋅ sen A ⋅ sen β = D CB ⋅ sen E ⋅ cos A − cos E ⋅ sen A ⋅ sen α
[
] [
]
sen A ⋅ D BA ⋅ sen β + BC ⋅ sen α ⋅ cos E = D CB ⋅ sen α ⋅ sen E ⋅ cos A
tg A =
D CB ⋅ sen α ⋅ sen E
D BA ⋅ sen β + D CB ⋅ sen α ⋅ cos E
C=E−A
F
"
#
" 8 5:
:
9
!
tgAˆ = tg (200 + Aˆ )
#
" 5 . 5
!
6
;
#
.
" 5
:
!
(
A
θ AP = θ AB + Aˆ
θ CP = θ BC ± 200 − Cˆ
%
8
@
B 1 = 200 − A − α
B 2 = 200 − C − β
B 2 = B − B1
ó
D BP
D BA
sen A
=
→ D BP = D BA
sen α
sen A sen α
D AB
D AP
senB1
=
→ D PA = D AB
senα senB1
senα
D CP
DBC
senB 2
=
→ D CP = DBC
senβ senB2
senβ
6
A
; !
5
".
!
!
.
X p = X A + D AP ⋅ senθ AP
X p = X C + DCP ⋅ senθ CP
YP = Y A + D AP ⋅ cosθ AP
YP = YC + DCP ⋅ cosθ CP
#
4=7
%
!
#
(
!
!
(
9
@
J
∆H PC = t PC + i P − mC + C (e + r )
∆H PA = t PA + i P − m A + C (e + r )
∆H PB = t PB + i P − m B + C (e + r )
%
8
%
(
.
8
9
:
# !
@
B
t=
+
!
!
+
+
Dr A
tgV AB
! #
#
'
". C 5
8
( H P ) A = H A + ∆H AP
( H P ) B = H B + ∆H BP
( H P ) C = H C + ∆H CP
!
2+
#
.
@
(H p ) A ⋅
HP =
1
1
1
+ (H P ) B ⋅ P + (H P )C ⋅ P
P
DA
DB
DC
1
1
1
+ P + P
P
D A DB DC
6
#
5
:
8
.
:
;
!
%
5
(
!
@
( D AB )UTM =
(X UTM B − X UTM A )2 + (YUTM B − YUTM A ) 2
( DBC )UTM =
(X UTM B − X UTM C )2 + (YUTM B − YUTM C ) 2
". C 5
#
C
. 5
$G
(
#
;"
+ 8
#
.5 !
(
"5
56
%
-67 . /67
0
A
+
!
@
"@
" 5A@
(∆ x PA )UTM = ( D AP )UTM ⋅ senO AP
∆ y PA )UTM = ( D AP )UTM ⋅ cos O AP
( X P )UTM = ( X A )UTM + (∆ x AP )UTM
(YP )UTM = (Y A )UTM + (∆ y AP )UTM
!0
+
@
(∆ x CP )UTM = ( DCP )UTM ⋅ senOCP
(∆ y CP )UTM = ( DCP )UTM ⋅ cos OCP
( X P )UTM = ( X C )UTM + (∆ x CP )UTM
(YP )UTM = (YC )UTM + (∆ y CP )UTM
%
:
!
"5
8
=
%
!
(
9
#
(D AP )
∆H = t + i P − m A + (0.5 − K)
R
A
P
)
!
A
P
(
,8 !
-67 . /67
+ 5".
(
@
2
#
"5 0
+
67
5
(
"
:
8
. !
:
# :
:
5
#
#
!
.
$
"C
"
%
:
;
". C 5
"C
(
(
2
( D AB )UTM
h
1+ A
2
R
k
( D AB ) 2g =
%
5
1+
@
hB
2
+ ∆h AB
R
!
+ #
@
2
( D AB ) 2g = ∆h AB + ( D AB ) 2r
R8
( D AB ) r = ( D AB ) 2g − ∆h AB
"
!
2
" 5C.
#
#
P
#
@
B
Dr A
D
= rA
senB1 senα
P
Dr A =
5
#
+
;
senBˆ1 B
Dr A
senα
#
C+ 5 +
! #
!
#
'
". C 5
+
8
$
( H P ) A = H A + ∆H AP
( H P ) B = H B + ∆H BP
( H P ) C = H C + ∆H CP
!
2+
#
.
@
(H p ) A ⋅
HP =
&
&
1
1
1
+ (H P ) B ⋅ P + (H P )C ⋅ P
P
DA
DB
DC
1
1
1
+ P + P
P
D A DB DC
(
,
&$
#
!
&&
.
&-
"
&4
6!
'/
0123
'/
53
+
%
(
7
:
!
.
:
!
5
5
:
$$
C
A
%
@
:
#
!
" 5
;
@
,
0
@A
:
!
#
A 5
;
@
"
C
9
(
#@
,-". /"0. ,-C. /C0
/
8 !#
!
"@
A
@
%" C . %" A
%A " . %A C
3
!
!
"C
5
#
"
T W %" A
:
!
(
A
5
U W %A C
%
%" C
!
;
#
U
%A "
(
A
$&
+
:
!
:
A :
:
;5
85
:
(
!
!
9
9
9
;
;
#
!
#
:
;
!
:
5
4 567
%
(
# :
#
(
:
8
4=7
9
'
;
(
(
+
!
85
%
2
;
A
!
8
.
#
;
(HV ) A ⋅
HV =
1
1
+ (HV ) B ⋅ V
V
DA
DB
1
1
+ V
V
D A DB
6
6
:
'
#
N
!
+
5
67
5
'
.
:
8
;
!
!
67 .
9
:
#
. 5
:
:
8
$*
6
;
.
#
#
(
!
A = O VA − O AB
B = OBA − OBV
9 #
GG
(
.
Aˆ + Bˆ + Dˆ = 200 g
B = 200 − ( Aˆ + V )
%
5
!
(
( D AB )UTM =
9
#
(X UTM B − X UTM A )2 + (YUTM B − YUTM A ) 2
"CA.
@
( D Av )UTM ( D AB )UTM ( DBV )UTM
=
=
senB
senV
senAˆ
( D VA )UTM =
( DBV )UTM =
senBˆ
( D AB )UTM
senV
senA B
( D A )UTM
senV
56
%
-67 . /67
0
+
A
!
@
"@
" 5A@
(∆ x VA )UTM = ( D VA )UTM ⋅ senO VA
∆ y VA )UTM = ( D VA )UTM ⋅ cos O VA
( X V )UTM = ( X A )UTM + (∆ x VA )UTM
(YV )UTM = (Y A )UTM + (∆ y VA )UTM
$1
!0
+
C@
(∆ x VB )UTM = ( DBV )UTM ⋅ senOBV
(∆ y VB )UTM = ( DBV ) TM ⋅ cos OBV
( X V )UTM = ( X B )UTM + (∆ x VB )UTM
(YV )UTM = (YB )UTM + (∆ y VB )UTM
%
:
!
"5
C8
=
%
'
!
:
!
%
(
"
!
:
(
DG2 =
:
. 5
!
(
%
9
@
2
DUTM
h
h
1 + 1 1 + 2 + ∆h 2
2
k
R
R
!
+ #
@
DG2 = ∆h 2 + Dr2
R8
Dr = DG2 − ∆h 2
"
!
" 5C.
#
#
v
B
#
@
V
Dr A
D
D
= rA = rB
senB senV senAˆ
V
Dr A =
V
Dr B =
senBˆ
B
Dr A
senV
senA B
Dr A
senV
$3
%
A
!
#
(HV ) A ⋅
HV =
-
(
5
-
(
. )
1
1
+ (HV ) B ⋅ V
V
DA
DB
1
1
+ V
V
D A DB
=
+ 5
9
+
"5
:
;
!
+ 5+
9
(
!
9
. 5
#
9
#
!
. .$ 5&
!
#
. . $ 5&
#
* 51
"+ + 5C+ +
!
2
!
GG
!
+
<
#
" 5 C.
A
#
.5
5
8
5
#
8
" 5C
8
(
$F
9
#
+ "C. + + ". C+ + / "C+
→
AP1
AB
=
sen 1 sen B
"+ +
→
AP1
PP
= 1 2
sen 3 sen 5
#
C+ +
→
BP2
PP
= 1 2
sen 2 sen 6
9
#
C+ "
→
BP2
AB
=
sen A sen 4
9
@
9
#
"C+
9
#
9
!
@
AB sen 1
=
AP1 sen B
AP1 sen 3
=
P1 P2 sen 5
P1 P2 sen 6
=
BP2 sen 2
P2 B sen A
=
AB sen 4
. . $.
5
'
:
1
. $. &.
#
*
@
AB ⋅ AP1 ⋅ P1 P2 ⋅ P2 B sen 1 ⋅ sen 3 ⋅ sen 6 ⋅ sen A
=
AP1 ⋅ P1 P2 ⋅ P2 B ⋅ AB sen B ⋅ sen 5 ⋅ sen 2 ⋅ sen 4
sen B sen 1 ⋅ sen 3 ⋅ sen 6
=
=E
sen A sen 5 ⋅ sen 2 ⋅ sen 4
7
A+ B = 2+3
senB
=E
senA
%
2
5$@
2+3 = H
/
@
A + B = H = 2+3 → B = H-A
$J
senB
= E → sen(H - A) = E ⋅ senA
senA
senH ⋅ cosA - cosH ⋅ senA = E ⋅ senA
senH ⋅ cosA = (senA) ⋅ (E + cosH)
tg A =
sen H
E + cos H
B=H−A
9
!
(
8 :
)
#
:
.
:
:
5
.
#
8 '
P1 A =
AB ⋅ sen B
sen 1
P1 B =
AB ⋅ sen(A + 5)
sen 1
P2 A =
AB ⋅ sen(B + 6)
sen 4
P2 B =
AB ⋅ sen A
sen 4
θ AP1 = θ BA + A + 5
&G
θ AP2 = θ BA + A
θ BP1 = θ BA − B
θ BP1 = θ BA − B − 6
5
+ 5+
!
=
+
(
>
:
+ . + . +$
+ 8
.
;
9
!
!
#
:
:
8
+
.C,-. /0.
"
(
,-. /0 5
!
:
#
4
α
#
!
"5
#
2
.
"C+ . + C+ ..
",-. /0
. α . α$ . β . β . β$ . :
':
!
!
@
&
9
#
"C+ @
BP1
AB
=
sen α 1 sen A
9
#
C+ + @
BP1
BP2
=
sen α 2 senβ 1
9
#
C+ +$@
BP3
BP2
=
sen α 3 senβ 2
9
#
C+$ @
BP3
BC
=
sen C senβ 3
!
@
AB ⋅ BP1 ⋅ BP2 ⋅ BP3
BP1 ⋅ BP2 ⋅ BP3 BC
=
senα 1 ⋅ senα 2 ⋅ senα 3 senC senA ⋅ senβ1 ⋅ senβ 2 ⋅ senβ 3
AB
BC
=
senα 1 ⋅ senα 2 ⋅ senα 3 senC senA ⋅ senβ 1 ⋅ senβ 2 ⋅ senβ 3
senA BC ⋅ senα 1 ⋅ senα 2 ⋅ senα 3
=
=M
senC
AB ⋅ senβ1 ⋅ senβ 2 ⋅ senβ 3
+
#
'
@
A + C = (n − 2) ⋅ 200 − (α 1 + α 2 + α 3 + β 1 + β 2 + β 3 + B)
A+C = N
sen A
=M
sen C
A+C = N
(sen(N − A)) ⋅ M = sen A
(sen N ⋅ cos A − cos N ⋅ sen A) ⋅ M = sen A
tgA =
senN
1
M
+ cos N
&
C=N−A
:
+
5
;
!
:
#
!
5
5
8
@
D PA1 = D BA
sen(200 − A − α 1 )
sen α 1
D BP1 = D AB
sen A
senα 1
θ Ap1 = θ BA + A
θ BP1 = θ BA − (200 − A − α 1 )
D BP3 = D CB
D CP3 = D CB
sen C
sen β 3
sen(200 − C − β 3 )
sen β 3
θ BP3 = θ CB + (200 − C − β 3 )
θ CP3 = θ CB − C
D BP2 = D BP1
sen β 1
sen α 2
D BP2 = D BP3
sen α 3
sen β 2
θ BP 2 = θ BC + (200 − C − β 3 ) + (200 − α 3 − β 2 )
(
5 !
&$
C9M4") . N D 4B7 .
C) BQ9). )
269 " +"M4 .
D
5 9%A B . " , JFG0
BB Q. ) 5, JF30
, JF$0@ 7
4 Z
BN69M N") Z
" 79L
9)4.
, J3F0
")L
"
!
"C" Z
".
'+
, JJ 0@ [
+
' A
9)BKB 9M "B7YB.
[
, JJ 0@ [
B
'+
+ 8
@
BX&* L
"
[
JJ
(
' A
. X&* L
"
JJ
4L
9 ". L% , JF&0
6)9B. LD+) 9. ]
, JJ 0
A"%C69B" 6)"B. L% D 4% B9)4. +
. K9M 9 6N")79. )
[
9
(
!
8 ! [
' +
A4% - BX1*. B
!
!
JJ&.
&G *F
, JJ&0@
'
&&
Descargar