Física I (Apuntes)

Anuncio
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
INSTITUTO POLITECNICO NACIONAL
UNIDAD PROFESIONAL INTERDISCIPLINARIA DE
BIOTECNOLOGIA
PROBLEMARIO DE FISICA DEL
MOVIMIENTO APLICADA
ELABORO: I.F. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
1
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Introducción
El presente problemario tiene como fin ayudar a los estudiantes de física a aplicar los
conceptos físicos y facilitar la resolución lógica de problemas del curso de Física del
Movimiento aplicada llevada en el primer semestre de Licenciatura en la UPIBI - IPN.
Se pretende que el contenido abarque todo el programa de estudio. La solución de cada
problema es a detalle y se indica cada paso de resolución del mismo.
El número de problemas incluido se considera el adecuado para cada tema y subtema, la
mayoría de estos han sido resueltos previamente en clase, por lo que estos forman parte de
los apuntes de la materia. La bibliografía recomendada se menciona al final del problemario
La solución final pedida para cada problema aparece subrayada, para más pronta
localización.
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
2
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
INDICE
UNIDAD I Física, magnitudes físicas y mediciones
1.1 Presentación del curso
1.1.1 Concepto de Física y sus dominios de aplicación.
1.2 Unidades fundamentales de medición.
1.2.1 Sistemas de unidades
1.3 Unidades derivadas.
1.3.1 Conversión de unidades físicas
1.4 Notación científica.
1.4.1 Operaciones con notación científica (suma, resta, multiplicación, división,
potenciación, radicación).
1.5 Propagación de errores
UNIDAD II Magnitudes escalares y vectoriales
2.1 Definición de cantidades escalares y vectoriales.
2.1.1 Representación geométrica y analítica de un vector.
2.1.2 Magnitudes físicas escalares y vectoriales.
2.2 Algebra de vectores.
2.2.1 Multiplicación por un escalar
2.2.2 Suma y resta.
2.2.3 Producto punto.
2.2.4 Producto cruz.
2.3 Aplicaciones
UNIDAD III Cinemática
3.1 Cinemática en una dimensión
3.1.1 Movimiento rectilíneo uniforme
3.1.2 Movimiento rectilíneo uniformemente acelerado
3.2 Cinemática en dos dimensiones
3.2.1 Tiro parabólico
UNIDAD IV Dinámica
4.1 Conceptos básicos: masa, peso y fuerza
4.1.1 Sistemas de referencia: inerciales y no inerciales
4.2 Leyes de Newton
4.2.1 Diagrama del cuerpo libre.
4.3 Fuerzas de la naturaleza
4.3.1 Fuerza de rozamiento.
4.3.2 Coeficiente de fricción estática y coeficiente de fricción cinética
4.4 Aplicaciones.
4.4.1 Plano inclinado sin fricción y plano inclinado con fricción
4.4.2 Poleas
4.4.3 Movimiento circular y fuerza centrípeta
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
3
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
UNIDAD V Trabajo y energía
5.1 Concepto de trabajo.
5.1.1 Trabajo realizado por una fuerza constante.
5.1.2 Trabajo realizado por una fuerza variable.
5.2 Concepto de Energía
5.2.1 Definición de la energía cinética.
5.2.2 Teorema del trabajo energía cinética, aplicaciones.
5.3 Definición de potencia y aplicaciones
UNIDAD VI Momento e Impulso
6.1 Concepto de momento lineal e impulso
6.1.1 Centro de masa.
6.2 Leyes de conservación del momento y energía.
6.3 Colisiones
6.3.1 Colisiones elásticas e inelásticas
6.4 Aplicaciones de la conservación del momento.
UNIDAD VII mecánica de fluidos
7.1 Concepto de fluido.
7.1.1 Presión y densidad.
7.2 Principio de Pascal y principio de Arquímedes.
7.2.1 Medición de presión para un fluido estático.
7.2.2 Variación de la presión atmosférica con la altura.
7.3 Flujo de fluidos.
7.3.1 Ecuación de continuidad.
7.3.2 Ecuación de Bernoulli.
7.4 Aplicaciones de la mecánica de fluidos.
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
4
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Unidad I FISICA, MAGNITUDES FISICAS Y MEDICIONES
1.1 Presentación del curso
1.1.1 Concepto de física y sus dominios de aplicación
La física es el estudio del universo material, es decir es el estudio de la materia, sus
interacciones y sus cambios.
1.2
Unidades fundamentales de medición
Debido a que existen muchas cantidades físicas, resulta un problema internacional
organizarlas adecuadamente, para esto se debe seleccionar el menor número posible de
cantidades físicas que conduzcan a una descripción completa de la física en los términos
más simples.
1.2.1 Sistemas de unidades
La XIV Conferencia General de Pesos y medidas (1971), seleccionó como unidades básicas
las siete cantidades siguientes.
Unidades básicas del Sistema Internacional de Unidades SI
Cantidad
Nombre
Símbolo
Longitud
metro
m
Masa
kilogramo
kg
Tiempo
segundo
s
Corriente eléctrica
ampere
A
Temperatura termodinámica kelvin
K
Cantidad de sustancia
mol
mol
Intensidad luminosa
candela
cd
1.3
Unidades derivadas
Las unidades derivadas se expresan a partir de las unidades básicas, y entre otras podemos
mencionar a la velocidad, fuerza, aceleración, resistencia eléctrica, densidad, etc.
El organismo encargado de seleccionar las cantidades básicas es la Oficina Internacional de
Pesos y Medidas establecida en 1875 en París Francia quién seleccionó las Unidades
básicas del Sistema Internacional de Unidades (SI).
Con frecuencia resulta que si se expresan ciertas cantidades físicas, resultan ser números
muy grandes o muy pequeños, la XIV Conferencia General de Pesos y Medidas
recomendó los siguientes prefijos.
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
5
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
1. [2a, 1-1] Calcule la densidad de un cubo sólido que mide 5 cm de cada lado y tiene una
masa de 350 g.
Dividiendo la masa entre el volumen para obtener la densidad
ρ = m = 350 g = 2.8 g/cm3
V (5 cm)3
2. [2a, 1-5] Calcule la masa de un átomo de: a) helio, b) hierro, y c) plomo. Dé las
respuestas en unidades de masa atómica y en gramos. Los pesos atómicos de los átomos
dados, son 4, 56 y 207, respectivamente.
a)
mHe = peso atómico He = 4 g/mol
= 6.6x10-24 g/átomo
23
6.02x10 átomos/mol
NA
Como 1 uma = 1.6605402x10-27 kg, convirtiendo la masa a uma:
mHe = 6.6x10-24 g (1 kg) (1 uma)
= 4 uma
-27
1000 g 1.6605402x10 kg
b)
mFe = peso atómico Fe = 56 g/mol
= 9.3x10-23 g/átomo
6.02x1023 átomos/mol
NA
Haciendo la conversión a unidades de masa atómica:
mFe = 9.3x10-23 g (1 kg) (1 uma)
= 56 uma
1000 g 1.6605402x10-27 kg
c)
mPb = peso atómico Pb = 207 g/mol
= 3.4x10-22 g/átomo
23
6.02x10 átomos/mol
NA
Haciendo la conversión a unidades de masa atómica:
= 207 uma
mPb = 9.3x10-23 g (1 kg) (1 uma)
-27
1000 g 1.6605402x10 kg
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
6
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3. [2a, 1-6] Mediante un microscopio se observa una pequeña partícula de hierro en forma
de cubo. La arista del cubo es de 5x10-6 cm. Encuentre a) la masa del cubo y b) el
número de átomos de hierro en la partícula. El peso atómico del hierro es de 56 y su
densidad es de 7.86 g/cm3.
a) Como ρ = (m/V), despejando la masa y convirtiendo el volumen de la partícula a m3
3
m = ρV =(7.86x106 g/m3) 5x10-6 cm 1 m
= 9.83x10-16 g
100 cm
b) Se hace una proporción, ya que un mol de Fe (56 g) contiene 6.02x1023 átomos
56 g
= 6.02x1023 átomos
N
9.83x10-16 g
N = (6.02x1023 átomos)(9.83x10-16 g) = 10.56x106 átomos
56 g
4. [2a, 1-7] Calcule la razón entre las masas atómicas del plomo y del mercurio y compare
con la razón entre sus densidades.
Calculando las masas del Pb y del Hg
207 g/mol
= 3.4x10-22 g/átomo
mPb = peso atómico Pb =
6.02x1023 átomos/mol
NA
mHg = peso atómico Hg =
200.59 g/mol
= 3.3x10-22 g/átomo
23
6.02x10 átomos/mol
NA
Con lo obtenido se calcula la razón entre las masas del Pb y del Hg
mPb = 3.4x10-22 g/átomo = 1.03
mHg 3.3x10-22 g/átomo
Calculando la razón entre las densidades del Pb y del Hg
ρPb = 11.4 g/ml = .084
ρHg 13.6 g/ml
Esta discrepancia se debe a la diferencia en los espaciamientos atómicos y en los
arreglos atómicos de sus estructuras cristalinas.
5. [2a, 1-8] Una placa circular plana de cobre tiene un radio de 0.243 m y una masa de 62
kg. ¿Cuál es el espesor de la placa?
Como ρ = (m/V), despejando V e igualando con el volumen de una placa circular
m/ρ = (πr2)(Espesor)
Despejando el Espesor
E= m =
62 kg
= 3.7x10-2 m
2
2
3
πr ρ π(0.243 m) (8.93x10 kg/m3)
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
7
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
1.3.1 Conversión de unidades físicas
1.4 Notación física
1.4.1 Operaciones con notación científica (suma, resta, multiplicación,
división, potenciación, radicación).
6. [2a, 1-9] Muestre que la expresión x = vt + (1/2)at2 es dimensionalmente correcta,
donde x es una coordenada y tiene unidades de longitud, v es velocidad, a es aceleración
y t es tiempo.
Las dimensiones de los tres miembros de la igualdad son:
[x] = L
[vt] = (L/T)T = L
[(1/2)at2vt] = (L/T2)T2 = L
Por lo tanto la expresión es dimensionalmente correcta
7. [2a, 1-12] Demuestre que la ecuación v2 = vo2 + 2ax es correcta dimensionalmente,
donde v y vo representan velocidades, a es aceleración y x es una distancia.
Las dimensiones de los tres miembros de la igualdad son:
[v2] = [vo2] = L2/T2
[2ax] = (L/T2)L = L2/T2
Por lo tanto la expresión es dimensionalmente correcta
8. [2a, 1-13] ¿Cuál de las siguientes ecuaciones es correcta dimensionalmente?
a) v = vo +ax
b)
y = (2 m)cos(kx), donde k = 2 m-1.
a)
b)
Las dimensiones de los tres miembros de la igualdad son:
[v] = [vo] = L/T
[ax] = (L/T2)L = L2/T2
Por lo tanto la expresión es dimensionalmente incorrecta
Las dimensiones de los dos miembros de la igualdad son:
[y] = L
[(2 m)cos(kx)] = (L)(1/L)(L) = L
Por lo tanto la expresión es dimensionalmente correcta
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
8
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
9. [2a, 1-18] Convierta el volumen 8.50 in3 a m3, recordando que 1 in = 2.54 cm y 1 cm =
10-2 m.
Como 1 in3 = (0.0254)3m3,
8.5 in³(0.0254)³m³ = 139x10-6 m³
1 in³
10. [2a, 1-19] Un terreno rectangular tiene 100.0 ft por 150.0 ft. Determine el área del
terreno en m2.
Como 1 ft² = (0.3048)² m²
(100 ft)(150 ft)=15000 ft²(0.3048)² m² = 1.393x103 m²
1 ft²
11. [2a, 1-22] Una sección de Tierra tiene un área de una milla cuadrada y contiene 640
acres. Determine el número de metros cuadrados que hay en 1 acre.
Como
1 milla² = (1609.344)² m² = 640 acres
por lo tanto
1 acre = (1609.344)² m² = 40.5x102 m²
640
12. [2a, 1-23] Una pieza sólida de plomo tiene una masa de 23.94 g y un volumen de 2.10
cm3. De estos datos, calcule la densidad del plomo en unidades SI (kg/m3).
Como ρ = m = 23.94 g (1 kg) (100)³cm³ =11.4x103 kg/m³
V 2.10 cm³ (1000 g)(1 m³)
13. [2a, 1-24] Un contenedor de helado, de un cuarto de galón, está hecho en forma de
cubo. ¿Cuál será la longitud de un lado en cm? (Use la conversión 1 galón = 3.786
litros).
Como V = (1/4)(3.786 litros) = (1/4)(3.786 dm³)
_______________
Por lo tanto: 1 lado = ³√(1/4)(3.786 dm³) = 0.98 dm = 9.8 cm
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
9
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
14. La masa del Sol es aproximadamente 1.99x1030 kg, y la masa de un átomo de
hidrógeno, del cual esta compuesto principalmente el sol, es 1.67x10-27 kg. ¿Cuántos
átomos hay en el sol?
Número de átomos de H = masa del Sol = 1.99x1030 kg = 1.19x1057 átomos
masa del H
1.67x10-27 kg
15. [2a, 1-29] a) Encuentre un factor de conversión para convertir de mi/h a km/h. b) Hasta
hace poco, la ley federal asignó por mandato que la rapidez en las carreteras debería ser
de 55 mi/h. Utilice el factor de conversión de la parte a) para encontrar la rapidez en
km/h. c) La máxima rapidez en las carreteras ha sido elevada a 65 mi/h en algunos
lugares. ¿Cuánto aumentó, en km/h, respecto al límite de 55 mi/h?
1 mi = 1.609 km
h
h
b) 55mi (1.609 km) = 88.5 km/h
h
1 mi
c) 65mi (1.609 km) = 104.6 km/h
h
1 mi
Aumentó en: (104.6 km/h) – (88.5 km/h) = 16.1 km/h
a)
16. Un galón de pintura (volumen = 3.78x10-3 m3) cubre un área de 25.0 m2. ¿Cuál es el
espesor de la pintura en la pared?
Espesor = Volumen = 3.78x10-3 m3 = 15.1x10-5 m
Area
25.0 m2
17. [2a, 1-32] La base de una pirámide cubre un área de 13 acres (1 acre = 43 560 ft2), y
tiene una altura de 481 ft. Si el volumen de una pirámide esta dado por la expresión
V=(1/3)Bh, donde B es el área de la base y h es la altura, encuentre el volumen de esta
pirámide en metros cúbicos.
Como 1ft3 = (0.3048)3 m3
V= (1/3)Bh = (1/3)(13)(43 560 ft2)( 481 ft) = 90793560 ft3 (0.3048)3 m3= 2.6x106 m3
1 ft3
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
10
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
18. Suponiendo que 70% de la superficie de la Tierra esta cubierta con agua a una
profundidad promedio de 1 milla, calcule la masa del agua sobre la Tierra en
kilogramos.
El radio promedio de la Tierra es 6.37x106 m, y el área superficial de una esfera es 4πr2
Por lo tanto:
Volumen H2O = (70% sup. de la Tierra)(profundidad)
= (0.7)(4π)(6.37x106 m)²(1609.344 m) = 5.74x1017 m3 = 5.74x1017 m3
= 5.74x1020 l
Como 1 litro de agua tiene una masa aproximada de 1 kg
m = 5.74x1020 kg
19. [2a, 1-36] El radio promedio de la Tierra es 6.37x106 m, y el de la Luna es de 1.74x108
cm. Con estos datos calcule: a) la razón entre el área superficial de la Tierra y la de la
Luna, b) la razón entre el volumen de la Tierra y la de la Luna. Recuerde que el área
superficial de una esfera es 4πr2 y el volumen de una esfera es (4/3)πr3.
a)
Area de la Tierra = 4πrT² = rT² = (6.37x106 m)2 = 13.4
Area de la Luna
4πrL² rL² (1.74x106 m)2
b)
Volumen de la Tierra = (4/3)πrT3 = rT3 = (6.37x106 m)3 = 49.06
Volumen de la Luna
(4/3)πrL3 rL3 (1.74x106 m)3
20. [2a, 1-37] Del hecho de que la densidad de la Tierra es 5.5 g/cm3 y su radio promedio es
6.37x106 m, calcule la masa de la Tierra.
Convirtiendo la densidad de la Tierra a kg/m3
ρ = 5.5 g (1 kg) (100)3 cm3 = 5500 kg/m3
cm3 1000g
1 m3
Como ρ = m
V
Despejando la masa y considerando a la Tierra como una esfera
m = ρV = ρ(4/3)πr3 = (5500 kg/m3)(4/3)π(6.37x106 m)3 = 5.95x1024 kg
21. Un metro cúbico (1.00 m3) de aluminio tiene una masa de 2.70x103 kg, y 1.00 m3 de
hierro tiene una masa de 7.86x103 kg. Encuentre el radio de una esfera sólida de
aluminio que se equilibre con una esfera sólida de hierro de 2.00 cm de radio en una
balanza de brazos iguales.
ρAl = mAl/VAl
(1)
(2)
ρFe = mFe/VFe
Despejando las masas de (1) y (2) e igualándolas para que la balanza se equilibre:
ρAlVAl = ρFeVFe
Como el volumen de una esfera es (4/3)πr3
(2.70x103 kg)(4/3)πrAl3 = (7.86x103 kg)(4/3)πrFe3
_______________
__________________
rAl = ³√(7.86)( rFe3)/(2.7) = ³√(7.86)( 0.02)3/(2.7) = 0.0286 m
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
11
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
22. La velocidad de la luz en el vacío es de 186 000 millas/s, a) cuántos cm recorrerá en 3
nanosegundos, b) cuántos fermis recorrerá en el mismo lapso de tiempo. Recuerde que 1
fm = 1x10-15 m, 1 ns = 1x10-9 s.
a)
186000 mi (1x10-9s) (160934.4 cm) = 29.934 cm/ns
s
1 ns
1 mi
Distancia recorrida en 3 nanosegundos = 3(29.934 cm/ns) = 89.8 cm
b)
186000 mi (1x10-9s) (1609.344 m) (1 fm) = 2.993x1014 fm
s
1 ns
1 mi
1x10-15 m
Distancia recorrida en 3 nanosegundos = 3(2.993x1014 fm) = 8.98x1014 fm
1.5 Propagación de errores
Cálculos de orden de magnitud
23. [2a, 1-40] Estime el número de veces que el corazón de un humano late en una vida
promedio de 70 años.
En un minuto late aproximadamente 75 veces
En una hora late aproximadamente (75)(60) = 4 500 veces
En un día late aproximadamente (4500)(24) = 108 000 veces
En un año late aproximadamente (108000)(365.25) = 3.9x107 veces
En 70 años late aproximadamente (3.9x107 veces)(70) = 2.7x109 veces
24. Estime el número de familias que tienen piano en la ciudad de México.
14 millones de habitantes
14x106 = número de familias
5
5% nivel alto = 140000
5% con piano = 7000 familias
Cifras significativas
25. [2a, 1-50] Determine el número de cifras significativas en los siguientes números: a) 23
cm, b) 3.589 s, c) 4.67x103 m/s, d) 0.0032 m.
a)
b)
c)
d)
2
4
3
2
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
12
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
26. [2a, 1-51] Calcule: a) la circunferencia de un círculo de radio 3.5 cm y b) el área de un
círculo de radio 4.65 cm.
a)
P = 2πr = (2)(3.14159265…)(3.5 cm) = 22 cm
debido a que el radio tiene dos cifras significativas
b)
A = πr2 = (3.14159265…)(4.65 cm)2 = 67.9 cm2
ya que el radio tiene tres cifras significativas
27. [2a, 1-52] Efectúe las siguientes operaciones aritméticas: a) la suma de los números
756, 37.2, 0.83 y 2.5; b) el producto 3.2 x 3.563; c) el producto 5.6 x π.
a) Cuando se suman o se restan varios números, el número de decimales en el resultado
deberá ser igual al número menor de lugares decimales de cualquiera de los términos de
la suma o resta.
756+37.2+0.83+2.5 = 797
ya que el primer término tiene 0 decimales
b) Cuando se multiplican o dividen varias cantidades, el número de cifras significativas
en la respuesta final es el mismo número de cifras significativas de la que tiene menos
cifras significativas.
(3.2)(3.563) = 11
ya que el primer término tiene 2 cifras significativas
c) (5.6)(3.14159265…) = 18
ya que el primer término tiene 2 cifras significativas
28. [2a, 1-55] ¿Cuántas cifras significativas habrá en: a) 78.9±0.2, b) 3.788x109, c) 2.46x106
y d) 0.0053?
a)
3
b)
4
c)
3
d) 2
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
13
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Unidad II MAGNITUDES ESCALARES Y VECTORIALES
2.1
2.1.1
Definición de cantidades escalares y vectoriales
Representación geométrica y analítica de un vector
Escalares: Son las cantidades que se pueden representar por medio de un número, un signo
y una unidad. Ejemplos: peso, trabajo, masa, volumen, densidad, etc., los escalares se
suman por los métodos ordinarios.
Vectores: Las cantidades que exigen la especificación de una magnitud y una dirección y
un sentido. Ejemplo: fuerza, velocidad, aceleración, desplazamiento
Gráficamente un vector se representa por una flecha, cuya dirección es la del vector que
representa y cuya longitud corresponde a la magnitud, el sentido lo indica la punta de la
flecha.
1. [1a, 2-10] Un peatón se mueve 6 km hacia el este y 13 km hacia el norte. Determine la
magnitud y dirección del vector desplazamiento resultante usando el método gráfico
Se trazan a escala los vectores, y utilizando el método del paralelogramo se trazan
paralelas a los vectores, la resultante se obtiene al unir el punto de inicio con el punto de
intersección de las paralelas.
N
13 km
R
w
E
6 km
S
Así el vector resultante es:
R = 14.3 u
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
14
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
2. [2a, 2-12] El vector A mide 6 unidades de longitud y forma un ángulo de 45° respecto al
eje x, El vector B mide 3 unidades de longitud y está dirigido a lo largo del eje x
positivo (θ = 0). Halle el vector resultante A + B utilizando a) el método gráfico y b) la
ley de los cosenos.
a) Se trazan a escala los vectores, y utilizando el método del paralelogramo se trazan
paralelas a los vectores, la resultante se obtiene al unir el punto de inicio con el punto de
intersección de las paralelas.
y
135°
6u
R
45°
x
3u
Así el vector resultante es:
R = 8.4 u
b) Utilizando la ley de los cosenos c2 = a2+b2 – 2abcosθ
_____________________
R = √32+62 – 2(3)(6)cos135° = 8.4 u
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
15
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3. [2a, 2-16] Un perro que anda en busca de un hueso camina 3.5 m hacia el sur, después
8.2 m a un ángulo de 30° al noreste, y finalmente 15 m al oeste. Encuentre el vector
desplazamiento resultante del perro utilizando la técnica gráfica
Se trazan a escala los vectores, y utilizando el método del polígono se unen los
desplazamientos, la resultante se obtiene al unir el punto inicial del primer vector con el
punto final del último vector.
N
15 km
w
E
R
3.5 km
8.2 km
S
Así el vector resultante es:
R = 7.9 km
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
16
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Método analítico
Por componentes de un vector
En general se descomponen los vectores en sus proyecciones en el plano horizontal (x) y
vertical (y), y se efectúa la suma algebraica por separado
4. [2a, 2-23] Un vector tiene una componente x de –25 unidades, y una componente y de
40 unidades. Encuentre la magnitud y dirección de este vector.
La magnitud del vector es:
___________
R = √(-25)2+(40)2 = 47.2 u
La dirección del vector es:
θ1 = arctan[40/(-25)] = 57.9°
Como se encuentra en el segundo cuadrante
Por lo tanto:
θ2 = 180°-57.9°90° =122°
5. [2a, 2-26] Un vector desplazamiento que se encuentra en el plano xy tiene una magnitud
de 50 m y está dirigido formando un ángulo de 120° con el eje x positivo. ¿Cuáles son
las componentes rectangulares de este vector?
Datos: magnitud 50 m; θ = 120°
Componente en x: 50cos120° = -25 m
Componente en y: 50sen120° = 43.3 m
6. [2a, 2-27] Encuentre la magnitud y dirección de la resultante de tres desplazamientos
cuyas componentes respectivas son: (3,2) m, (-5,3) m y (6,1) m.
Datos: desplazamientos: (3,2) m, (-5,3) m y (6,1) m.
Obteniendo la sumatoria de desplazamientos en x, y
ΣDx: 3-5+6 = 4 m
ΣDy: 2+3+1 = 6 m
Por lo tanto la resultante es:
________
_____
R =√Σx2+Σy2 = √42+62 = 7.21 m
El ángulo es:
θ = arctan[Σy/Σx] = arctan[6/4] = 56.3°
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
17
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
7. [2a, 2-35] Un aeroplano vuela de la ciudad A a la ciudad B 800 millas en una dirección
hacia el este. En la siguiente parte del viaje, el aeroplano vuela 600 millas de la ciudad
B a la ciudad C en una dirección de 40° al noreste. ¿Cuál es el desplazamiento
resultante del aeroplano entre la ciudad A y la ciudad C?
N
C
40°
O
A
B
E
S
ΣDx = 800+600(cos40°) = 1259.627 mi
ΣDy = 600(sen40°) = 385.673 mi
____________
______________________
2
2
AC = √ (Σx) + (Σy) = √(1259.627)2 + (385.673)2 = 1317 mi
θ = arctan(Σy/Σx) = arctan(385.673/1259.627) = 17°
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
18
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
2.2
2.2.1
Algebra de vectores
Multiplicación por un escalar
Multiplicación de un vector por un escalar
Un vector se puede multiplicar por un escalar, al multiplicar por –k se obtiene un vector k
veces más grande y opuesto al primero.
2.2.2
Suma y resta
Suma y resta de vectores
Los vectores se pueden sumar por métodos geométricos.
Método del paralelogramo
Se trazan paralelas a ambos vectores, el vector resultante será aquel una el punto de inicio
de ambos con el punto donde se cruzan las dos paralelas.
Método del polígono
Consiste en dibujar a escala y a partir de un punto cualquiera cada uno de los vectores
dados, de forma que el origen de uno de ellos coincida con el extremo del anterior y así
sucesivamente, el orden en que se toman los vectores es arbitrario. La longitud del
segmento que une el punto de partida del primero con el extremo del último es el vector
resultante.
Sustracción de vectores
Para restar el vector B del vector A, basta con sumar el opuesto de B, es decir A-B = A+(B).
8. [2a, 2-28] Un vector A tiene componentes x,y de –8.7 cm y 15 cm, respectivamente, el
vector B tiene componentes x,y de 13.2 cm y –6.6 cm, respectivamente. Si A-B+3C=0,
¿cuáles son las componentes de C?
Para que A-B+3C=0, se debe cumplir que Σx=0 y Σy=0
Por lo tanto:
Σx= -8.7 – 13.2 + 3Cx = 0
Despejando a Cx
Cx = 8.7+13.2 = 7.3 cm
3
Σy= 15 -(-6.6) + 3Cy = 0
Despejando a Cy
Cy = -15-6.6 = -7.2 cm
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
19
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3
9. [2a, 2-29] Dos vectores están dados por A=3i-2j y B=-i-4j. Calcule: a) A+B, b) A-B, c)
⎜A+B⎪, d) ⎜A-B⎪, e) la dirección de A+B y A-B.
a) A+B = (3i-2j)+(-i-4j) = (3i-i)+(-2j-4j) = 2i-6j
b) A-B = (3i-2j)-(-i-4j) = (3i+i)+(-2j+4j) = 4i+2j
_________
c) ⎜A+B⎪ = ⎜(3i-2j)+(-i-4j)⎜ = ⎜(3i-i)+(-2j-4j)⎜ = √(2)2+(-6)2 = 6.32
________
d) ⎜A-B⎪ = ⎜(3i-2j)-(-i-4j)⎜ = ⎜(3i+i)+(-2j+4j)⎜ = √(4)2+(2)2 = 4.47
e) la dirección de A+B se encuentra en el cuarto cuadrante:
θ1 = 360°- arctan(6/2) = 288.4°
la dirección de A-B se encuentra en el primer cuadrante:
θ2 = arctan(2/4) = 26.6°
2.2.3
2.2.4
Producto punto
Producto cruz
10. [2a, 7-20] Halle el ángulo entre los vectores A = -5i-3j+2k y B= -2j-2k.
Efectuando el producto punto mediante componentes
A•B = (-5)(0)+(-3)(-2)+(2)(-2) = 0+6-4 = 2
Además se sabe que
A•B = ⎜A⎪⎜B⎪cosθ
(1)
Obteniendo ⎜A⎪
______________
⎜A⎪= √(-5)2+(-3)2+(2)2 = 6.164
Obteniendo ⎜B⎪
__________
⎜B⎪= √(-2)2+(-2)2 = 2.828
Despejando a θ de la ec. (1) y substituyendo ⎜A⎪ y ⎜B⎪
θ = arccos A•B
= arccos
2
= 83.4°
⎜A⎪⎜B⎪
(6.164)(2.828)
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
20
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
11. [1a, 2-26] Un vector A con una magnitud de 10 unidades y otro vector B de 6 unidades
de magnitud, apuntan en direcciones que difieren en 60°. Encontrar a) el producto
escalar de ambos vectores y b) el producto vectorial de dichos dos vectores.
a) Se sabe que
A•B = ⎜A⎪⎜B⎪cosθ = (10)(6)cos60° = 30.0
b) Se sabe que
⎜AxB⎪ = ⎜A⎪⎜B⎪senθ = (10)(6)sen60° = 52.0
12. [1a, 2-34] Tres vectores están dados por a = 3i+3j-2k, b = -i-4j+2k, c = 2i+2j+k.
Encontrar a) a•(bxc), b) a•(b+c) y c) ax(b+c)
a) Se obtiene primero lo que está entre paréntesis, es decir el vector bxc
i
bxc = -1
2
j
-4
2
k
2 = i -4 2
1
2 1
+ j 2
1
-1 + k -1 -4
2
2 2
= (-4-4)i +(4+1)j + (-2+8)k = -8i+5j+6k
Finalmente se obtiene el escalar a•(bxc)
a•(bxc) = (3i+3j-2k)•(-8i+5j+6k) = (3)(-8) + (3)(5) + (-2)(6) = -24 +15 –12 = -21
b)
Se obtiene primero lo que está entre paréntesis, es decir el vector b+c
b+c = (-i-4j+2k) + (2i+2j+k) = i-2j+3k
Finalmente se obtiene el escalar a•(bxc)
a•(bxc) = (3i+3j-2k)•(i-2j+3k) = (3)(1) + (3)(-2) + (-2)(3) = 3-6-6 = -9
c)
Como el vector b+c se obtuvo en el inciso b)
ax(b+c) =
i
3
1
j
3
-2
k
-2 = i 3
3
-2
-2
3
+ j -2 3
3 1
+ k 3
1
3
-2
= (9-4)i +(-2-9)j + (-6-3)k = 5i-11j-9k
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
21
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
13. [1a, 2-37] Dos vectores a y b tienen componentes que en unidades arbitrarias son ax =
3.2, ay = 1.6; bx = 0.5, by = 4.5. a) Encontrar el ángulo entre a y b. b) Encontrar las
componentes x,y de un vector c que sea perpendicular a a y que tenga 5.0 unidades de
magnitud.
a) Efectuando el producto punto mediante componentes
a•b = (3.2)(0.5)+(1.6)(4.5) = 1.6+7.2 = 8.8
Además se sabe que
a•b= ⎜a⎪⎜b⎪cosθ
(1)
Obteniendo ⎜a⎪
___________
⎜a⎪= √(3.2)2+(1.6)2 = 3.578
Obteniendo ⎜b⎪
___________
⎜b⎪= √(0.5)2+(4.5)2 = 4.528
Despejando a θ de la ec. (1) y substituyendo ⎜a⎪ y ⎜b⎪
θ = arccos
a•b
= arccos
8.8
= 57.1°
⎜a⎪⎜b⎪
(3.578)(4.528)
b) Como el ángulo entre el vector a y el vector c es 90°
a•c = ⎜a⎪⎜c⎪cos90° = 0
Efectuando el producto punto mediante componentes
a•c = axcx+aycy = 0 (1)
De la definición de magnitud de un vector
(2)
cx2+cy2 = (5.0)2
Por lo que tenemos un sistema de ecuaciones 2x2 el cual puede ser resuelto por
sustitución
Despejando cy de 1
cy = -axcx = 2cx
(3)
ay
Sustituyendo cy en 2 se forma la siguiente ecuación cuadrática:
5cx2-25 = 0
Resolviendo la ecuación cuadrática
cx = ± 2.2 u
Sustituyendo el valor de cx en 3 para encontrar cy
cy = ± 4.5 u
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
22
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
2.3
Aplicaciones
14. [2b, 7-19] Se tiene el vector a = (3.00i+4.00j) N, y se sabe que a•b=100.0 J, el ángulo
entre a y b es de 32° determine el vector b.
Obteniendo ⎜a⎪
________
⎜a⎪= √(3)2+(4)2 = 5.0
Como el ángulo entre el vector a y el vector b es 32°
a•b = ⎜a⎪⎜b⎪cos32° = 100
Despejando ⎜b⎪
⎜b⎪=
100
= 100
= 23.58
⎜a⎪cos32°
5cos32°
Efectuando el producto punto mediante componentes
(1)
a•b = axbx+ayby = 100
De la definición de magnitud de un vector
bx2+by2 = (23.58)2
(2)
Por lo que tenemos un sistema de ecuaciones 2x2 el cual puede ser resuelto por
sustitución
Despejando bx de 1
bx = 100-ayby =100-4by
(3)
ax
3
Sustituyendo bx en 2 se forma la siguiente ecuación cuadrática:
2.78by2-88.89by +554.93 = 0
Resolviendo la ecuación cuadrática y sustituyendo el valor de by en 3 para encontrar bx,
por lo que se encuentran dos vectores que satisfacen las condiciones
b1 = 2i +23.5j
b2 = 22i+8.5j
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
23
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Unidad III CINEMATICA
3.1
3.1.1
3.1.2
Cinemática en una dimensión
Movimiento rectilíneo uniforme
Movimiento uniformemente acelerado
1. [2a, 3-6] La posición de una partícula a lo largo del eje x está dada por x=3t3-7t, donde
x está en metros y t en segundos. ¿Cuál es la velocidad media de la partícula durante el
intervalo desde t=2.0 s a t=5.0 s?
Evaluando la posición en t=3, t=5, y sustituyendo los valores en la fórmula se obtiene la
velocidad media
x(2)=3(2)³-7(2)=10 m
x(5)=3(5)³-7(5)=340 m
vm = Δx = xf-xi = (340 m)-(10 m) = 110 m/s
Δt
tf-ti
(5 s)-(2 s)
x(m)
2. [2a, 3-8] Con base en la figura, determine: a) la velocidad media entre t = 2.0 s y t = 5.0
s y b) la velocidad instantánea en t = 3.0 s
4
3.5
3
2.5
2
1.5
1
0.5
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
t(s)
Figura 1
a) De la figura
vmed = xf-xi = 1.1-3 = -0.6 m/s
tf-ti
5-2
b) Como v = dx/dt. En la figura se traza una recta aproximadamente tangente a la
curva en el punto (3,1.5) y se obtiene su pendiente.
v = 0.5-1.5 = -0.7 m/s
4.5-3
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
24
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3. [2a, 3-17] Una partícula se mueve a lo largo del eje x de acuerdo con la ecuación
x=2t+3t², donde x está en m y t en s. calcule la velocidad y la aceleración instantáneas
en t=3 s.
La posición de la partícula esta dada por x=2t+3t²
Derivando la posición con respecto al tiempo, y evaluando en t=3 s
v = dx = (2+6t) m/s
dt
v(3)=2+6(3)=20 m/s
Como la aceleración es la derivada de la velocidad con respecto al tiempo
a = dv = 6 m/s²
dt
Por lo que la aceleración es la misma para todo tiempo
4. [2a, 3-21] Una partícula se mueve a lo largo del eje x de acuerdo con la ecuación
x=2+3t-t², donde x está en m y t en s. En t=3 s, halle: a) la posición de la partícula, b)
su velocidad y c) su aceleración.
a) Evaluando la posición en t=3 s
x(3)=2+3(3)-(3)²=2 m
b) Derivando la posición con respecto al tiempo, y evaluando en t=3 s
v = dx = (3-2t) m/s
dt
v(3)=3-2(3)= -3 m/s
c) Como la aceleración es la derivada de la velocidad con respecto al tiempo
a = dv = -2 m/s²
dt
Por lo que la aceleración es la misma para todo tiempo
5. [2a, 3-25] Un cuerpo que se mueve con aceleración uniforme tiene una velocidad de 12
cm/s cuando su coordenada x es de 3 cm. Si su coordenada x dos segundos más tarde es
–5 cm, ¿cuál es la magnitud de su aceleración?
Datos: vo=12 cm/s; xi=3 cm; xf= -5 cm
De la ecuación y=vot+(1/2)at², la distancia recorrida es –8 m, sustituyendo valores
-8=(12cm/s)(2s)+(1/2)a(2s)²
Despejando la aceleración
a=(-8m-24m)2= -16 cm/s²
4
La magnitud de la aceleración es
|a|=16 cm/s²
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
25
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
6. [2a, 3-45] Se dio la noticia de que una mujer había caído 144 ft desde el decimoséptimo
piso de un edificio, golpeándose finalmente contra la caja metálica de un ventilador que
se aplastó 18 in. La mujer sólo sufrió pequeñas lesiones. Despreciando la resistencia del
aire calcule: a) la rapidez de la caída de la mujer precisamente antes de chocar contra el
ventilador, b) su desaceleración al estar en contacto con la caja y c) el tiempo que tardó
en aplastar la caja.
Datos: y1=144 ft; y2=18 in=1.5 ft; vo=0
a) La velocidad final de la mujer antes de chocar contra el ventilador se obtiene de la
ecuación v²=vo²+2ay
_______
_____________________
v=√vo²+2ay1 = √0²+2(-32.185 ft/s²)(-144 ft) = -96.277 ft/s
b) Despejando la aceleración de v²=vo²+2ay, ahora la velocidad final es cero, y la
distancia recorrida es 1.5 ft.
a = v2-vo² = 0²-(-96.277)² = 3089.754 ft/s²
2(-1.5)
2y2
c) De la ecuación y=vot+(1/2)at², la distancia recorrida es 1.5 ft, sustituyendo valores
-1.5=(-96.277 ft/s)t+(1/2)(3089.754 ft/s²)t²
Resolviendo la ecuación cuadrática
t=0.031 s
7. [2a, 3-47] Un estudiante lanza un juego de llaves verticalmente hacia arriba a su
compañera que se encuentra en una ventana 4 m arriba. Las llaves son atrapadas 1.5 s
más tarde por la mano extendida de la compañera. a) ¿A qué velocidad fueron lanzadas
las llaves? b) ¿Cuál era la velocidad de las llaves justo antes de ser atrapadas?
Datos: y=4 m; t=1.5 s
a) Despejando la velocidad inicial de la ecuación y=vot+(1/2)at²
vo = y-(1/2)at² = (4 m)-(1/2)(-9.81 m/s²)(1.5)² = 10.024 m/s
t
1.5 s
b) Utilizando la ecuación v=vo+at
v=vo+at = (10.024 m/s)+(-9.81 m/s²)(1.5 s) = -4.69 m/s vienen bajando
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
26
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
8. [2a, 3-49] Se lanza una pelota verticalmente hacia arriba desde el piso con una rapidez
inicial de 15 m/s. a) Cuánto tarda la pelota en alcanzar su altura máxima? b) ¿Cuál es su
altura máxima? c) Determine la velocidad y aceleración de la pelota en t=2 s.
Datos: vo=15 m/s;
a) Despejando el tiempo de la ecuación v=vo+at, la velocidad final es igual a cero
t = v-vo = 0-15 m/s = 1.529 s
a
-9.81 m/s²
b) Despejando la altura de la ecuación v²=vo²+2ay, la velocidad final es igual a cero
y = v²-vo² = 0-(15 m/s)² = 11.468 m
2a
2(-9.81 m/s²)
c) Empleando la ecuación v=vo+at, y sustituyendo para t=2 s
v=(15 m/s)+(-9.81 m/s²)(2 s)= -4.62 m/s
Derivando la ecuación v=vo+at con respecto al tiempo a=d(vo+at)/dt=a= -9.81 m/s²
9. [2a, 3-51] Se lanza una pelota hacia arriba en línea recta, desde el piso con una rapidez
de 4.0 m/s. a) ¿Cuánto tiempo transcurre entre los dos momentos en que su velocidad
tiene una magnitud de 2.5 m/s? b) ¿A qué distancia del piso se encuentra la pelota en
esos instantes?
Datos: vo=4 m/s; v=2.5 m/s
a) Despejando el tiempo de la ecuación v=vo+at, tomando 2.5 m/s para la velocidad de
subida
t1 = v-vo = (2.5 m/s)-(4 m/s) = 0.153 s
a
-9.81 m/s²
Despejando el tiempo de la ecuación v=vo+at, tomando -2.5 m/s para la velocidad de
bajada
t2 = v-vo = (-2.5 m/s)-(4 m/s) = 0.663 s
a
-9.81 m/s²
Para encontrar el tiempo transcurrido se resta el tiempo de subida al tiempo de bajada
t2-t1=(0.663 s)-(0.153 s)=0.51 s
b) Despejando la altura de la ecuación v²=vo²+2ay
y = v²-v²o = (2.5 m/s)²-(4 m/s)² = 0.497 m
2a
2(-9.81 m/s²)
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
27
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
10. [2a, 3-58] Una partícula se mueve a lo largo del eje x con una aceleración que es
proporcional al tiempo de acuerdo con la expresión a=30t, donde a está en m/s².
Inicialmente la partícula está en reposo en el origen. Encuentre: a) la velocidad
instantánea y b) la posición instantánea en función del tiempo.
Datos: a=(30t) m/s²
a) Como la aceleración es a = dv/dt, para obtener la velocidad se plantea la integral y se
resuelve
v=∫a dt=∫30t dt
v=15t²+c1
Para encontrar c1 se utilizan las condiciones iniciales para t=0; v=0
v(0)= 15(0)²+c1=0
de la anterior c1=0, por lo que la velocidad instantánea es
v=15t²
b) Como la velocidad es v = dx/dt, para obtener la posición se plantea la integral y se
resuelve
x=∫v dt=∫15t² dt
x=5t³+c2
Para encontrar c2 se utilizan las condiciones iniciales para t=0; x=0
x(0) =5(0)³+c2=0
de la anterior c2=0, por lo que la posición instantánea es
x=5t³
11. [2a, 3-60] La aceleración de una canica en un cierto fluido es proporcional al cuadrado
de su velocidad, y está dada (en m/s²) por a= -3v² para v>0. Si la canica entra al fluido
con una rapidez de 1.50 m/s, ¿cuánto tiempo pasará antes de que la rapidez de la canica
se reduzca a la mitad de su valor inicial?
Datos: a=(-3v²) m/s²; vo=1.50 m/s; v=0.75 m/s
Como la aceleración es a=dv/dt
-3v² = dv
dt
0.75
-3∫dt=∫ dv
1.5
v²
Resolviendo la integral
-3t = -2
3
Por lo que el tiempo transcurrido es
t = 2 = 0.222 s
9
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
28
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3.2
Cinemática en dos dimensiones
12. [2a, 4-3] Encuentre la magnitud y dirección del vector velocidad media de un minutero
que tiene 5 cm de longitud cuando el tiempo cambia de 4:15 a 4:30
El desplazamiento de la punta del minutero desde las 4:15 hasta las 4:30 es.
_________
Δr = ⎜rf - ri⎪= √(-5)2+(-5)2 = 7.071 cm
Por lo tanto la magnitud del vector velocidad es
vm = Δr = 7.071 cm = 7.86x10-3 cm/s
Δt
900 s
Si trasladamos este vector al origen, el ángulo que forma con el eje x positivo es
θ =180°+arctan[(-5)/(-5)]° = 225°
13. [2a, 4-9] Una partícula localizada inicialmente en el origen tiene una aceleración de
a=3j m/s2 y una velocidad inicial de vo=5i m/s. Halle a) el vector de posición y de la
velocidad en cualquier tiempo t y b) las coordenadas y la rapidez de la partícula en t=2
s.
Datos: a=3j m/s2; vo=5i m/s
a) Calculando la velocidad final de la partícula
v = vo+at = (5i+3tj)m/s
Obteniendo el vector de posición
Como v = dr/dt
r = ∫vdt = ∫(5i+3tj)dt = (5ti+1.5t2j)m
b) Calculando las coordenadas de la posición para t =2 s
r(2) = (5)(2 )i+(1.5)(2)2j = (10 m, 6 m)
Obteniendo las coordenadas de la rapidez para t =2 s
v(2) = (5)i+(3)(2)j = (5 m, 6 m)
Ahora obteniendo su magnitud
________
⎜v⎪ = √(5)2+(6)2 = 7.81 m/s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
29
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3.2.1
Tiro parabólico
14. [2a, 4-10] Se coloca un estudiante en el borde de un acantilado y lanza una piedra
horizontalmente sobre el borde con una rapidez de 18 m/s. El acantilado está a 50 m de
altura respecto a una playa plana horizontal, como se muestra en la figura. ¿En cuánto
tiempo, después de ser lanzada la piedra, golpeará la playa bajo el acantilado? ¿Con qué
rapidez y ángulo golpeará la playa?
Datos: vox=18 m/s; voy=0; y=50 m
Para el eje vertical se utiliza y=voyt+(1/2)at², la velocidad inicial en y es cero
-50=(0)t+(1/2)(-9.81)t²
Despejando el tiempo
____________________________
t=√(-50 m)(2)/(-9.81 m/s²) =3.19 s
Despejando la velocidad final en y de vy²=vo²+2ay
y
V o = 1 8 m /s
g
_______________________________
2
vy=√0 +(2)(-9.81 m/s²)(-50 m) = -31.32 m/s
Como la velocidad en x es vx=x/t
Despejando x se tiene
x= vxt=(18 m/s)((3.193 s)=57.474 m
La magnitud de la velocidad final es
_________
____________________________
h= 50 m
x
Figura 2
vf=√vx²+vy² =√(18 m/s)²+(-31.32 m/s)² = 36.13 m/s
El ángulo es
θ=arc tan(vy/vx)= arc tan[(-31.32 m/s)/(18 m/s)]= -60.11°
15. [2a, 4-12] Un estudiante decide medir la velocidad de salida de las pelotillas de su
escopeta BB; apunta su escopeta horizontalmente. El blanco está localizado sobre una
pared vertical, a una distancia x de la escopeta. El disparo golpea el blanco a una
distancia vertical y abajo del cañón. a) Muestre que la posición de la pelotilla cuando
viaja por el aire está dada por y= Ax², en donde A es una constante. b) Exprese la
constante A en términos de la velocidad inicial y la aceleración debida a la gravedad. c)
Si x=3.0 m; y=0.21 m, ¿Cuál es la rapidez de la BB?
a) Como la velocidad en x es
(1)
vx=x/t
La posición en y esta dada por
y=voyt+(1/2)at²
(2)
Despejando el tiempo de (1) y sustituyendo en (2), se obtiene
y=[a/(2 vx²)]x²
(3)
b) por lo que A= g/(2 vx²)
c) Datos: x=3.0 m; y=0.21 m
Despejando vx de (3)
________
______________________
vx=√(x²a)/(2y) =√3² (-9.81 m/s²)/[(2)(-0.21)] =14.5 m/s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
30
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
16. [2a, 4-14] Un balón de futbol que se patea a un ángulo de 50° con la horizontal, recorre
una distancia horizontal de 20 m antes de chocar contra el suelo. Encuentre: a) la
rapidez inicial del balón, b) el tiempo que permanece en el aire y c) la altura máxima
que alcanza.
a) Las velocidades iniciales vx, vy son:
(1)
vx = vcosθ =x/t
voy = vsenθ
(2)
La altura final al recorrer los 20 m será cero, por lo tanto:
0 = voyt + (1/2)at2
(3)
Despejando t, voy de 1 y 2 y sustituyendo en 3
0 = vsenθx + (1/2)ax2
vcosθ
v2cos2θ
Despejando la velocidad inicial v
___________________ _________________________________
v = √[(a)(x)]/[(2cosθ)(senθ)] =√[(-9.81 m/s2)(-20 m)/[(2cos50°)(sen50°)] = 14.11 m/s
b) el tiempo que permanece en el aire se obtiene haciendo y = 0
0 = voyt + (1/2)at2
Sustituyendo valores y formando la ecuación cuadrática
-4.905t2+10.81t = 0
Resolviendo la ecuación cuadrática
t = 2.2 s
c) La altura máxima se obtiene haciendo la velocidad vfy igual a cero
vfy2 = voy2+2ay
0 = (vsenθ)2+2ay
Despejando y
y = -(vsenθ)2 = -[(14.11 m/s)(sen50°)]2 = 5.95 m
2a
(2)(-9.81 m/s2)
17. [2a, 4-16] Un lanzador de bala lanza ésta desde 2.3 m arriba del suelo y con un ángulo
de 60° con la horizontal. La bala choca con la Tierra a una distancia de 20.5 m, a 0.60 m
menos del récord estatal. a) ¿Cuáles son las componentes de la velocidad cuando choca
con el suelo? b) ¿Cuál sería el alcance si la lanza a 45° desde una altura de 2.2 m?
(Suponga que la rapidez inicial no cambia).
a) Las velocidades iniciales vx, vy son:
(1)
vx = vcosθ =x/t
voy = vsenθ
(2)
La altura final al recorrer los 20.5 m es –2.3 m, es decir por abajo del punto de
lanzamiento:
y = voyt + (1/2)at2
(3)
Despejando t, voy de 1 y 2 y sustituyendo en 3
y = vsenθx + (1/2)ax2
vcosθ
v2cos2θ
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
31
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Despejando la velocidad inicial v
_______________________
v = √[(a)(x2)]/[(2cos2θ)(y-xtanθ)]
_____________________________________
= √[(-9.81)(20.5)2]/[(2cos260°)(-2.3-20.5tan60°)]
= 14.77 m/s
Por lo tanto las componentes se obtienen sustituyendo el valor de v en 1 y 2
vx = vcosθ = (14.77 m/s)cos60° = 7.38 m/s
voy = vsenθ = (14.77 m/s)sen60° = 12.79 m/s
Utilizando la ecuación vfy2 = voy2+2ay para despejar la velocidad final en y
________
___________________________
vfy = √voy2+2ay = √(12.79 m/s)2+2(-9.81 m/s2)(-2.3 m) = 14.45 m/s
b) La velocidad es la misma que la obtenida en a) pero cambia θ y la altura
Despejando t, voy de 1 y 2 y sustituyendo en 3
y = vsenθx + (1/2)ax2
vcosθ
v2cos2θ
Simplificando
-2.2 =xtanθ + (a/(2v2cos2)x2
Resolviendo la ecuación cuadrática
x = 24.25 m
18. [2a, 4-18] Muestre que el alcance horizontal de un proyectil con una rapidez inicial fija
será el mismo para cualesquiera dos ángulos complementarios, tales como 30° y 60°.
Las velocidades iniciales vx, vy son:
vx = vcosθ =x/t
(1)
voy = vsenθ
(2)
La altura final al recorrer x m será cero
(3)
0 = voyt + (1/2)at2
Despejando el tiempo de 1
t= x0
vx
Despejando el tiempo de la ecuación cuadrática 3
t = -2voy
a
Igualando los dos despejes del tiempo
x = -2voy
vx
a
Despejando el alcance máximo x
x = -2vxv0y = -2v2cosθsenθ
a
a
Como
cos30°sen30° = cos60°sen60°
Por lo tanto el alcance es el mismo
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
32
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
19. [2a, 4-20] Se apunta un rifle horizontalmente a través de su mira hacia el centro de un
blanco grande que está a 200 m. La velocidad inicial de la bala es de 500 m/s. a) ¿En
dónde golpea la bala en el blanco? b) Para dar en el centro del blanco, el cañón debe
estar a un ángulo arriba de la línea de puntería. Halle el ángulo de elevación del cañón.
Datos: x = 200 m; vx = 500 m/s
a) La velocidad vx, es:
vx = x/t
(1)
Como la velocidad voy = 0
y = 0 – (1/2)gt2
(2)
Despejando el tiempo de 1 y sustituyendo en 2
y = (1/2)(9.81 m/s2)[(200 m)/(500 m/s)]2 = 0.785 m
b) Empleando 2cosθsenθ = sen2θ en el alcance máximo
x = 2v2cosθsenθ = v2sen2θ
g
g
Despejando a θ
θ = arcsen(xg/vo2) = arcsen[(200 m)(9.81 m/s2)/(500 m/s)2 = 0.22°
2
2
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
33
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Unidad IV DINAMICA
4.1
Conceptos básicos: masa, peso y fuerza
Masa inercial y masa gravitacional
Masa es una cantidad escalar definida por la relación m = F/a, donde F es la magnitud de la
fuerza que actúa en el cuerpo y a es el valor de la aceleración que f produce en el.
La masa puede ser considerada como una medida del concepto de inercia, de manera que si
la masa de un objeto es pequeña, tendrá poca inercia. La masa de un cuerpo no cambia al
ser trasladado de un lugar a otro. En cambio su peso si varia, ya que g varia con la altitud y
con la latitud.
Hay dos formas de medir la masa de un cuerpo:
1. Proporcionándole al cuerpo un fuerza conocida F, se mide su aceleración y se
determina m=F/a
2. Con una balanza de brazos iguales equilibrada, este proceso de medición funciona
únicamente en lugares donde los cuerpos tienen peso.
La masa que se presenta en la ecuación F=ma, de los experimentos de dinámica se le
conoce como masa inercial.
Hay otra situación diferente en la que aparece la masa del cuerpo, aquí la inercia no juega
ningún papel, lo que interviene es la propiedad de los cuerpo materiales de ser atraídos por
otros objetos como la Tierra.
F = G m’Mt
Rt2
Donde m’ se le conoce como masa gravitacional
Newton llegó a la conclusión que la masa inercial de un cuerpo es equivalente a su masa
gravitacional, es decir.
m = m’
4.1.1
Sistemas de referencia: inerciales y no inerciales
1. [2a, 2-1] Las coordenadas cartesianas de dos puntos en el plano xy son: (2.0,-4.0) y (3.0,3.0), donde las unidades son m. Determine: a) La distancia entre estos dos puntos y
b) sus coordenadas polares.
a)
Obteniendo la distancia entre los dos puntos
________________
________________________
d = √(x2-x1)2 + (y2-y1)2 = √(-3.0 – 2.0)2 + (3.0 + 4.0)2 = 8.6 m
b)
Obteniendo las coordenadas polares (r, θ) para el primer punto
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
34
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
_______
________
r = √x2 + y2 = √22 + (-4)2 = 4.47 m
θ = 360° - arctan(y/x) = 360° - arctan(-4/2) = 297°
Obteniendo las coordenadas polares (r, θ) para el segundo punto
_______
2
2
________
r = √x + y = √(-3)2 + 32 = 4.24 m
θ = 180° + arctan(y/x) = 180° - arctan[3/(-3)] = 135°
2. [2a, 2-5] Una esquina de un cuarto se elige como el origen de un sistema de
coordenadas rectangular. Si una mosca está parada sobre una pared adyacente a un
punto que tiene coordenadas (2.0,1.0), donde las unidades están en metros, ¿cuál es la
distancia de la mosca desde la esquina del cuarto?
Obteniendo la distancia entre los puntos (0,0) y (2.0,1.0)
________________
2
2
___________________
d = √(x2-x1) + (y2-y1) = √(2.0 - 0)2 + (1.0 - 0)2 = 2.24 m
3. [2a, 2-7] Un punto está localizado en un sistema de coordenadas polares mediante las
coordenadas r = 2.5 m y θ = 35°. Determine las coordenadas xy de este punto,
suponiendo que los dos sistemas de coordenadas tienen el mismo origen.
Obteniendo las coordenadas (x,y)
x = r(cosθ) = 2.5(cos35°) = 2.05 m
y = r(senθ) = 2.5(sen35°) = 1.43 m
4.2 Leyes de Newton
Primera ley de Newton
Ley de la inercia. Todo cuerpo conserva su estado de reposo o de movimiento rectilíneo
uniforme mientras no lo afecte una fuerza externa
Segunda ley de Newton
2a. Ley de Newton , también llamada Ley de la proporcionalidad entre fuerzas y
aceleraciones. Cuando se aplica una fuerza constante a un cuerpo, la aceleración producida
es directamente proporcional a la fuerza e inversamente proporcional a la masa, es decir.
Fx=max, Fy=may, Fz=maz.
Dicho en otras palabras, la fuerza aplicada a un cuerpo es igual al producto de la masa, por
la aceleración producida.
Tercera ley de Newton
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
35
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3a. Ley de Newton, también llamada Ley de la acción y de la reacción. “A toda acción
corresponde una reacción igual y de sentido contrario”.
4.2.1 Diagrama de cuerpo libre
4. [2a, 5-26] Determine la tensión en cada una de las cuerdas para los sistemas que se
describen en la figura siguiente. (Desprecie la masa de las cuerdas.)
40°
50°
60°
T2
T1
T1
T2
T3
T3
5 kg
10 kg
a)
a)
b)
Figura 3
Diagrama de cuerpo libre
y
T1
40°
T2
50°
x
T3
Haciendo la sumatoria de fuerzas
ΣFx = -T1cos40°+T2cos50° = 0
(1)
ΣFy = T1sen40°+T2sen50°-mg = 0
(2)
Despejando T2 de 1
T2 = T1cos40°
(3)
cos50°
Sustituyendo T2 en 2 y despejando a T1
(5)(9.81 m/s2) a
T1 = sen 40°+ cos40°sen50° = 31.53 N
cos50°
Sustituyendo el valor de T1 en 3 para encontrar el valor de T2
T2 = (31.53 N)cos40° = 37.57 N
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
36
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
cos50°
T3 = mg = (5 kg)(9.81 m/s2) = 49.05 N
b)
Diagrama de cuerpo libre
y
T1
60°
T2
x
T3
Haciendo la sumatoria de fuerzas
ΣFx = -T1cos60°+T2 = 0
(1)
ΣFy = T1sen60°-mg = 0
(2)
Despejando T1 de 2
T1 = mg = (10 kg)(9,81 m/s2 = 113.28 N
sen60°
sen60°
Sustituyendo el valor de T1 en 2 para encontrar T2
T2 = T1cos60° = (113.28 N)cos60° = 56.64 N
T3 = mg = (10 kg)(9.81 m/s2) = 98.1 N
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
37
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
5. [2a, 5-31] Una bolsa de cemento cuelga de tres alambres como se muestra en la figura.
Dos de los alambres forman los ángulos θ1 y θ2 con la horizontal. Si el sistema está en
equilibrio, a) muestre que
T1 = Wcos(θ2) 4
sen(θ1+θ2)
b) Dados W = 200 N, θ1 = 10° y θ2 = 25°, encuentre las tensiones T1, T2 y T3 de los
alambres.
θ1
θ2
CCEMENTO
W
Figura 4
Diagrama de cuerpo libre
y
T1
θ1
T2
θ2
x
W
a)
Sumatoria de fuerzas
ΣFx = -T1cosθ1+T2cosθ2 = 0
(1)
(2)
ΣFy = T1senθ1+T2senθ2-W = 0
Despejando T2 de 1
T2 = T1cosθ1
(3)
cosθ2
Sustituyendo T2 en 2 y despejando T1
Wcosθ2
1
Wcosθ2 1
T1 = senθ1cosθ2+cosθ1senθ2 = sen(θ1+θ2)
b)
Sustituyendo valores en la ecuación anterior para encontrar T1
T1 = Wcosθ2 = 200cos25° = 316 N
sen(θ1+θ2)
sen(10°+25°)
Sustituyendo en 3 para encontrar T2
T2 = T1cosθ1 = (316 N)cos10° = 343 N
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
38
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
cosθ2
cos25°
T3 = W = 200 N
6. [2a, 5-39] Se conectan dos masas de 3 kg y 5 kg por medio de una cuerda que pasa
sobre una polea lisa, como se indica en la figura. Determine a) la tensión en la cuerda,
b) la aceleración de cada masa y c) la distancia que recorre cada masa en el primer
segundo de movimiento si parten del reposo.
a
T
a
T
m1
m2
m1
m1g
m2g
m2
Máquina de Atwood
Figura 5
Diagrama de cuerpo libre
a) Haciendo la sumatoria de fuerzas que actúan en cada masa
T-m1g = m1a
(1)
T-m2g = -m2a
(2)
Despejando la aceleración de 1
(3)
a = T-m1g
m1
Sustituyendo en 2 y despejando T
T = 2m1m2g = 2(3 kg)(5 kg)(9.81 m/s2) = 36.8 N
3 kg+5 kg
m1+m2
b) Sustituyendo el valor de T en 3 para encontrar la aceleración
a = (36.8 N)-(3 kg)(9.81 m/s2) = 2.45 m/s2
3 kg
c) Como la velocidad inicial es cero
y = vot + (1/2)at2 = (1/2)(2.45 m/s2)(1 s)2 = 1.22 m
7. [2a, 5-1] Una fuerza, F, aplicada a un objeto de masa m1 produce una aceleración de 3
m/s2. La misma fuerza aplicada a un segundo objeto de masa m2 produce una aceleración
de 1 m/s2. a) ¿Cuál es el valor de la razón m1/m2? b) Si se sujetan m1 y m2, calcule su
aceleración con la acción de la fuerza F.
Datos: a1 = 3 m/s2;
a2 = 1 m/s2
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
39
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
a)
Se tiene una fuerza F aplicada a dos masas m1 y m2, por lo que:
F = m1a1
(1)
F = m2a2
(2)
Igualando la ecuación (1) con (2)
m1a1 = m2a2
m1 = a2 = 1 m/s2 = 1/3
m2 a1 3 m/s2
b)
si se sujetan m1 y m2
F = (m1+m2)a3
(3)
Del resultado del inciso a), se pone m1 en función de m2, y sustituyendo en (3)
F = [(1/3)m2+m2]a3 = (4/3)m2a3
Igualando esta última ecuación con (2)
(4/3)m2a3 = m2a2
Cancelando la masa m2 y despejando a3
a3 = (3/4)a2 = (3/4)(1 m/s2) = 0.75 m/s2
8. [2a, 5-2] Un objeto de 6 kg experimenta una aceleración de 2 m/s2. a) ¿Cuál es la
magnitud de la fuerza resultante que actúa sobre él? b) Si se aplica esta misma fuerza a un
objeto de 4 kg, ¿qué aceleración le producirá?
Datos: m1 = 6 kg; a1 = 2 m/s2
a) De la segunda Ley de Newton
F = m1a1 = (6 kg)( 2 m/s2) = 12 N
b) F = m2a2
Despejando la aceleración a2
a2 = F/m2 = (12 N)/(4 kg) = 3 m/s2
9. [2a, 5-3] Una fuerza de 10 N actúa sobre un cuerpo de masa 2 kg. ¿Cuál es a) la
aceleración del cuerpo, b) su peso en N y c) su aceleración si se duplica la fuerza?
Datos:
F1 = 10 N; m = 2 kg
a) De la segunda Ley de Newton F1 = ma1
Despejando la aceleración a1
a1 = F1/m = (10 N)/(2 kg) = 5 m/s2
b) P = mg = (2 kg)( 9.81 m/s2) = 19.6 N
c) F2 = ma2
Despejando la aceleración a2
a2 = F2/m = (20 N)/(2 kg) = 10 m/s2
10. [2a, 5-7] Una masa de 3 kg adquiere una aceleración de a = (2i +5j) m/s2. Calcule la
fuerza resultante, F, y su magnitud.
Como F = ma = (3 kg)[(2i +5j) m/s2] = (6i +15j) N
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
40
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
________
⎜F⎪ = √62+(15)2 = 16.2 N
11. [2a, 5-9] Una persona pesa 120 lb. Determine a) su peso en N y b) su masa en kg.
Como 1 libra = 4.448 N
Por lo tanto
120 lb = 533.8 N
Despejando la masa de la segunda Ley de Newton
m = P/g = (534 N)/(9.81 m/s2) = 54.4 kg
12. [2a, 5-11] ¿Cuál es la masa de un astronauta cuyo peso sobre la Luna es de 115 N? La
aceleración debida a la gravedad sobre la Luna es de 1.63 m/s2.
Como F = ma
Despejando la masa
m = F/a = (115 N)/(1.63 m/s2) = 70.6 kg
13. [2a, 5-12] Si un hombre pesa 900 N sobre la Tierra, ¿cuál sería su peso en Júpiter, en
donde la aceleración debida a la gravedad es de 25.9 m/s2.
Como P1 = mg
Despejando la masa
m = P1/g = (900 N)/(9.81 m/s2) = 91.74 kg
Utilizando la masa obtenida y la aceleración de la gravedad en Júpiter
P2 = ma = (91.74 kg)(25.9 m/s2) = 2376.15 N
14. [1a, 5-4] Un viajero espacial cuya masa es de 75 kg abandona la Tierra. Calcular su
peso a) en la Tierra, b) en Marte, en donde g = 3.8 m/s2 y c) en el espacio interplanetario
d) ¿Cuál es su masa en cada uno de estos sitios?
a)
b)
c)
d)
P1 = mg = (75 kg)(9.81 m/s2) = 735.8 N
P2 = mgm = (75 kg)(3.8 m/s2) = 285 N
P3= m(0) = (75 kg)(0) = 0 N
La masa es la misma para todos los sitios
15. [2a, 5-20] Un objeto de 9 kg experimenta una aceleración de 2 m/s2 hacia la derecha con
la acción de dos fuerzas, F1 y F2. F1 actúa hacia la derecha y tiene una magnitud de 25
N. ¿Cuáles son la magnitud y la dirección de F2?
La fuerza neta resultante que actúa sobre el objeto es
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
41
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
FR = ma = (9 kg)(2 m/s2) = 18 N
Haciendo la sumatoria de fuerzas en x e igualándola con F para encontrar F2
ΣFx = 25 N+F2 = 18 N
Despejando F2
F2 = 18 N –25 N = -7 N
16. [2b, 5-16] De manera simultánea se aplican fuerzas de 10.0 N al norte, 20.0 N al este y
15.0 N al sur sobre una masa de 4.00 kg. Obtenga su aceleración.
Haciendo la sumatoria de fuerzas
ΣFx = 20 N
ΣFy = 10 N-15N = -5 N
Obteniendo la resultante
____________
__________
FR = √(ΣFx)2+(ΣFy)2 = √(20)2+(-5)2 = 20.6 N
Por lo que la aceleración es:
a = FR/m = (20.6 N)/(4 kg) = 5.15 m/s2
4.3
Fuerzas de la Naturaleza
Todas las fuerzas en la naturaleza pueden clasificarse en cuatro tipos
1. Fuerzas gravitacionales, que relativamente son muy débiles.
2. Fuerzas electromagnéticas, que tienen una intensidad intermedia.
3. Fuerzas nucleares que mantienen unidos a los neutrones y a los protones en el núcleo y
son las más intensas de todas.
4. Fuerzas de interacción débil , que intervienen en el decaimiento β de los núcleos y en
las interacciones de muchas partículas elementales.
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
42
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
4.3.1
4.3.2
4.4
Fuerza de rozamiento
Coeficiente de fricción estática, y coeficiente de fricción cinética
Aplicaciones
17. [2a, 5-48] Un bloque de 25 kg está inicialmente en reposo sobre una superficie
horizontal áspera. Se requiere una fuerza horizontal de 75 N para hacer que el bloque se
ponga en movimiento. Una vez que se encuentra en movimiento, se requiere una fuerza
horizontal de 60 N para mantenerlo en movimiento con rapidez constante. Calcule los
coeficientes de rozamiento estático y cinético a partir de esta información.
Datos: m = 25 kg; vo = 0; F1 = 75 N; F2 = 60 N;
Diagrama de cuerpo libre
N
f
F
mg
Sumatoria de fuerzas en x
(1)
ΣFx: -f+F1 = 0
ΣFy: -mg+N = 0
(2)
Como f ≤ μsN, la igualdad se establece cuando el bloque está a punto de deslizarse
Despejando N de 2 y sustituyendo en 1
-μsmg+F1 =0
Despejando el coeficiente de fricción estático
75 N
= 0.31
μs = F1 =
mg (25 kg)(9.81 m/s2)
Cuando ya se ha iniciado el movimiento la rapidez es constante por lo que a=0, las
ecuaciones 1 y 2 siguen siendo válidas, pero con F2 y μk, por lo tanto
-μkmg+F2 =0
μk = F2 =
60 N
= 0.24
mg (25 kg)(9.81 m/s2)
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
43
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
18. [2a, 5-50] Un automóvil de carreras se acelera uniformemente desde 0 hasta 80 mi/h en
8 s. La fuerza externa que acelera el automóvil es la fuerza de rozamiento entre los
neumáticos y el piso. Si los neumáticos no giran, determine el coeficiente mínimo de
rozamiento entre los neumáticos y el piso.
Convirtiendo mi/h a m/s
80mi (1609.344 m) (1 h) = 35.76 m/s
h
1 mi
3600 s
Obteniendo la aceleración
a = Δv = 35.76 m/s - 0 = 4.47 m/s2
Δt
8s
Sumatoria de fuerzas
f = ma
(1)
Como f = μN = μmg, sustituyendo en 1
μmg = ma
Cancelando la masa y despejando μ
μ = a = 4.47 m/s2 = 0.46
g
9.81 m/s2
19. [2a, 5-52] Un automóvil se está moviendo a 50 mi/h sobre una carretera horizontal. a) Si
el coeficiente de rozamiento entre el piso y los neumáticos en un día lluvioso es de 0.1,
¿cuál es la distancia mínima en la que el automóvil se detendrá? b) ¿Cuál es la distancia
para detenerse cuando la superficie está seca y μ=0.6? c) ¿Por qué debe evitarse oprimir
de golpe los frenos sí se desea detenerlo en la distancia más corta?
a) Convirtiendo mi/h a m/s
50 mi (1609.344 m) (1 h) = 22.35 m/s
h
1 mi
3600 s
Haciendo la sumatoria de fuerzas
f = ma
(1)
Como f = μN = μmg, sustituyendo en 1
μmg = -ma
Cancelando la masa y obteniendo la aceleración
a = -μg = -(0.1)(9.81 m/s2) = -0.981 m/s2
Despejando la distancia de la ecuación v2 = vo2+2ax
x = v2-vo2 = 02-(22.35 m/s)2 = 254.6 m
2a
2(-0.981 m/s2)
b) Ahora μ=0.6, obteniendo la aceleración
a = -μg = -(0.6)(9.81 m/s2) = -5.886 m/s2
Despejando la distancia de la ecuación v2 = vo2+2ax
x = v2-vo2 = 02-(22.35 m/s)2 = 42.4 m
2a
2(-5.886 m/s2)
c) Al oprimirse de golpe los frenos, las llantas patinan y el dibujo de las llantas se
hace más liso, por lo que el coeficiente de fricción disminuye.
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
44
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
20. [2a, 5-56] Un “puck” de hockey que está sobre un lago congelado se golpea e inicia su
movimiento con una velocidad de 12.0 m/s. En t=5.0 s, su velocidad es de 6.0 m/s. a)
¿Cuál es la aceleración media del “puck”? b) ¿Cuál es el valor medio del coeficiente de
rozamiento entre el “puck” y el hielo? c) ¿Qué distancia recorre el “puck” durante el
primer intervalo de 5 s?
a) Obteniendo la aceleración media
am = vf-vi = (6 m/s)-(12 m/s) = -1.2 m/s2
Δt
5s
Haciendo la sumatoria de fuerzas
f = ma
(1)
Como f = μN = μmg, sustituyendo en 1
μmg = ma
b) Cancelando la masa y obteniendo el coeficiente de fricción
μ = a = -1.2 m/s2 = 0.122
g
-9.81 m/s2
c) Obteniendo la distancia recorrida
x = vot+(1/2)at2 = (12 m/s)(5 s)+(1/2)(-1.2 m/s2)(5 s)2 = 45 m
21. Un niño tira de una caja utilizando una cuerda que hace un ángulo de 30° con la
horizontal, con una fuerza de 9 N, con una velocidad constante, el peso de la caja es de
15 N. a) Encuentre la fuerza normal y la de rozamiento. b) Halle el coeficiente de
rozamiento cinético.
Datos: θ=30°; F=9 newtons; w=15 newtons
9 newtons
9 newtons
N
N
f
30°
30°
f
w
w
a) Σfx:
-f+9cos30°=0
(1)
N-15+9sen30°=0
(2)
Σfy:
Despejando la fuerza de rozamiento de la ecuación (1)
f=9cos30°=7.79 newtons
Despejando la fuerza Normal de la ecuación (2)
N=15-9sen30°=10.5 newtons
b) Como fk=Nμk
Despejando el coeficiente de rozamiento cinético
μk=(fk)/N=(7.794 N)/(10.5 N)=0.74
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
45
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
22. Un hombre arrastra una canasta de 160 N que se desliza sobre el piso con velocidad
constante por medio de una cuerda que hace 38° con la horizontal y aplicando una
fuerza de 77 N. a) ¿Cuál debe ser el valor de la fuerza de rozamiento para que la canasta
permanezca en reposo? b) ¿Cuál es el valor de la fuerza normal?
77 newtons
77 newtons
N
N
f
38°
38°
f
w
w
-f+77cos38°=0
(1)
a) Σfx:
Σfy:
N-160+77sen38°=0
(2)
Despejando la fuerza de rozamiento de la ecuación 1
f=77cos38°=60.68 newtons
b) Despejando la fuerza Normal de la ecuación 2
N=160-77sen38°=112.59 newtons
23. [4, 6-3] Una caja de madera de 40 kg se empuja a lo largo del piso con una fuerza de
198 N. Si μ=0.25, calcular la aceleración de la caja.
Datos: w=40 kg; F=198 newtons; μ=0.25
F
f
El peso de la caja es:
w=mg=(40 Kg)(9.81 m/s²)=392.4 newtons
La fuerza de rozamiento es igual al coef. de fricción por la fuerza normal
f=μN=μw=(0.25)(392.4 N)=98.1 newtons
La fuerza neta aplicada a la caja es
Ft=198 newtons-98.1newtons=99.9 newtons
De la segunda Ley de Newton F=ma
Despejando la aceleración
a=F/m=(99.9 N)/(40 kg)=2.5 m/s²
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
46
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
24. [4, 6-5] El coeficiente de rozamiento cinético entre las llantas de un automóvil y la
carretera es de 0.6. a) Encontrar el mínimo tiempo que emplea en detenerse un auto que
viaja a 48 km/h. b) ¿Qué distancia recorre el auto antes de detenerse?
Datos: μ=0.25; vo=48 km/h=13.333 m/s
a) Igualando la fuerza de rozamiento con la masa por la aceleración
f=μmg=ma
Como la masa se cancela
a=μg=(0.6) (9.81 m/s²)=5.886 m/s²
Despejando t de la ecuación v=vo-at, y como la velocidad final es cero
t= vo/a=(13.333 m/s)/(5.886 m/s²)=2.27 s
b) Obteniendo la distancia recorrida
x=voxt-(1/2)at²=(13.333 m/s)(2.265 s)-(1/2)(5.886 m/s²)(2.265 s)²=15.10 m
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
47
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
4.4.1
4.4.2
Plano inclinado sin fricción y plano inclinado con fricción
Poleas
25. [2a, 5-40] Un bloque resbala hacia abajo de un plano liso que tiene una inclinación de θ
= 15° ver figura. Si el bloque parte del reposo desde la parte superior del plano y la
longitud del mismo es de 2 m, calcule a) la aceleración del bloque y b) su rapidez
cuando llega a la parte inferior.
θ
Figura 6
a) Obteniendo la sumatoria de fuerzas paralela al plano
mgsenθ = ma
cancelando la masa y despejando la aceleración
a = gsenθ = (9.81 m/s2)(sen15°) = 2.54 m/s2
b) Obteniendo la velocidad final de la ecuación v2 =vo2+2ax
______
_________________
v =√vo2+2ax = √02+2(2.54 m/s2)(2 m) = 3.19 m/s
26. [2a, 5-41] A un bloque se le imprime una velocidad inicial de 5 m/s hacia arriba de un
plano inclinado que forma un ángulo de 20° con la horizontal. ¿Hasta qué punto del
plano inclinado llega el bloque antes de detenerse?
Obteniendo la sumatoria de fuerzas paralela al plano
-mgsenθ = ma
cancelando la masa y despejando la aceleración
a = -gsenθ = -(9.81 m/s2)(sen20°) = -3.36 m/s2
Despejando la distancia de la ecuación v2 = vo2+2ax
x = v2-vo2 = 02-(5 m/s)2 = 3.73 m
2a
2(-3.36 m/s2)
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
48
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
27. [2a, 5-42] Se conectan dos masas por medio de una cuerda ligera que pasa sobre una
polea lisa, como se ve en la figura. Si el plano inclinado no tiene fricción y si m1=2 kg,
m2=6 kg y θ=55°, calcule a) la aceleración de las masas, b) la tensión en la cuerda y c)
la rapidez de cada masa 2s después de que se sueltan a partir del reposo.
m2
m1
θ
Figura 7
a) Haciendo la sumatoria de fuerzas
Sumatoria de fuerzas en y para m1
Σfy: -m1g+T = m1a
(1)
Sumatoria de fuerzas paralela al plano para m2
-T+m2gsenθ = m2a
(2)
Despejando T de 1
(3)
T = m1(a+g)
Sustituyendo T en 2 y despejando la aceleración
a = g(m2senθ-m1) = (9.81 m/s2)[(6 kg)(sen55°)-2kg] = 3.57 m/s2
m1+m2
6 kg+2 kg
b) Sustituyendo la aceleración encontrada en la ecuación 3 para encontrar T
T = m1(a+g) = (2 kg)(3.57 m/s2 + 9.81 m/s2) = 26.76 N
c) Para encontrar la rapidez se utiliza la ecuación:
vf =vo+at = 0+(3.57 m/s2)(2 s) = 7.14 m/s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
49
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
28. Un objeto de 20 kg se desliza sobre un plano inclinado que hace 32° con la
horizontal, encuentre el coeficiente de rozamiento cinético si se considera que la
velocidad del objeto es constante.
f
F
θ
Sumatoria de fuerzas perpendicular al plano
N-mgcosθ=0
Despejando la fuerza normal
N= mgcosθ=(20 kg) (9.81 m/s²)cos32°=166.387 newtons
Sumatoria de fuerzas paralela al plano
mgsenθ-f=0
Despejando la fuerza de rozamiento
f= mgsenθ=(20 kg) (9.81 m/s²)sen32°=103.97 newtons
Como f=μN, se despeja el coeficiente de fricción
μ=f/N=(103.97 N)/(166.387)=0.625
29. [3, 2-9] Suponga que el bloque que se muestra en la figura se encuentra en reposo. El
ángulo del plano se aumenta lentamente, el bloque comienza a deslizarse. ¿Cuál es el
coeficiente de rozamiento estático entre el bloque y el plano inclinado?
f
F
θ
Sumatoria de fuerzas perpendicular al plano
N-mgcosθ=0
Despejando la fuerza normal
N= mgcosθ
Sumatoria de fuerzas paralela al plano
mgsenθ-f=0
Despejando la fuerza de rozamiento
f= mgsenθ
Como f s≤μN, se despeja el coeficiente de fricción
μ s≤f/N≤ (mgsenθ)/(mgcosθ)
μs ≤ (senθ/cosθ) ≤ tanθ
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
50
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
30. [3, 2-19] El bloque de la figura inicia su movimiento hacia arriba del plano inclinado
cuando la fuerza que lo empuja, como se muestra se incrementa a 70 N. a) ¿Cuál es la
fuerza crítica de rozamiento estático sobre el bloque? b) ¿cuál es el valor del
coeficiente de rozamiento estático?
f
60 N
F
40°
40°
a) Sumatoria de fuerzas peralela al plano
-70cos 40°+f+60sen40°=0
Despejando la fuerza de rozamiento
f = 70cos 40° - 60sen40°= 15.06 newtons
b) Sumatoria de fuerzas perpendicular al plano
-70sen40° - 60cos40° + N = 0
Despejando la fuerza normal
N = 70sen40° + 60cos40° = 90.96 newtons
Como f= μN, se despeja μ
μ = (f/N) = (15.06 N)/(90.96 N) = 0.166
31. [4, 6-16] Un carro frenado permanece en reposo sobre un plano inclinado de concreto
seco, cuando el ángulo entre el plano y la horizontal es inferior a 45°. Determinar el
coeficiente de rozamiento estático para llantas de caucho sobre concreto seco.
f
F
45°
Sumatoria de fuerzas perpendicular al plano
N-mgcosθ=0
Despejando la fuerza normal
N= mgcosθ
Sumatoria de fuerzas paralela al plano
mgsenθ-f=0
Despejando la fuerza de rozamiento
f= mgsenθ
Como f s≤μN, se despeja el coeficiente de fricción
μs≤f/N≤(mgsenθ)/(mgcosθ)
μs≤senθ/cosθ ≤tanθ
μs≤tan(45°)≤1
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
51
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
32. [4, 6-17] Se va a construir una rampa de acero para deslizar bloques de hielo desde una
planta de refrigeración hasta un piso inferior, si μ= 0.05, encontrar el ángulo de
inclinación para el cual el hielo se deslizara a velocidad constante.
f
F
θ
Sumatoria de fuerzas perpendicular al plano
N-mgcosθ=0
Despejando la fuerza normal
N= mgcosθ
Sumatoria de fuerzas paralela al plano
mgsenθ-f=0
Despejando la fuerza de rozamiento
f= mgsenθ
Como f=μN
Despejando el coeficiente de fricción
μ=f/N= (mgsenθ)/(mgcosθ)
Cancelando mg y sustituyendo μ
0.05=senθ/cosθ=tanθ
θ=arctan(0.05)=2°51’44”.65
33. [4, 6-18] Un bloque baja por un plano inclinado de 8 m de longitud que forma un
ángulo de 30° con la horizontal. Si el bloque parte del reposo y μ=0.25, encontrar. a)
La aceleración del bloque. b) Su velocidad al final del plano. c) El tiempo que tarda en
llegar al final del plano.
Datos: x=8 m; θ=30°; vo=0; μ=0.25
f
F
30°
a)
Sumatoria de fuerzas perpendicular al plano
N-mgcosθ
(1)
Sumatoria de fuerzas paralela al plano
mgsenθ-f
(2)
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
52
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Despejando N de (1) y como f=μN
Sustituyendo f en (2) e igualando a la masa por la aceleración
mgsenθ-μmgcosθ=ma
Cancelando las masas y despejando la aceleración, se obtiene
a= g(senθ-μcosθ )=(9.81 m/s²)[sen30°-0.25(cos30°)]= 2.78 m/s²
b) Utilizando la ecuación v²=vo² +2ax, y como la velocidad inicial es cero
_______ _______________
v=√o² +2ax =√2(2.781 m/s²)(8 m) = 6.67 m/s
c) Utilizando la ecuación x=vot+(1/2)at²
Despejando el tiempo
____
________________
t=√2x/a =√2(8 m)/(2.781 m/s²) = 2.399 s
34. [2a, 5-54] Un bloque se mueve hacia arriba de un plano inclinado a 45° con rapidez
constante con la acción de una fuerza de 15 N aplicada en forma paralela al plano. Si el
coeficiente de rozamiento cinético es de 0.3, determine a) el peso del bloque y b) la
fuerza mínima requerida para hacer que el bloque se mueva hacia abajo del plano con
rapidez constante.
f
F
45°
a) Sumatoria de fuerzas paralela al plano
-15+f+mgsen45°=0
(1)
Sumatoria de fuerzas perpendicular al plano
-mgcos45° + N = 0
(2)
Se despeja N de (2), para obtener f=μN, y esto se sustituye en (1)
-15+μmgcos45°+mgsen45°=0
Despejando mg
= 16.32 newtons
mg =
15
μcos45°+sen45°
b) Sumatoria de fuerzas paralela al plano
-F-f+mgsen45°=0
Como f=μN=μmgcos45°
-F-μmgcos45°+mgsen45°=0
Despejando F
F = mgcos45°(1-μ) = (16.32 newtons)(cos45°)(1-0.3) = 8.08 newtons
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
53
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
35. [2a, 5-57] Un bloque de 3 kg parte del reposo desde la parte superior de un plano
inclinado a 30° y resbala una distancia de 2 m hacia abajo del plano en 1.5 s. Calcule
a) la aceleración del bloque, b) el coeficiente de rozamiento cinético entre el bloque y
el plano, c) la fuerza de rozamiento que actúa sobre el bloque y d) la rapidez del
bloque después que ha resbalado 2 m.
Datos: m = 3 kg; θ = 30°; d = 2 m; t = 1.5 s;
a) Como la velocidad media se define como:
(1)
vm = Δx
Δt
vm = v+vo
(2)
2
Igualando estas dos ecuaciones
Δx = v+vo
Δt
2
Despejando la velocidad instantánea final v
v = 2Δx – vo = (2)(2-0) – 0 = 2.667 m/s
Δt
1.5-0
Ahora de la ecuación v = vo+at, se despeja la aceleración
a = v-vo = (2.667 m/s)-0 = 1.78 m/s2
t
1.5 s
b) Obteniendo la sumatoria de fuerzas paralela al plano
-mgsenθ+μN = -ma
(3)
Obteniendo la sumatoria de fuerzas perpendicular al plano
-mgcosθ+N = 0
(4)
Despejando la Normal de 4 y sustituyendo en 3
-mgsenθ+μmgcosθ = -ma
(5)
Cancelando la masa y despejando el coeficiente de rozamiento cinético μ
μ = -a+gsenθ = -1.78 m/s2+(9.81 m/s2)(sen30°) = 0.368
gcosθ
(9.81 m/s2)(cos30°)
c) Obteniendo la fuerza de rozamiento
f = μN = μ(mgcosθ) = (0.368)(3 kg)(9.81 m/s2)(cos30°) = 9.38 N
d) Obteniendo la rapidez de la ecuación v2 = vo2+2ax
_______ _________________
v = √vo2+2ax = √02+2(1.78 m/s2)(2 m) = 2.67 m/s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
54
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
4.4.3
Movimiento circular y fuerza centrípeta
Sea una partícula que gira alrededor de un centro fijo, describiendo una circunferencia.
s=rθ
ϖ=θ/t
vt=ωr
at=αr
ac=ω²r=vt²/r
Fc=mac=mvt²/r
longitud de arco o desplazamiento de la partícula alrededor de la circunferencia
velocidad angular promedio
velocidad tangencial
aceleración angular
aceleración centrípeta
Fuerza centrípeta
Las ecuaciones para el movimiento circular uniformemente acelerado son análogas para el
movimiento rectilíneo uniformemente acelerado:
Lineal
v=(vo+v)/2
v=vo+at
x=(vo+v)t/2
x=vot+(1/2)at²
v2=vo2 +2ax
Angular
ϖ=(ωo+ω)/2
ω=ωo+αt
ω=(ωo+ω)t/2
θ=ωot+(1/2) αt²
ω2=ωo2 +2αθ
También se tiene para el movimiento circular que:
1 rev=2πrad=360°
36. [2a, 4-27] Halle la aceleración de una partícula que se mueve con una rapidez constante
de 8 m/s en una circunferencia de 2 m de radio.
Datos: vt=8 m/s; r= 2 m
La aceleración centrípeta es:
ac= vt²/r=(8 m/s) ²/(2 m)=32 m/s²
37. [2a, 4-28] El joven David quien derribó a Goliath experimentó con su honda antes de
embestir al gigante. Descubrió que con una honda de 0.6 m de longitud, él podría
hacerla girar a la razón de 8 rev/s. Si él aumenta la longitud a 0.9 m, entonces la podría
hacer girar únicamente 6 veces por segundo. a) ¿Qué razón de rotación da una rapidez
lineal más grande? b) ¿Cuál es la aceleración centrípeta en 8 rev/s? c) ¿Cuál es la
aceleración centrípeta en 6 rev/s?
a) Convirtiendo la velocidad angular a radianes sobre segundo
(8 rev/s)(2π rad/1 rev) = 16π rad/s
(6 rev/s)(2π rad/1 rev) = 12π rad/s
Ahora obteniendo las velocidades tangenciales para ambos casos
vt1 = r1ω = (0.6 m)(16π rad/s) = 30.16 m/s
vt2 = r2ω = (0.9 m)(12π rad/s) = 33.93 m/s
De lo anterior se ve que para la segunda opción da una rapidez lineal más grande
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
55
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
b) Tomando los datos de r= 0.6 m y vt=30.16 m/s, se tiene
ac1 = (vt1)2 = (30.16 m/s)2 = 1515.94 m/s2
r1
0.6 m
c) Tomando los datos de r= 0.9 m y vt=33.93 m/s, se tiene
ac2 = (vt2)2 = (33.93 m/s)2 = 1279.16 m/s2
r2
0.9 m
De lo anterior se ve que para la segunda opción da una aceleración centrípeta menor
38. [2a, 4-30] De la información que se encuentra en la cubierta delantera de este libro,
calcule la aceleración radial de un punto del Ecuador sobre la superficie de la Tierra.
Como la Tierra realiza una revolución en 24 h, convirtiendo esto a rad/s
ω = 1 rev 1 h 2πrad = 7.27x10-5 rad/s
24 h 3600 s 1 rev
De la portada del libro se obtiene el radio promedio de la Tierra, por lo tanto
ac = (rω)2 = rω2 = (6.37x106 m)(7.27x10-5 rad/s)2 = 3.37x10-2 m/s2
r
39. [2a, 4-31] La órbita de la Luna respecto a la Tierra es aproximadamente circular, con un
radio promedio de 3.84x108 m. A la luna le toma 27.3 días para completar una
revolución alrededor de la Tierra. Encuentre: a) La rapidez orbital media de la luna y b)
Su aceleración centrípeta.
Datos: r=3.84x108 m; t=27.3 días
a) Como la Luna realiza una revolución en 27.3 días, convirtiendo esto a rad/s
ω = 1 rev
1d
2πrad = 2.66x10-6 rad/s
27.3 d 86400 s 1 rev
vt = rω = (3.84x108 m)(2.66x10-6 rad/s) = 1021.44 m/s
b) ac = (rω)2 = rω2 = (3.84x108 m)(2.66x10-6 rad/s)2 = 2.72x10-3 m/s2
r
40. [2a, 4-33] Una partícula se mueve en una trayectoria circular de 0.4 m de radio con
rapidez constante. Si la partícula hace cinco revoluciones en cada segundo de su
movimiento, halle: a) La rapidez de la partícula y b) Su aceleración.
Datos: r=0.4 m; ω=5 rps
a) Convirtiendo los rpm a rad/s
ω = 5 rev 2πrad = 31.42 rad/s
s
1 rev
Obteniendo la velocidad tangencial
vt = rω = (0.4 m)(31.42 rad/s) = 12.6 m/s
b) Obteniendo la aceleración centrípeta
at = rω2 = (0.4 m)( 31.42 rad/s)2 = 395 m/s2
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
56
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
41. [2a, 4-32] En el ciclo de secado de una lavadora, el tubo de radio 0.30 m desarrolla una
rapidez de 630 rpm. ¿Cuál es la rapidez lineal máxima con la cual el agua sale de la
máquina?
Convirtiendo los rpm a rad/s
ω = 630 rev 2πrad = 65.97 rad/s
60 s
1 rev
Obteniendo la velocidad tangencial
vt = rω = (0.30 m)(65.97 rad/s) = 19.79 m/s
42. [2a, 4-34] Un neumático que tiene 0.5 m de radio gira con una rapidez constante de 200
revoluciones por minuto. Determine la rapidez y la aceleración de una pequeña piedra
incrustada en el dibujo de la llanta (en su corte exterior).
Convirtiendo los rpm a rad/s
ω = 200 rev 2πrad = 20.94 rad/s
60 s
1 rev
Obteniendo la velocidad tangencial y la aceleración centrípeta
vt = rω = (0.5 m)(20.94 rad/s) = 10.47 m/s
at = rω2 = (0.5 m)(20.94 rad/s)2 = 219.24 m/s2
43. [3, 9-2] El péndulo de un reloj de 0.35 m oscila describiendo un arco de 0.20 m.
Encuentre el ángulo en grados y radianes que forma al oscilar.
Datos: r=0.35 m; s=0.20 m;
Como s=rθ
Despejando θ
θ=s/r=(0.20m)/(0.35m)=0.571 rad(360°/2πrad)=32°44’25’’
44. [3, 9-3] La polea de un motor gira a 840 rpm. a) Encuentre la rapidez de un punto
situado en la polea b) Encuentre la rapidez tangencial de la polea si la distancia desde el
centro de la polea a uno de sus extremos es de 15 cm.
Datos: ω=840 rpm; r=15 cm;
a) Convirtiendo la velocidad angular a radianes sobre segundo
ω=840 rpm=840 rpm/60 s=14 rps(2π rad/1 rev)=87.965 rad/s
b) Como
vt=ωr=(87.964 rad/s)(0.15 m)=13.195 m/s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
57
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
45. [3, 9-5] Una rueda de 0.40 m de radio gira sobre un eje estacionario. Su rapidez
aumenta uniformemente desde el reposo hasta 900 rpm en un tiempo de 20 s. a)
Encuentre la aceleración angular de la rueda y b) La aceleración tangencial de un punto
sobre su borde.
Datos: r=0.4 m; ωo=0 rpm; ωf=900 rpm; t=20 s
a) Obteniendo la aceleración angular:
α=(ωf-ωo)/2=[(900 rpm/60s)-0 rpm]/20s=0.75 rev/s² (2π rad/1 rev)=4.71 rad/s²
b) Obteniendo la aceleración tangencial:
at=rα=(0.4 m)(4.712 rad/s²)=1.89 m/s²
46. [3, 9-7] Un vehículo tiene ruedas de 0.29 m de radio, parte del reposo y se acelera
uniformemente hasta una rapidez de 18 m/s, en un tiempo de 12 s. Encuentre la
aceleración angular de sus ruedas y el número de vueltas que realizan en ese tiempo.
Datos: r=0.29 m; vo=0; v=18 m/s; t=12 s
Como la aceleración tangencial del vehículo es: v=vo+at
Despejando la aceleración
a=(v-vo)/t=(18 m/s-0)/12 s=1.5 m/s
Como la aceleración tangencial es: at=rα
Despejando la aceleración angular
α=at/r=(1.5 m/s)/0.29 m=5.172 rad/s²
De la ecuación: θ=vot+(1/2) αt²
Despejando el ángulo θ; y como ωo=0
θ=0+(1/2) αt²=(1/2)(5.172 rad/s²)(12 s) ²=372.384 rad (1 rev/2π rad)=59.267 rev
47. [3, 9-8] La centrifugadora de una lavadora da vueltas a razón de 960 rpm y disminuye
uniformemente a 360 rpm mientras efectúa 75 revoluciones. Encuentre a) La
aceleración angular. b) El tiempo requerido para efectuar estas 75 revoluciones.
Datos: ωo=960 rpm; ω=360 rpm; θ=75 rev
a)
ωo=[(960 rpm)/60 s](2π rad/1 rev)=100.531 rad/s
ω=[(360 rpm)/60 s](2π rad/1 rev)=37.699 rad/s
θ=75 rev(2π rad/1rev)=471.239 rad
Como ω²=ωo² +2αθ
Despejando α
α=(ω²-ωo²)/2θ=[(37.699 rad/s) ² -(100.531 rad/s) ²]/2(471.239 rad/s)=-9.22 rad/s²
b) Como ϖ=(ωo+ω)/2=( 100.531 rad/s+37.699 rad/s)/2=69.115 rad/s
y ϖ=θ/t
Despejando el tiempo t
t=θ/ϖ=471.239 rad/69.115 rad/s=6.82 s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
58
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
48. Un niño hace girar una piedra en un circulo horizontal a 6.0 pies (1.8 m) por encima del
suelo, valiéndose de una cuerda de 4.0 pies (1.2 m) de largo. La cuerda se rompe y la
piedra sale disparada en forma horizontal llegando a una distancia de 30 pies (9.1 m).
¿Cuánto valía la aceleración centrípeta durante su movimiento circular?
Datos: y=6.0 pies (1.8 m); voy=0; r=4.0 pies (1.2 m); x=30 pies (9.1 m)
Como y=voyt+(1/2)gt² y voy=0
1.8=(1/2)(9.81 m/s2)t²
Despejando el tiempo
_________________
t=√2(1.8 m)/(9.81 m/s²) =0.606 s
Como la velocidad en x es vx=x/t
Sustituyendo x y t en la ecuación anterior
vx=(9.1 m)/(0.606 s)=15.017 m/s
Como en este caso vx= vt ; y la aceleración centrípeta es ac=vt²/r
ac=(15.017m/s)²/(1.2 m)=187.93 m/s²
49. [Bueche,179,3] Una rueda de ruleta que inicialmente giraba a razón de 0.80 rev/s llega
al reposo en 20 s. ¿Cuál es la desaceleración de la rueda? ¿Cuántas revoluciones dio en
el proceso? (suponga una desaceleración uniforme).
Datos: ωo=0.80 rps; ω=0; t=20 s
De la ecuación ω=ωo+αt
Despejando la aceleración angular
α=(ω-ωo)/t= (0-0.80 rps)/20 s=-0.04 rev/s² (2π rad/1 rev)=-0.251 rad/s²
Como
θ=ωot+(1/2) αt²=(0.80 rps)(20 s)+(1/2)(-0.04 rev/s²)(20 s) ²=8 rev
50. [2a, 6-1] Un carro de juguete completa una vuelta alrededor de una pista circular (una
distancia de 200 m) en 25 s. a) ¿Cuál es la rapidez media? b) Si la masa del carro es de
1.5 kg, ¿cuál es la magnitud de la fuerza centrípeta que lo mantiene en el círculo?
a)
b)
La velocidad media es:
vm = Δx = 200 m = 8 m/s
Δt
25 s
El perímetro de la circunferencia es 200 m, por lo tanto:
200 = 2πr
Despejando el radio
r = (200)/(2π) = 31.83 m
Por lo tanto la fuerza centrípeta es:
F = mvm2 = (1.5 kg)(8 m/s)2 = 3.02 N
r
31.83 m
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
59
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
51. [2a, 6-3] ¿Qué fuerza centrípeta se requiere para mantener a una masa de 1.5 kg que se
mueve en un círculo de radio 0.4 m a una rapidez de 4 m/s?
La fuerza centrípeta es:
F = mv2 = (1.5 kg)(4 m/s)2 = 60 N
r
0.4 m
52. [2a, 6-5] Una masa de 3 kg atada a una cuerda ligera gira en un movimiento circular
sobre una mesa horizontal sin fricción. El radio del círculo es de 0.8 m y la cuerda
puede soportar una masa de 25 kg antes de romperse. ¿Que rango de velocidades
puede tener la masa antes de que se rompa la cuerda?
Obteniendo la Fuerza máxima que puede soportar la cuerda
Fmax = mg = (25 kg)(9.81 m/s2) = 245.25 N
Igualando con la fuerza centrípeta
Fmax = mv2
r
Despejando la velocidad tangencial
___________ _____________________
v = √(Fmax)(r)/m = √(245.25 N)(0.8 m)/(3 kg) = 8.09 m/s
Por la tanto el rango de velocidades es mayor que cero y menor que 8.09 m/s, es decir
0 < v < 8.09 m/s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
60
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
61
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Unidad V
TRABAJO Y ENERGIA
5.1 Concepto de trabajo
El trabajo es una magnitud escalar, que se define como el producto de la fuerza que actúa
sobre el cuerpo por su desplazamiento. La unidad SI del trabajo es el joule (J), que se
define por la relación Joule = (newton)(metro).
5.1.1
Trabajo realizado por una fuerza constante
El trabajo realizado por una fuerza constante se define como el producto de la componente
de la fuerza en la dirección del desplazamiento y la magnitud del desplazamiento, es decir:
W = F•s = Fcosθs
1.
[2a, 7-1] Si un hombre levanta un cubo de agua de 20 kg de un pozo y hace un trabajo
de 6 kJ, ¿cuán tan profundo está el pozo? Suponga que a medida que el cubo se levanta
su rapidez permanece constante
Como W = Fd= mgh
Despejando la profundidad h
h = W/mg = (6x103 J)/[(20 kg)(9.81 m/s2)] = 30.6 m
2.
[2a, 7-3] Un remolcador ejerce una fuerza constante de 5000 N sobre un barco que se
mueve con rapidez constante en un puerto. ¿Cuánto trabajo realiza el remolcador al
recorrer el barco una distancia de 3 km?
Como W = Fd = (5000 N)(3000 m) = 15x106 J = 15 MJ
3.
[2a, 7-5] Un porrista levanta a su compañera de 50 kg en línea recta hacia arriba desde
el piso a una altura de 0.6 m antes de soltarla. Si él hace esto 20 veces, ¿cuánto trabajo
ha realizado sobre ella?
El trabajo realizado en las 20 veces será
W = 20Fd = 20mgh = (20)(50 kg)(9.81 m/s2)(0.6) = 5886 J
4.
[2a, 7-8] Un bloque de 15 kg es arrastrado sobre una superficie horizontal y áspera por
una fuerza constante de 70 N que actúa formando un ángulo de 25° con la horizontal.
El bloque se desplaza 5 m y el coeficiente de rozamiento cinético es de 0.3. Calcule el
trabajo realizado por a) la fuerza de 70 N, b) la fuerza de rozamiento, c) la fuerza
normal y d) la fuerza de gravedad. e) ¿Cuál es el trabajo neto realizado sobre el
bloque?
N
f
15 kg
70 newtons
25°
mg
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
62
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
a) WF = F•s = (70cos25°)(5 m) = 317.21 J
b) Wf =-f•s=-μ(mg-70sen25°)(5m)=-0.3[(15kg)(9.81m/s2)-70sen25°](5m) = -176.35 J
c) WN = 0 J
d) Wg = 0 J
e) Wneto= WF + Wf = 317.21 newtons – 176.35 newtons = 140.86 J
5.1.2
Trabajo realizado por una fuerza variable
El trabajo hecho por una fuerza Fx variable se define como el área bajo la curva al desplazar
un cuerpo de xi hasta xf, es decir:
W =⌠xf Fx dx
⌡xi
Si actúa más de una fuerza sobre el objeto el trabajo total es igual al trabajo hecho por la
fuerza resultante, cuando el objeto se mueve de xi hasta xf.
W =⌠xf (∑Fx)dx
⌡xi
5.
[2a, 7-24] La fuerza que actúa sobre una partícula varía como en la figura. Encuentre
el trabajo efectuado por la fuerza cuando la partícula se mueve: a) desde x=0 hasta x=8
m, b) desde x=8 m hasta x=10 m, y c) desde x=0 hasta x=10 m.
8
6
Fx(N)
4
2
0
-2
-2
0
2
4
6
8
10
12
14
-4
x(m)
xf
Como W =⌠ Fx dx
⌡xi
a) El trabajo que realiza la fuerza es igual al área bajo la curva desde x=0 a x=8 m
W1 = (8)(6)/2 = 24 J
b) El trabajo que realiza la fuerza es igual al área bajo la curva desde x=8 a x=10 m
W2 = (2)(-3)/2 = -3 J
c) El trabajo que realiza la fuerza es igual al área bajo la curva desde x=0 a x=10 m
W3 = 24 J+(-3 J) = 21 J
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
63
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
5.2 Concepto de energía
La energía potencial de un cuerpo es una magnitud cuya variación, al pasar el cuerpo de un
estado inicial a otro final, es igual al trabajo realizado por la fuerza que actúa sobre el
cuerpo. En este sentido se puede hablar de energía potencial gravitacional, energía
potencial eléctrica, energía potencial elástica, etc.
5.2.1
Definición de la energía cinética
La energía cinética es un escalar y tiene las mismas unidades que el trabajo. La energía
cinética de un cuerpo de masa m moviéndose con velocidad v, se define como:
K = (1/2)mv12
5.2.2
Teorema del trabajo de la energía cinética, aplicaciones
Este teorema se estableció para el caso en que la fuerza es constante, pero también es válido
cuando la fuerza es variable. Este teorema establece que el trabajo realizado por la fuerza
constante F al desplazar una partícula es igual al cambio en la energía cinética de la
partícula, es decir:
W = Kf – Ki = ΔK
6.
[2a, 7-33] Una pelota de 0.3 kg tiene una rapidez de 15 m/s. a) ¿Cuál es su energía
cinética? b) Si su rapidez se duplica, ¿cuál es su energía cinética?
a) K1 = (1/2)mv12 = (1/2)(0.3 kg)(15 m/s)2 = 33.8 J
b) K2= (1/2)mv22 = (1/2)(0.3 kg)(30 m/s)2 = 135 J
7.
[2a, 7-34] Calcule la energía cinética de un satélite de 1000 kg que está orbitando
alrededor de la Tierra a una rapidez de 7x10³ m/s.
Datos: m=1000 kg; v=7x10³ m/s
La energía cinética es K=(1/2)mv2=(1/2)(1000 kg)(7x10³ m/s)2=2.45 x1010 J
8.
[2a, 7-35] Un mecánico empuja un automóvil de 2500 kg a partir del reposo hasta
alcanzar una rapidez v haciendo un trabajo de 5000 J en el proceso. Durante este
tiempo, el auto se desplaza 25 m. Despreciando la fricción entre el auto y el piso, a)
¿cuál es la rapidez final, v, del automóvil? b) ¿Cuál es la fuerza horizontal ejercida
sobre el automóvil?
a) W = ΔK = (1/2)mvf2-(1/2)mvi2 = (1/2)(2500 kg)vf2-0
Despejando la velocidad final del automóvil
______
_________________
vf = √(2W)/m = √(2)(5000 J)/(2500 kg) = 2 m/s
b) Como W = Fd, despejando la fuerza horizontal
F = W/d = (5000 J)/(25 m) = 200 N
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
64
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
9.
[2a, 7-37] Una caja de 40 kg que se encuentra inicialmente en reposo se empuja una
distancia de 5 m a lo largo de un piso horizontal y áspero con una fuerza constante
aplicada de 130 N. Si el coeficiente de rozamiento entre la caja y el piso es de 0.3,
encuentre: a) el trabajo efectuado por la fuerza aplicada, b) el trabajo efectuado por la
fricción, c) el cambio en la energía cinética de la caja y d) la rapidez final de la caja.
a) WF = Fd = (130 N)(5 m) = 650 J
b) Wf = fd = -μmgd = -(0.3)(40 kg)(9.81 m/s2)(5 m) = -588.6 J
c) Wneto = WF +Wf = ΔK = 650 N+(-588.6 N) = 61.4 J
d) Como (1/2)mvf2-(1/2)mvi2 = 61.4 J, y la velocidad inicial es cero
Despejando la velocidad final de la caja
_________
________________
vf = √(2Wneto)/m = √(2)(61.4 J)/(40 kg) = 1.75 m/s
10. [2a, 7-41] Se levanta una masa de 6 kg verticalmente una distancia de 5 m por una
cuerda ligera con una tensión de 80 N. Encuentre: a) el trabajo efectuado por la fuerza
de tensión, b) el trabajo efectuado por la gravedad y c) la rapidez final de la masa, si
ésta parte del reposo.
a) WT = Td = (80 N)(5 m) = 400 J
b) Wg = -mgd = -(6 kg)(9.81 m/s2)(5 m) = -294.3 J
c) Como Wneto = WT +Wg = ΔK = 400 J+(-294.3 J) = 105.7 J
Como (1/2)mvf2-(1/2)mvi2 = 105.7 J, y la velocidad inicial es cero
Despejando la velocidad final
_________
_______________
vf = √(2Wneto)/m = √(2)(105.7 J)/(6 kg) = 5.94 m/s
11. [2a, 7-43] Una máquina de Atwood consta de una polea ligera fija con una cuerda
ligera inextensible sobre ella ver figura. Los extremos de la cuerda sostienen masas de
0.2 kg y 0.3 kg. Las masas se mantienen en reposo, una al lado de la otra, y entonces
se liberan. Despreciando cualquier fricción, ¿cuál es la rapidez de cada masa en el
instante en el que ambas se han desplazado 0.4 m?
La fuerza neta del sistema es:
Fneta=(m2-m1)g
El trabajo desarrollado por la fuerza neta se iguala al cambio en energía cinética
(m2-m1)gh=ΔK= (K1f+K2f)-(K1i+K2i)
Desarrollando
(m2-m1)gh=(1/2)m1vf2+(1/2)m2vf2
Despejando la velocidad
__________
____________________________
vf = / 2(m2-m1)gh = / 2(0.3 kg-0.2 kg)(9.81 m/s2)(0.4 m) = 1.25 m/s
√ m1+m2
√
0.2 kg+0.3 kg
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
65
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
12. [2a, 8-7] Una sola fuerza conservativa Fx=(2x+4) N actúa sobre una partícula de 5 kg,
en donde x está en m. A medida que una partícula se mueve a lo largo del eje x, desde x=1
m hasta x=5 m, calcule: el trabajo efectuado por esta fuerza; b) el cambio en la energía
potencial de la partícula y c) su energía cinética en x=5 m si su rapidez en x=1 m es 3 m/s.
13. [2a, 8-9] Una sola fuerza constante F=(3i+5j) N actúa sobre una partícula de 4 kg. a)
Calcule el trabajo efectuado por esta fuerza si la partícula se mueve desde el origen
hasta un punto cuyo vector de posición es r=(2i-3j) m. ¿Este resultado depende de la
trayectoria? Explique. b) ¿Cuál es la rapidez de la partícula en r si su rapidez en el
origen es 4 m/s. c) ¿Cuál es el cambio en la energía potencial de la partícula?
14. [2a, 8-11] Una cuenta se desliza sin fricción sobre un rizo ver fig. Si se libera la cuenta
desde una altura h=3.5R, ¿cuál es la rapidez en el punto A? ¿Cuán grande es la fuerza
normal sobre ella si su masa es de 5.0 g?
A
h
r
Bx
C
R
Por la Ley de la Conservación de la Energía
(1/2)mvo2+mg(3.5R) = (1/2)mvA2+mg(2R)
Cancelando la masa, y como (1/2)mvo2=0
3.5gR = (1/2)vA2+2gR
Despejando vA en función de g y R
___
vA = √3gR
Las únicas fuerzas que actúan sobre la cuenta son la fuerza centrípeta, mg y la fuerza
normal, por lo que:
-mg – N = -Fc
Despejando la fuerza Normal
N = Fc-mg
Como en el punto A la fuerza centrípeta es Fc = (mvA2)/R, y sustituyendo vA
N = (mvA2) -mg = 3mgR – mg = 2mg = (2)(5x10-3 kg)(9.81 m/s2) = 0.098 N hacia abajo
R
R
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
66
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
15. [2a, 8-41] Un cono circular recto se puede equilibrar sobre una superficie horizontal de
tres maneras distintas. Trace un esquema de estas tres configuraciones de equilibrio e
identifique las posiciones de equilibrio estable, inestable o neutro.
16. [2a, 8-43] Una partícula de masa m = 5 kg se libera desde el punto A sobre un carril
sin fricción que se ve en la figura. Determine: a) la rapidez de la masa m en los puntos
B y C, y b) el trabajo neto realizado por la fuerza de gravedad al moverse la partícula
desde A a C.
Fuerzas conservativas y no conservativas
Fuerza conservativa: si el trabajo efectuado por esta fuerza sobre una partícula que se
mueve entre dos puntos es independiente de la trayectoria que toma la partícula. El trabajo
total efectuado por una fuerza conservativa sobre una partícula es cero cuando la partícula
se mueve alrededor de cualquier trayectoria cerrada y regresa a su posición original.
Ejemplos de fuerzas conservativas: la fuerza de la gravedad, fuerza de restitución de un
resorte.
Fuerza no conservativa: si el trabajo efectuado por dicha fuerza aplicada sobre una
partícula que se mueve entre dos puntos depende de la trayectoria seguida. A este tipo de
fuerzas se les llama comúnmente fuerzas disipativas. Ejemplo de fuerza no conservativa: la
fuerza de rozamiento.
El trabajo efectuado por todas las fuerzas no conservativas es igual al cambio en la energía
cinética más el cambio en la energía potencial.
Wnc = ΔK + ΔU
El teorema del trabajo y la energía también es válido cuando la fuerza varía en dirección y
magnitud durante el movimiento de la partícula a lo largo de una trayectoria curva arbitraria
en tres dimensiones. En este caso el trabajo se expresa como:
W=
⌠F•ds
⌡c
17. [2a, 8-1] Una partícula de 4 kg se mueve desde el origen hasta la posición que tiene
coordenadas x=5 m, y=5 m con la influencia de la gravedad, la cual actúa en la dirección y
negativa (ver figura). Utilizando la ecuación 7.21, calcule el trabajo realizado por la
gravedad al ir de O a C a lo largo de las siguientes trayectorias: a) OAC, b) OBC, c) OC.
Los resultados deben ser idénticos, ¿Por qué?
C
By
(5, 5)
x
O
A
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
67
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
a)
La trayectoria es OAC, es decir a lo largo de x = 5; y = 0
⌠F•ds = ⌠-mgj•(dxi+dyj+dzk) = -⌠5 mgdy = -mgy
⌡c
⌡0
⌡c
b)
0
-(4)(9.81)(5) = -196.2 J
La trayectoria es OBC, es decir a lo largo de x = 0; y = 5
⌠F•ds = ⌠-mgj•(dxi+dyj+dzk) = -⌠5 mgdy = -mgy
⌡c
⌡c
⌡0
c)
5
5
0
-(4)(9.81)(5) = -196.2 J
La trayectoria es OC, es decir a lo largo de y = x
⌠F•ds = ⌠-mgj•(dxi+dyj+dzk) = -⌠5 mgdy = -mgy
⌡c
⌡c
⌡0
5
0
-(4)(9.81)(5) = -196.2 J
La fuerza es conservativa
18. [2a, 8-3] Una partícula se mueve en el plano xy de la fig. anterior. Con la influencia
de una fuerza de rozamiento que se opone a su desplazamiento. Si la fuerza de
rozamiento tiene una magnitud de 3 N, calcule el trabajo total realizado por la fricción
a lo largo de las siguientes trayectorias cerradas: a) la trayectoria OA, seguida por la
trayectoria de regreso AO, b) la trayectoria OA, seguida por AC y la trayectoria de
regreso CO, y c) la trayectoria OC, seguida por la trayectoria de regreso CO. d) Sus
resultados para las tres trayectorias cerradas deben ser todos diferentes entre sí y
diferentes de cero. ¿Cuál es el significado de esto?
a)
La trayectoria es OA seguida de AO
W = ⎜F⎢•⎜s⎢cosθ; θ = 0
= -(3 N)(5 m) – (5 m)(3 N) = -30.0 J
b) La trayectoria es OA seguida por AC y la trayectoria de regreso CO
W = ⎜F⎢•⎜s⎢cosθ; θ = 0
= -(3 N)(5 m) – (3 N)(5 m) – (3 N)(7.07 m) = -51.2 J
c) La trayectoria es OC seguida por la trayectoria de regreso CO
W = ⎜F⎢•⎜s⎢cosθ; θ = 0
= -(3 N)(7.07 m) – (3 N)(7.07 m) = -42.4 J
d) La fricción es una fuerza no conservativa.
19. [2a, 8-5] Una fuerza que actúa sobre una partícula que se mueve sobre el plano xy está
dada por F=(2yi+x²j) N en donde x,y están en m. La partícula se mueve desde el origen
hasta una posición final de coordenadas x=5 m, y=5 m, como en la anterior figura. Calcule
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
68
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
el trabajo efectuado por F a lo largo de a) OAC, b) OBC, c) OC, d) ¿F es conservativa o no
conservativa? Explique.
a) La trayectoria es OAC, es decir a lo largo de x = 5; y = 0
2
2
5
⌠F•ds = ⌠(2yi+x j)•(dxi+dyj+dzk) =⌠2(0)dx+(5) dy = ⌠ 25dy = 25y
⌡c
⌡c
⌡c
⌡0
b)
0
= 125.0 J
La trayectoria es OBC, es decir a lo largo de x = 0; y = 5
⌠F•ds = ⌠(2yi+x2j)•(dxi+dyj+dzk) =⌠2(5)dx+(0)2dy = ⌠5 10dy = 10y
⌡c
⌡c
⌡0
⌡c
c)
5
5
0
= 50.0 J
La trayectoria es OC, es decir a lo largo de y = x
⌠F•ds = ⌠(2yi+x2j)•(dxi+dyj+dzk) =⌠2ydx+x2dy
⌡c
⌡c
⌡c
Haciendo la parametrización x = t, dx = dt;
y = t, dy =dt
d)
⌠(2t + t2)dt = t2 + t3 5 = 52+(125/3) = 66.7 J
3 0
⌡c
La fuerza es no conservativa, ya que el trabajo depende de la trayectoria
Energía potencial gravitacional
El término energía potencial gravitacional implica que un objeto tiene el potencial o la
capacidad de ganar energía cinética cuando se libera de algún punto con la influencia de la
gravedad, la energía potencial gravitacional de un objeto es:
Ug = mgh
20. [2a, 8-13] Se lanza un cohete a un ángulo de 53° respecto de la horizontal desde una
altitud h con una rapidez vo. a) Utilice los métodos de la energía para hallar la rapidez del
cohete cuando su altitud es de h/2. b) Encuentre las componentes x,y de la velocidad
cuando la altitud del cohete es h/2, usando el hecho de que vx = vxo=constante (dado que
ax=0) y los resultados obtenidos en el inciso a.
a)
b)
Por la Ley de Conservación de la Energía
(1/2)mvo2+mgh = (1/2)mvf2+mg(h/2) =
Cancelando la masa, y despejando a vf en función de g, h, y vo
______
vf = √gh+vo2
Como vox=vfx, por lo que puede ser obtenida a partir de la velocidad inicial vo
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
69
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
vx = vocos53° = 0.6 vo
Como voy≠vfy, por lo que debe ser obtenida a partir de vf
vf2 = vx2+vfy2
Despejando vfy
_________
vfy = -√0.64vo2+gh
21. [2a, 8-15] Se lanza una pelota de 0.5 kg hacia arriba con una rapidez inicial de 16 m/s.
Suponiendo que su energía potencial inicial es cero, determine su energía cinética, su
energía potencial y la energía mecánica total a) en su posición inicial, b) cuando su
altura es 5 m y c) cuando alcanza la posición más alta de su vuelo. d) Determine su
altura máxima utilizando la ley de la conservación de la energía.
a) Ki = (1/2)mvi2 = (1/2)(0.5 kg)(16 m/s)2 = 64 J
Ui = 0 J
E = Ki + Ui = 64 J+0 J= 64 J
b) Como Ki + Ui = Kf + Uf
Despejando Kf
Kf = Ki+Ui-mgh = 64 J + 0 J-(0.5 kg)(9,81 m/s2)(5m) = 39.5 J
Uf = mgh = (0.5 kg)(9,81 m/s2)(5m) = 24.5 J
E = Kf + Uf = 39.48 J+24.53 J = 64 J
c) Kf = 0 J
Como Ki + Ui = Kf + Uf
Despejando Uf
Uf = Ki+Ui- Kf = 64 J + 0 J – 0 J = 64 J
E = Kf + Uf = 0 J+64 J = 64 J
d) Como Uf = Ki+Ui-Kf = mghmax = 64 J
Despejando hmax
hmax = (64 J)/(mg) = (64 J)/[(0.5 kg)(9,81 m/s2)] = 13.05 m
22. [2a, 8-17] Se conectan dos masas por una cuerda ligera que pasa sobre una polea
ligera, sin fricción, como se muestra en la figura. La masa de 5 kg se libera desde el
reposo. Utilizando la ley de la conservación de la energía, a) determine la velocidad de
la masa de 3 kg justo cuando la masa de 5 kg choca con el piso. b) Encuentre la altura
máxima a la cual se elevará la masa de 3 kg.
5 kg
4m
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
70
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
3 kg
a) La fuerza neta del sistema es:
Fneta=(m2-m1)g
El trabajo desarrollado por la fuerza neta se iguala al cambio en energía cinética
(m2-m1)gh=ΔK= (K1f+K2f)-(K1i+K2i)
Desarrollando
(m2-m1)gh=(1/2)m1vf2+(1/2)m2vf2
Despejando la velocidad
__________
________________________
vf = / 2(m2-m1)gh = / 2(5 kg-3 kg)(9.81 m/s2)(4 m) = 4.43 m/s
√
5 kg+3 kg
√ m1+m2
b) Al chocar la masa de 5 kg, la masa de 3 kg ha recorrido 4 m, y continua
moviéndose hacia arriba hasta que la velocidad final sea cero, por lo que:
Ki + Ui = Kf + Uf
Despejando Uf
Uf = Ki+Ui-Kf = (1/2)(3 kg)(4.43m/s)2+(3 kg)(9,81 m/s2)(4 m) – 0 J = 147.16 J
Como Uf = mghmax, despejando hmax
hmax = (147.16 J)/(mg) = (147.16 J)/[(3 kg)(9,81 m/s2)] = 5 m
Energía potencial de un resorte
La energía potencial elástica almacenada en un resorte es:
Us = (1/2)kx2
Donde:
k = constante del resorte sus unidades son N/m
x = distancia que se comprime o se estira el resorte
El teorema del trabajo y la energía aplicado para un resorte es:
Ws = Uf – Ui = ΔU
23. [2a, 8-28] Un resorte tiene una constante de fuerza de 500 N/m. ¿Cuál es la energía
potencial elástica almacenada en el resorte cuando: a) está estirado 4 cm a partir de su
posición de equilibrio, b) está comprimido 3 cm a partir de esa posición de equilibrio y c)
no está deformado?
Datos: k = 500 N/m
Como la energía potencial elástica almacenada en un resorte es Us = (1/2)kx2
a)
b)
c)
Us = (1/2)kx2 = (1/2)(500 N/m)(0.04 m)2 = 0.400 J
Us = (1/2)kx2 = (1/2)(500 N/m)(0.03 m)2 = 0.225 J
Us = (1/2)kx2 = (1/2)(500 N/m)(0 m)2 = 0 J
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
71
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
24. [2a, 8-31] Un bloque de 8 kg se mueve sobre una superficie horizontal y áspera y
choca contra un resorte como se indica en la fig. La rapidez del bloque justo antes de la
colisión es de 4 m/s. Cuando el bloque rebota hacia la izquierda con el resorte no
comprimido, su rapidez al liberarlo es de 3 m/s. Si el coeficiente de rozamiento cinético
entre el bloque y la superficie es de 0.4, determine: a) el trabajo realizado por la fricción
mientras el bloque se encuentra en contacto con el resorte y b) la distancia máxima que se
comprime éste.
a) W = (1/2)mvf2 - (1/2)mvi2 = (1/2)(8 kg)[(3 m/s)2 - (4 m/s)2] = -28 J
vi
x = 0
E = (1 /2 )m v 2
b) Como el trabajo realizado por la fuerza de fricción de ida y vuelta es:
-28 J = -μmg(2x)
Despejando x
x = 28 J =
28 J
= 0.446 m
2μmg
(2)(0.4)(8 kg)(9,81 m/s2)
25. [2a, 8-33] Se coloca un bloque de masa 0.25 kg sobre un resorte vertical de constante
k=500 N/m y se empuja hacia abajo, comprimiendo el resorte una distancia de 0.1 m.
Cuando el bloque se suelta deja el resorte y continúa su camino hacia arriba. ¿A que
altura máxima por encima del punto de liberación llega el bloque?
Igualando la energía potencial del resorte con la energía potencial gravitacional.
Us– Ug = (1/2)kx2 – mgh
Despejando h
h = (1/2)kx2 = (1/2)(500 N/m)(0.1 m)2 = 1.02 m
mg
(0.25 kg)(9.81 m/s2)
26. [2a, 8-35] Un bloque de 10 kg se suelta desde el punto A sobre un carril ABCD como
se ve en la fig. El carril no presenta fricción en ninguna parte excepto en la parte BC,
de longitud 6 m. El bloque viaja hacia abajo del carril hasta chocar con un resorte cuya
constante de fuerza es k=2250 N/m y lo comprime una distancia de 0.3 m desde su
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
72
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
posición de equilibrio antes de llegar al reposo momentáneamente. Determine el
coeficiente de fricción cinético entre la parte del carril BC y el bloque.
Haciendo un balance de energía
Energía potencial en A – Perdida de energía en BC = Energía pot. almacenada en el resorte
mgh – μmgd = (1/2)kx2
Despejando el coeficiente de fricción μ
μ = mgh – (1/2)kx2 = (10 kg)(9.81 m/s2)(3 m) – (1/2)(2250 N/m)(0.3 m)2 = 0.328
mgd
(10 kg)(9.81 m/s2)(6 m)
27. [2a, 8-19] Un bloque de 5 kg se pone en movimiento sobre un plano inclinado como en
la fig. Con una rapidez inicial de 8 m/s. El bloque alcanza el reposo después de recorrer 3 m
a lo largo del plano como se muestra en el diagrama. El plano está inclinado a un ángulo de
30° respecto a la horizontal. a) Determine el cambio en la energía cinética. b) Determine el
cambio en la energía potencial. c) Determine la fuerza de rozamiento sobre el bloque
(suponiendo que es constante). d) ¿Cuál es el coeficiente de rozamiento cinético?
3m
vo = 8 m/s
30°
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
73
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
a) Como al final del plano no tiene energía cinética, la perdida de energía cinética es:
ΔK = Kf – Ki = (1/2)mvf2 – (1/2)mvi2 = 0 – (1 /2)(5 kg)(8 m/s)2 = -160 J
b) Como al inicio del plano no tiene energía potencial gravitacional, el cambio en la energía
potencial gravitacional es:
ΔU = Uf – Ui = mghf – mghi = (5 kg)(9.81 m/s2)(3sen30°) – 0 = 73.575 J
c) Haciendo un balance de energía
Energía cinética inicial = Energía pot. gravitacional final + Perdida energía por fricción
(1/2)mv2 = mgh + fd
Despejando la fuerza de fricción f
f = (1/2)mv2 – mgh = (1/2)(5 kg)(8 m/s)2 – (5 kg)(9.81 m/s2)(3sen30°) = 28.81 N
d
3m
d) Como f = μN = μmgcosθ
despejando el coeficiente de fricción μ
28.81 newtons
= 0.678
μ= f =
2
N (5 kg)(9.81 m/s )cos30°
28. [2a, 8-21] Un niño parte del reposo desde arriba de una resbaladilla cuya altura es h=4
m ver fig. a) ¿Cuál es su rapidez al llegar abajo del plano si éste no tiene fricción? b) Si
llega hasta abajo con una rapidez de 6 m/s, ¿qué porcentaje de su energía total se
pierde como resultado de la fricción?
4m
a)
Si la resbaladilla no presenta fricción, la rapidez del niño en la parte inferior
depende únicamente de la altura de la resbaladilla, independientemente de la
forma de ésta.
Por la Ley de Conservación de la Energía Mecánica
Ki+Ui = Kf+Uf
Como la energía cinética inicial y la energía potencia final son cero
Ui = Kf
Es decir:
mghi = (1/2)mvf2
Cancelando la masa y despejando la velocidad al llegar al final de la resbaladilla
___
_________________
vf = √2ghi = √ (2)(9.81 m/s2)(4 m) = 8.86 m/s
b)
Como el cálculo es independiente de la masa, se puede hacer m=1 kg
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
74
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
mghi = (1 kg)(9.81)(4 m) = 39.24 J
(1/2)mvf2 = (1/2)(1 kg)(6 m/s)2 = 18 J
La diferencia es la perdida en Energía debido a la fricción
Us = 39.24 J–18 J = 21.24 J
Obteniendo el porcentaje debido a la perdida
(21.24 J)(100) = 54.1 % de pérdida
39.24 J
29. [2a, 8-23] Un niño de 25 kg sentado en un columpio de 2 m de longitud se libera a
partir del reposo cuando los cables del columpio forman un ángulo de 30° con la vertical. a)
Despreciando la fricción. Obtenga la velocidad del niño en la posición más baja. b) Si la
rapidez del niño en la posición más baja es de 2 m/s, ¿cuál es la pérdida de energía debida a
la fricción?
a) Por la Ley de Conservación de la Energía Mecánica
Ki+Ui = Kf+Uf
Como la energía cinética inicial y la energía potencia final son cero
Ui = Kf
Es decir:
mghi = (1/2)mvf2
Cancelando la masa y despejando la velocidad al llegar al final de la resbaladilla
___
_____________________
vf = √2ghi = √ (2)(9.81 m/s2)(2 – 2cos30) = 2.29 m/s
b) Haciendo un balance de energía
Energía potencial inicial = Energía cinética Final + Perdida energía por fricción
mgh = (1/2)mvf2 + Perdida de energía
Es decir:
Perdida de energía = mgh – (1/2)mvf2
= (25 kg)[(9.81 m/s2)(2 – 2cos30) – (1/2)22] = 15.7 J
30. [2a, 8-24] En la fig. Se muestra a una fuerza Fx como función de la distancia que actúa
sobre una masa de 5 kg. Si la partícula parte del reposo en x=0 m, determine la rapidez
de la partícula en x=2, 4 y 6 m.
31. [2a, 8-25] El coeficiente de fricción entre el objeto de 3.0 kg y la superficie que se ven
en la fig. es 0.40. Las masas originalmente están en reposo. ¿Cuál es la rapidez de la
masa de 5.0 kg cuando ha caído una distancia vertical de 1.5 m?
3 kg
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
75
5 kg
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Haciendo un balance de energía para las masas m1 y m2
K1i + K2i + U1i + U2i = K1f + K2f + U1f + U2f
Energía al inicio = tomando como punto de referencia el iniciopunto más bajo:
m2gd = μm1gd +(1/2)m2vf2 +(1/2)m1vf2
Energia pot. grav. de m2 =
32. [2a, 8-27] Se sujeta una masa de 2.5 kg a un resorte ligero con k=65 N/m. Se estira el
resorte y se deja oscilando libremente sobre una superficie horizontal sin fricción.
Cuando el resorte se estira 10 cm, la energía cinética de la masa atada y la energía
potencial elástica son iguales. ¿Cuál es la rapidez máxima de la masa?
Como en x = 0.1 m la energía cinética de la masa y la energía potencial son iguales
(1/2)kx2 = (1/2)mvf12
Despejando la velocidad
2
______________
2
______________________________________________________
vf1 = √(kx )/m = √[(65 N/m)(0.1 m)2]/(2.5 kg) = 0.51 m/s
Como vf12 = vo2 + 2ax, despejando la aceleración
a = vf12 = (0.51 m/s)2 = 1.3 m/s2
2x
2(0.1 m)
En x = 0 la masa alcanza su velocidad máxima y recorre una distancia x = 2(0.1 m)
De la ecuación vf22 = vo2 + 2ax
Por lo tanto:
________
_________________________________________
vf2 = √2ax = √2(1.3 m/s2)(2)(0.1 m) = 0.721 m/s
33. [2a, 8-37] La energía potencial de un sistema constituido por dos partículas que se
encuentran separadas una distancia r es U(r) = A/r, en donde A es una constante, Determine
la fuerza radial Fr.
34. [2a, 8-39] Una función de energía potencial para una fuerza bidimensional es de la
forma U=3x³y-7x. Encuentre La fuerza que actúa en el punto (x,y).
5.3
Definición de potencia y aplicaciones
35. [2a, 7-53] Un marino de 700 N en entrenamiento básico trepa 10 m por una cuerda
vertical a una rapidez uniforme en 8 s. ¿Cuál es su potencia útil?
P = (W/t) = (700 N)(10 m)/(8s) = 875 W
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
76
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
36. [2a, 7-54] El agua fluye sobre una sección de las Cataratas del Niágara a una razón de
1.2x106 kg/s y cae 50 m . ¿Cuántas bombillas de 60 W se pueden encender con esta
potencia?
Datos: cantidad de agua por segundo=1.2x106 kg/s; h=50 m;
Como la potencia=W/t
P = mgh = (1.2x106 kg)(9.81 m/s²)(50 m) = 5886x105 W
t
1s
Dividiendo la potencia entre 60 W para encontrar el número de bombillas
588600000 W = 981 x104 bombillas
60 W
37. [2a, 7-55] Un levantador de pesas levanta 250 kg a una altura de 2 m en 1.5 s ¿Cuál es
su potencia útil?
Datos: m = 250 kg; h = 2 m; t = 1.5 s
P = W = mgh = (250 kg)(9.81 m/s2)(2 m) = 3.27 kW
t
t
1.5 s
38. [2a, 7-57] Un automóvil de 1500 kg se acelera uniformemente desde el reposo hasta
una rapidez de 10 m/s en 3 s. Calcule a) el trabajo realizado sobre el automóvil en este
tiempo, b) la potencia promedio entregada por el motor en los primeros 3 s y c) la
potencia instantánea entregada por el motor en t=2 s.
a)
El trabajo realizado se calcula por la diferencia en energías cinéticas
b)
c)
W=Kf – Ki = (1/2)mvf2 -(1/2)mvi2 = (1/2)(1500 kg)(10 m/s)2 = 7.5x104 J
La potencia promedio es el trabajo entre el tiempo transcurrido.
P = W = 7.5x104 J = 2.5x104 W
t
3s
La potencia instantánea se define como la razón temporal del trabajo efectuado
P = dW = F•v
dt
De la ecuación vf = vo + at, se despeja la aceleración
a = vf - vo = (10 m/s) – (0 m/s) = 3.333 m/s2
t
3s
Por lo que F = ma = (1500 kg)(3.333 m/s2) = 4999.5 N
Ahora calculando la velocidad en t = 2 s, de la ecuación v = vo + at
v = vo + at = (0 m/s) + (3.333 m/s2)(2 s) = 6.666 m/s
Calculando la potencia instantánea
P = dW = F•v = (4999.5 N)(6.666 m/s) = 3.33x104 W
dt
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
77
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
39. [2a, 7-59] Un bote de carreras requiere 130 hp para moverse con una rapidez constante
de 15 m/s (33 mi/h). Calcule la fuerza resistiva debida al agua a esa rapidez.
Convirtiendo hp a W
130 hp 7.458x102 W = 9.694x104 W
1 hp
Como P = F•v, despejando la fuerza
F = (P/v) = (9.694x104 W)/(15 m/s) = 6.47x103 N
40. [2a, 7-61] Un atleta de 65 kg recorre una distancia de 600 m hacia arriba de una
montaña cuya inclinación es de 20° con la horizontal. El atleta realiza esta hazaña en
80 s. Suponiendo que la resistencia del aire es despreciable, a) ¿cuánto trabajo realiza?
y b) ¿cuál es su salida de potencia durante la carrera?
W = mgdsenθ = (65 kg)(9.81 m/s2)(600 m)(sen20°) = 1.31x105 J
P = (W/t) = (1.31 x105 J)/(80 s) = 1.63 kW
Unidad VI
6.1
1.
Momentum
Concepto de momento lineal e impulso
[2a, 9-1] Una partícula de 3 kg tiene una velocidad de (3i-4j) m/s. Encuentre sus
componentes x,y del momento y la magnitud del momento total.
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
78
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Datos: m = 3 kg; v = (3i-4j) m/s
Obteniendo el momento lineal
P = mv = (3 kg)(3i-4j)m/s = (9i-12j) kg m/s
Obteniendo la magnitud del momento lineal
_________
⎢P⎪ = √92 + (-12)2 = 15 kg m/s
2.
[2a, 9-2] El momento de un coche de 1200 kg es igual al momento de un camión de
5000 kg que viaja con una velocidad de 10 m/s. ¿Cuál es la velocidad del coche?
Datos: m1 = 1200 kg; m2 = 5000 kg; v2 = 10 m/s;
Como el momento lineal del coche es igual momento lineal del camión
m1v1 = m2v2
Despejando v1
v1 = m2v2 = (5000 kg)(10 m/s) = 41.7 m/s
m1
1200 kg
3.
[2a, 9-3] Un automóvil de 1500 kg viaja hacia el este con una rapidez de 8 m/s. Hace
una vuelta de 90° hacia el norte en un tiempo de 3 s y continúa con la misma rapidez.
Encuentre: a) el impulso aplicado al auto como resultado de la vuelta y b) la fuerza
promedio ejercida sobre el auto durante la vuelta.
Datos: m1 = 1500 kg; v1 = 8 m/s; v2 = 10 m/s;
a) Obteniendo el impulso
_______________
b)
____________________________________
I = ⎢P2-P1⎪= ΔP = √(m2v2)2+(-m1v1)2 = √[(1500 kg)(8 m/s)]2+[(1500 kg)(-8 m/s)]2
= 1.7x104 kg m/s al noroeste
Obteniendo la fuerza promedio
Fp = ΔP = 1.7x104 kg m/s = 5.66x103 N
Δt
3s
Obteniendo el ángulo
θ = 90°+arctan m2v2 = 90°+arctan (1500)(8) = 135°
m1v1
(1500)(8)
4.
[2a, 9-5] La fuerza Fx que actúa sobre una partícula de 2 kg varía con el tiempo como
se muestra en la figura 9.27. Encuentre: a) el impulso de la fuerza, b) la velocidad final
de la partícula si originalmente se encontraba en reposo, y c) la velocidad final de la
partícula si inicialmente se movía a lo largo de eje x con una velocidad de –2 m/s.
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
79
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
5.
[2a, 9-7] En la fig. 9.28 se muestra la curva estimada de fuerza contra tiempo para el
golpe de un bate sobre una pelota de béisbol. A partir de esta curva, determine: a) el
impulso dado a la pelota, b) la fuerza promedio ejercida sobre la pelota y c) la fuerza
máxima ejercida sobre la pelota.
6.
[2a, 9-15] Una bola de acero de 3 kg golpea una pared muy masiva con una rapidez de
10 m/s a un ángulo de 60° respecto de la superficie. Rebota con la misma rapidez y
ángulo (véase fig.). Si la bola está en contacto con la pared durante 0.20 s, ¿cuál es la
fuerza promedio ejercida por la pared sobre la bola?
y
60°
x
60°
Datos: m1 = 3 kg;
v1 = 10 m/s;
θ = 60°
Obteniendo el impulso
_____________________________________________
ΔP = Pf – Pi = √(-mvsen60°- mvsen60°)2 + (mvcos60°- mvcos60°)2 = -2mvsen60°
Como I = ΔP = FpΔt, despejando la fuerza promedio
Fp = ΔP = 2mvsen60° = -2(3 kg)(10sen60° m/s) = -51.962 m/s = -260 N
Δt
0.20 s
0.20 s
0.20 s
6.1.1
Centro de masa
7.
[2a, 9-51] Una partícula de 3 kg se localiza en el eje x a x = -5 m, y una partícula de 4
kg está en el eje x a x = 3 m. Encuentre el centro de masa.
8.
[2a, 9-53] La masa del Sol es 329 390 veces la de la Tierra y la distancia media del
centro del Sol al centro de la Tierra es de 1.496x108 km. Tratando al Sol y a la Tierra
como partículas, con cada masa concentrada en su respectivo centro geométrico, ¿cuán
tan lejos se encuentra el Sol del C.M. del sistema Tierra-Sol? Compare esta distancia
con el radio medio del sol (6.960x105 km).
6.2
Ley de la conservación del momento y energía
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
80
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
9.
[2a, 9-17] Un niño de 40 kg sentado sobre un estanque congelado avienta una piedra
de 2 kg hacia el este con una rapidez de 8 m/s. Despreciando la fricción entre el niño y
el hielo, encuentre la velocidad de retroceso del niño.
Datos: m1 = 40 kg; m2 = 2 kg; v2 = 8 m/s
Por conservación del momento lineal
m1v1 = m2v2
Despejando la velocidad de retroceso del niño
v1 = m2v2 = (2 kg)(8 m/s) = 0.4 m/s hacia el oeste
m1
40 kg
10. [2a, 9-19] Un muchacho de 60 kg y una muchacha de 40 kg, ambos con patines, se
encuentran en reposo uno enfrente del otro. El muchacho empuja a la muchacha,
mandándola hacia el este con una velocidad de 4 m/s. Describa el movimiento
subsecuente del muchacho. (Desprecie la fricción.)
Datos: m1 = 60 kg; m2 = 40 kg; v2 = 4 m/s
Por conservación del momento lineal
m1v1 = m2v2
Despejando la velocidad de retroceso del muchacho
v1 = m2v2 = (40 kg)(4 m/s) = 2.67 m/s hacia el oeste
60 kg
m1
6.3
Colisiones
6.3.1
Colisiones elásticas e inelásticas
6. 4 Aplicaciones de la conservación del momento
11. [2a, 9-23] Un meteorito de 2000 kg tiene una rapidez de 120 m/s justo antes de tener
una colisión frontal con la Tierra. Determine la velocidad de retroceso de la Tierra
(masa 5x1024 kg).
Datos: m1 = 2000 kg;
v1= 120 m/s;
m2 = 5x1024 kg; v2 = 0 m/s
Se trata de un choque inelástico, no hay conservación de la energía cinética, pero hay
conservación del momento lineal, y suponiendo a la Tierra inmóvil antes del choque.
m1v1 + m2v2 = (m1+m2)v
Despejando la velocidad de retroceso de la Tierra
v = m1v1 = (2000 kg)(120 m/s) = 4.8x10-20 m/s
m1+m2 2000 kg+5x1024 kg
12. [2a, 9-25] Se dispara una bala de 10 g sobre un péndulo balístico de 2.5 kg y queda
dentro de éste. Si el péndulo sube una distancia vertical de 8 cm, calcule la rapidez
inicial de la bala.
13. [2a, 9-27] Un coche de 1200 kg que viaja inicialmente con una rapidez de 25 m/s en la
dirección este choca contra la parte posterior de un camión que se mueve en la misma
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
81
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
dirección a 20 m/s (ver fig.). La velocidad del coche justo después de la colisión es de
18 m/s hacia el este. a) Cuál es la velocidad del camión justo después de la colisión? b)
¿Cuánta energía mecánica se pierde en la colisión? ¿Cómo puede explicar la perdida
de energía?
14. [2a, 9-29] Un neutrón en un reactor atómico realiza una colisión frontal elástica contra
el núcleo de un átomo de carbón inicialmente en reposo. a) ¿Qué fracción de la energía
cinética del neutrón se transfiere al núcleo del carbón? b) Si la energía cinética inicial
del neutrón es de 1 MeV=1.6x10-13 J, encuentre su energía cinética y la energía
cinética del núcleo del carbón después de la colisión (la masa del núcleo del carbón es
unas 12 veces la masa del neutrón).
15. [2a, 9-41] Una masa de 3 kg con una velocidad inicial de 5i m/s choca y se queda
unida a una masa de 2 kg con una velocidad inicial de –3j m/s. Encuentre la velocidad
final de la masa compuesta.
Datos: m1 = 3 kg;
v1= 5i m/s;
m2 = 2 kg; v2 = -3j m/s
Se trata de un choque inelástico, no hay conservación de la energía cinética, pero hay
conservación del momento lineal.
m1v1+m2v2 = (m1+m2)v
Despejando la velocidad final de la masa compuesta
v = m1v1+m2v2 = (3 kg)(5i m/s)+(2 kg)(-3j m/s) = (3i - 1.2j) m/s
m1+m2
3 kg+2 kg
16. [2a, 9-43] Un núcleo inestable de masa 17x10-27 kg inicialmente en reposo se
desintegra en tres partículas. Una de las partículas, de masa 5x10-27 kg, se mueve a lo
largo del eje y con una velocidad de 6x106 m/s. Otra de las partículas, de masa 8.4x1027
kg, se mueve a lo largo del eje x con una velocidad de 4x106 m/s. Encuentre: a) la
velocidad de la tercera partícula y b) la energía total liberada en el proceso.
m2 = 5x10-27 kg; v2 = 6x106 j m/s
Datos: m1 = 17x10-27 kg; v1= 0 m/s;
-27
6
m3= 8.4x10 kg; v3= 4x10 i m/s; m4= 3.6x10-27 kg
a) Se trata de un choque inelástico no hay conservación de la energía cinética, pero
hay conservación del momento lineal.
m1v1 = m2v2+m3v3+m4v4
Despejando a v4
v4 = -m2v2-m3V3 = -(5x10-27 kg)(6x106 j m/s)-(8.4x10-27 kg)(4x106 i m/s)
3.6x10-27 kg
m4
6
6
= (-9.33x10 i – 8.33x10 j) m/s
b)
Obteniendo la magnitud de v4 y utilizándola para obtener ΔK
______________________
⎢v4⎪ = √(-9.33x106)2+(8.33x106)2 = 1.25x107 m/s
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
82
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
ΔK = Kf – Ki = [(1/2)m2v22+(1/2)m3v32+(1/2)m4v42] - 0
= (1/2) [(5x10-27)(6x106)2+(8.4x10-27)(4x106)2+(3.6x10-27)(1.25x107)2]
= (1/2)(1.8x10-13+1.3x10-13+5.6x10-13) = 4.39x10-13 J
UNIDAD VII MECANICA DE FLUIDOS
7.1 Concepto de fluido
7.1.1 Presión y densidad
7.2 Principio de Pascal y principio de Arquimedes
7.2.1 Medición de la presión para un fluido estático
7.2.1 Variación de la presión atmosférica con la altura
7.3 Flujo de fluidos
Flujo o gasto volumétrico
Si un fluido llena un tubo y fluye a través de el, entonces el flujo volumétrico estará dado
por:
Q = Av
1. [Tipler,395,16] Plasma sanguíneo fluye desde una bolsa a través de un tubo hasta la vena
de un paciente, en un punto en que la presión de la sangre es de 12 mmHg. La densidad
específica del plasma a 37°C es 1,03. ¿Cuál es la altura mínima a la que deberá estar la
bolsa para que la presión del plasma cuando se introduce en la vena sea al menos de 12
mmHg?
Datos
P = 12 mmHg = 1599.868421Pa
ρ= 1.03 = 1030 kg/m3
altura mínima
h = P/(ρg) = 0.158335404 m = 15.83354038 cm
2. [Tipler,396,33] Un objeto flota en el agua con 80% de su volumen por debajo de la
superficie. El mismo objeto situado en otro líquido flota con el 72% de su volumen por
debajo de la superficie. Determinar la densidad del objeto y la densidad específica del
líquido.
Datos
V1 = 80%
V2 = 72%
a) Densidad del objeto ρ = ρH2O%V1 = 800 kg/m3
b) Densidad especifica del líquido ρξ = %V1/%V2 = 1.11
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
83
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
Flujo de fluidos
7.3.1 Ecuación de continuidad
Ecuación de continuidad
Si un fluido incompresible llena un tubo y fluye a través de él y si se comparan dos puntos
del tubo, entonces el flujo debe ser igual, es decir:
Q = A1v1 = A2v2 = cte
3. [Tipler,397,49] Por una aorta de 9 mm de radio fluye sangre a 30 cm/s.
a) Calcular el flujo volumétrico en litros por minuto.
b) Aunque el área de la sección recta de un capilar es mucho menor que la de la aorta,
existen muchos capilares, de forma que el área total de sus secciones rectas es mucho
mayor. Si toda la sangre procedente de la aorta pasa a los capilares en donde la velocidad
de flujo es de 1.0 mm/s, calcular dicha área total.
Datos
r = 9 mm = 0.009 m
v1 = 30 cm/s = 0.3 m/s
v2 = 1 mm/s = 0.001m/s
a) Flujo volumétrico
b) Area Total
Q1 = A1v1 = 7.63407x10-05 m3/s = 4.58044209 L/min
A2 = Q1/v2 = 0.076340701m2 = 763.407015 cm2
4. [Tipler,397,50] Una muchacha se encuentra en el tejado de su casa de dimensiones 15 m
x 15 m. Súbitamente, un fuerte viento derriba la escalera por la que ha subido al tejado y la
muchacha no tiene otro medio para descender. Ella sabe que un fuerte viento reduce la
presión del aire sobre el tejado y que existe el peligro de que la presión atmosférica dentro
de la casa vuele el tejado. Calcular la fuerza que actúa sobre el tejado cuando el viento
sopla a la velocidad de 30 m/s.
Datos
L1 = 15 m
L2 = 15 m
v = 30 m/s
densidad del aire
Fuerza sobre el tejado
ρaire = 1.293 kg/m3
F = (1/2)ρv2A = 130916.25 N = 130.916 kN
7.3.2 Ecuación de Bernoulli
7.4 Aplicaciones de la mecánica de fluidos
Ecuación de Bernouilli
Para un flujo estacionario (régimen estable) considérese dos puntos distintos, entonces
p1 + (1/2)ρv12 + h1ρg = p2 + (1/2)ρv22 + h2ρg
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
84
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
5. [Tipler,398,55] Una fuente diseñada para lanzar una columna de agua de 12 m de altura
al aire, tiene una boquilla de 1 cm de diámetro al nivel del suelo. La bomba de agua está a 3
m por debajo del suelo. La tubería que la conecta a la boquilla tiene un diámetro de 2 cm.
Hallar la presión que debe suministrar la bomba.
Datos
h = 12 m
d1 = 1 cm = 0.01 m
h1 = 3 m
d2 = 2 cm = 0.02 m
Velocidad del H2O al final (nivel del suelo)
Flujo volumétrico
Velocidad del H2O al inicio (abajo del suelo)
Presión que suministra la bomba
Pa
v1 = (-2gh)1/2 = 15.344 m/s
Q = A1v1 = 0.0012 m3/s
v2 = Q/A2 = 3.836 m/s
P2 = P1 + (1/2)ρ(v12 - v22) + ρgh1 = 241117.5
6. [Sears,541,14,41] Un sistema de riego de un campo de golf descarga agua de un tubo
horizontal a razón de 7200 cm3/s. En un punto del tubo, donde el radio es de 4.00 cm, la
presión absoluta del agua es de 2.40x105 Pa. En un segundo punto del tubo, el agua pasa
por una constricción cuyo radio es de 2.00 cm. ¿Qué presión absoluta tiene el agua al fluir
por esa constricción?
Datos
Q = 7200 cm3/s = 0.0072 m3/s
r1 = 4 cm = 0.04 m
P1 = 240000 Pa
r2 = 2 cm = 0.02 m
Velocidad del H2O en 1 v1 = Q/A1 = 1.432 m/s
Velocidad del H2O en 2 v2 = Q/A2 = 5.7295 m/s
Presión absoluta en 2
P2 = P1 + (1/2)ρv22 - (1/2)ρv12 = 224611.845 Pa
7. [Bueche,Schaum,137,14,23] Calcúlese la velocidad teórica del derrame de agua desde
una abertura que está a 8 m por debajo de la superficie del agua en un gran tanque, si se le
adiciona una presión de 140 kPa, aplicada a la superficie del agua.
Datos
h1 = 8 m
P1 = 140 kpa
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
85
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
velocidad de salida del H2O
v2 = {[(P1 + ρgh1)2]/ρ}1/2 = 20.904 m/s
BIBLIOGRAFIA
Baird, D. C. Experimentación Una Introducción a la Teoría de Mediciones y al Diseño de
Experimentos; Editorial Prentice; México 1991; págs. 1-205
Resnick Robert; Hallidey David; Krane Kenneth S. Física Vol. I; Editorial CECSA,
México, 2002 págs. 1-137, 230-295 y 331-367
Serway Raymond A.; Física Tomo I; Editorial McGraw-Hill, México, (1993); págns. 1214, 334 -403
Tipler Paul A.; (Física Vol. I; Editorial McGraw-Hill, México, 2001); págs.1-220, 331-360
y 441-486
Tippens Paul E.; (2001); Física Conceptos y Aplicaciones; Editorial McGraw-Hill, México,
(2001); págs. 1-150, 175-248, 309 -332
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
86
PROBLEMARIO DE FISICA DEL MOVIMIENTO APLICADA
ELABORO: IF. RAMON FLORES RODRIGUEZ
DICIEMBRE DE 2007
87
Descargar