Problem 1 a) ẋ(t) = −ωx0 sin(ωt) + v0 cos(ωt) = v(t) v̇(t) = −ω 2 x0 cos(ωt) − ωv0 sin(ωt) = −ω 2 x(t) b) Φs (Φt (x0 , v0 )) = = = = v(t) sin(ωs), −ωx(t) sin(ωs) + v(t) cos(ωs) x(t) cos(ωs) + ω n o v0 x0 cos(ωt) + sin(ωt) cos(ωs) + {−ωx0 sin(ωt) + v0 cos(ωt)} cos(ωs), ω n o v0 −ω x0 cos(ωt) + sin(ωt) sin(ωs) + {−ωx0 sin(ωt) + v0 cos(ωt)} cos(ωs) ω v0 x0 {cos(ωt) cos(ωs) − sin(ωt) sin(ωs)} + {sin(ωt) cos(ωs) + cos(ωt) sin(ωs)} , ω −ωx0 {cos(ωt) sin(ωs) + sin(ωt) cos(ωs)} + v0 {cos(ωt) cos(ωs) − sin(ωt) sin(ωs)}) v0 x0 cos(ω(t + s)) + sin(ω(t + s)), −ωx0 sin(ω(t + s)) + v0 cos(ω(t + s)) ω Φt+s (x0 , v0 ) Problem 2 a) For instance: r2 = x2 + y 2 , x = r cos ϕ, y = r sin ϕ rṙ = xẋ + v v̇ = x(v − x) + v(−x − x) = −r2 r2 ϕ̇ = −ẋv + v̇x = −(v − x)v + (−x − v)x = −r2 ⇒ ⇒ ṙ = −r ⇒ ϕ̇ = −1 r(t) = r(0)e−t ⇒ ϕ(t) = ϕ(0) − t Thus x(t) = = = v(t) = = = r(0)e−t cos(ϕ(0) − t) r(0) cos(ϕ(0))e−t cos(t) + r(0) sin(ϕ(0))e−t sin(t) x0 e−t cos(t) + v0 e−t sin(t) r(0)e−t sin(ϕ(0) − t) r(0) sin(ϕ(0))e−t cos(t) − r(0) cos(ϕ(0))e−t sin(t) v0 e−t cos(t) − x0 e−t sin(t) Φt (x0 , v0 ) = x0 e−t cos(t) + v0 e−t sin(t), v0 e−t cos(t) − x0 e−t sin(t) b) t = 0 : x0 = 0, v0 ≥ 0 x(t) = v0 e−t sin(t), v(t) = v0 e−t cos(t) t = T : x(T ) = v0 e−T sin(T ) = 0, v(T ) = v0 e−T cos(T ) ≥ 0 v1 = v(T ) = v0 e−T Thus P : Σ → Σ, vn 7→ vn+1 = vn e−2π ⇒ T = 2π