Importancia biomedica de las enzimas: Sin enzimas, no sería posible la vida que conocemos. Igual que la biocatálisis que regula la velocidad a la cual tienen lugar los procesos fisiológicos, las enzimas llevan a cabo funciones definitivos relacionadas con salud y la enfermedad. En tanto que, en la salud todos los procesos fisiológicos ocurren de una manera ordenada y se conserva la homeostasis, durante los estados patológicos, esta última puede ser perturbada de manera profunda. Por ejemplo, el daño tisular grave que caracteriza a la cirrosis hepática pueden deteriorar de manera notable la propiedad de las células para producir enzimas que catalizan procesos metabólicos claves como la síntesis de urea. La incapacidad celular para convertir el amoniaco tóxico a urea no tóxica es seguida por intoxicación con amoniaco y por ultimo coma hepático. Un conjunto de enfermedades genéticas raras, pero con frecuencia debilitantes y a menudo mortales, proporciona otros ejemplos dramáticos de las drásticas consecuencias fisiológicas que pueden seguir al deterioro de la actividad enzimática, inclusive de una sola enzima. Después del daño tisular grave (por ejemplo, infarto del miocardio o pulmonar, trituración de un miembro) o siguiendo a multiplicación celular descontrolada (por ejemplo, carcionoma prostatico), las enzimas propias de tejidos específicos pasan a la sangre. Por lo tanto, la determinacion de estas enzimas intracelulares en el suero sanguineo proporciona a los medicos informacion valiosa para el diagnostico y el pronostico. Inhibicion por competencia : En este caso el inhibidor no permite la formación del complejo enzima − sustrato normal, ya que se forma un complejo enzima − inhibidor ; una vez que el inhibidor ocupa el lugar activo de la enzima, el complejo enzima − inhibidor, no se separa, en vista de que la enzima no tiene acción sobre el inhibidor y, por lo tanto, queda bloqueada la parte activa de la enzima. El sustrato no puede entrar al lugar activo, que está ocupado por el inhibidor y, de esta manera, se impide la acción enzimática. El ejemplo clásico de inhibición competitiva es el de la enzima deshidrogenasa succínica que, en presencia de ácido succínico en ácido fumárico, reduciendo, simultáneamente, al acceptor de H. Diversas sustancias parecidas al ácido succínico, como el ácido malónico, el oxálico y el glutárico, se pueden combinar con la enzima e impiden su acción sobre el ácido succínico. Al añadir el inhibidor, la actividad enzimática disminuye sin embargo, si se añaden cantidades mayores del sustrato natural de la enzima (en el ejemplo anterior, de ácido succínico) nuevamente empieza a aparecer actividad enzimática, y cuando las cantidades de ácido succínico añadido sobrepasan considerablemente a las presentes del inhibidor, la actividad enzimática se restablece por completo. Esta situación representa, aparentemente, un fenómeno de competencia entre el sustrato natural y el inhibidor para ocupar el sitio activo de la enzima; la cantidad presente de una sustancia o de otra , en un momento dado, en el sitio de la reacción , determina si se dirige en un sentido o de otro; si hay más inhibidor, la enzima queda bloqueada por éste, y no se lleva a cabo la reacción enzimática ; si aún en presencia de importantes cantidades de inhibidor existen mayores cantidades del sustrato natural, éste domina al inhibidor y llega a desplazarlo introduciéndose en los sitios activos de la enzima para permitir que se reanude la actividad catalítica. Inhibicion por no competencia: Cuando las sustancias inhibidoras actúan independientemente de la calidad del sustrato natural presente, se trata de inhibición por no competencia. En este caso, el inhibidor bloquea loas sitios activos de la enzima de modo irreversible ; en ocasiones se trata de la desnaturalización de la enzima, como cuando se añaden aniones o cationes que precipitan las proteínas. En otros casos la combinación irreversible se hace con sustancias que actúan de manera específica sobre ciertos grupos activos de la enzima, o sobre la conformación o estructura completa de ella ; sin embargo, en estas circunstancias, se ven afectadas por igual todos o cuando menos varios tipos de enzimas. Existen algunos inhibidores no competitivos que muestran cierta especificidad, como los agentes bloqueadores del radical sulfhidrilo, −SH, presente en las cadenas laterales del aminoácido cisteína, común a todas las moléculas proteínicas y, por lo tanto, a las enzimas. Entre los inhibidores de sulfhidrilos más 1 conocidos se encuentran el ferricianuro, el yodacetato, el famoso gas usado con fines bélicos, la lewisita, y otras sustancias de tipo arsenical que deben sus efectos letales a su combinación con los grupos sulfhidrilo de proteínas y enzimas de gran importancia fisiológica. Hay enzimas que contienen iones metálicos indispensables para su actividad y que son susceptibles a la acción inespecífica de agentes que afectan dichos iones; tal es el caso de las enzimas con hierro que son intoxicadas por medio del cianuro o el H2S. De la misma manera, la adición de oxalato a un sistema puede precipitar el calcio o el magnesio, e impedir la actividad de enzimas que los requieren. Relaciones entre la enzima y el sustrato: Es universalmente aceptado, que la enzima, como todo catalizador, participa de una manera activa en la reacción. Existen pruebas experimentales de esta situación cuando menos para algunos. Un ejemplo bien conocido es el de la peroxidasa que, en presencia de peróxido de hidrógeno, H2O2, y un acceptor de hidrógeno adecuado, produce la reducción del H2O2, . La peroxidasa en ausencia de H2O2 muestras unas bandas de absorción características en el espectro visible; cuando se combina con el H2O2 , pero sin que exista el acceptor de los hidrógenos, aparece una nueva distribución de las bandas. Si se permite el paso de los hidrógenos a un acceptor, automáticamente desaparecen las bandas nuevas y reaparecen las originales de peroxidasa. Se acepta corrientemente una hipótesis propuesta por Michaelis para explicar la actividad enzimática, sobre la base de la información de un compuesto de la enzima con el sustrato (complejo enzima − sustrato), previamente al ataque del sustrato por la enzima y a la liberación de los productos de la reacción. El desarrollo matemático que permitió a Michaelis formular su hipótesis, estuvo acorde con los datos experimentales obtenidos una vez vencidos los enormes obstáculos de orden técnico para llevar a cabo la confirmación de la teoría en el laboratorio. Si se hace el estudio de la actividad de una enzima en relación con la concentración de sustrato. En ella se registran, en las abscisas, la cantidad creciente de sustrato y, en las ordenadas, la cantidad de uno de los productos de la reacción liberada de un tiempo dado, que expresa, en rigor, la actividad de la enzima. La curva obtenida es la de una hipérbola rectangular, la cual tiene algunas propiedades interesantes; por ejemplo, la velocidad límite o velocidad máxima, es el valor que trata de alcanzar la curva a medida que se aumenta el sustrato y que, en la figura, está señalada con la línea V. Existe un punto, fijado arbitrariamente, en el que la mitad de la velocidad límite corresponde a una concentración específica del sustrato; esta concentración de sustrato se representa habitualmente como KM, y se denomina constante de Michaelis, valor característico para un par − enzima − sustrato y que, por lo tanto, es la concentración de sustrato con la cual se alcanza la mitad de la velocidad límite o velocidad máxima de la reacción. Los resultados obtenidos experimentalmente concuerdan con los derivados de modo matemático, sobre la hipótesis de formación de un complejo enzima − sustrato. La constante de Michaelis, KM, indica en términos generales, las relaciones de afinidad entre el sustrato y la enzima; un KM, implica la necesidad de una alta concentración de sustrato que, al combinarse con una enzima, produzca la mitad de la velocidad máxima, o sea, que la afinidad por la enzima y sustrato es pobre; por el contrario, si la concentración de sustrato que se requiere para alcanzar la mitad de la velocidad es muy pequeña (KM pequeña), quiere decir que el sustrato tiene una gran afinidad por la enzima. En ocasiones, la misma enzima puede ser más afín a un sustrato que a otro; por ejemplo, la sacarasa es 16 veces más activa para atacar a la sacarosa que a la rafinosa. Se conocen con exactitud los valores de KM para muchos sustratos y enzimas, con los siguientes: la pepsina, actuando sobre albúmina, de huevo: KM de 4.5. por ciento; la tripsina sobre la caseína :KM de 2 por ciento; la amilasa sobre el almidón en presencia de Cl − : KM de 0.4 por ciento ; la sacarasa de levadura, sobre la sacarosa : KM 0.016 a 0.04 M, etc. 2 La explicación de la curva hiperbólica que implica la formación del complejo enzima − sustrato parece depender de la existencia física, en la enzima, de determinados sitios donde se absorbe el sustrato para ser activado. Al principio de la curva se puede aumentar la concentración del sustrato y la enzima es capaz de activarlo con toda eficiencia; pero como una vez activado el sustrato se separa en forma de los productos, y la velocidad con la que éstos se separan no es igual a la velocidad con la que captado el sustrato, y en vista de la cantidad creciente del sustrato, la línea obtenida no es una recta, sino la curva señalada. Cuando la cantidad de sustrato ha sobrepasado la capacidad física de la enzima para recibirlo y poder transformarlo, la curva alcanza una meseta, lo que significa que la reacción prosigue a la misma velocidad, independientemente de la cantidad de sustrato adicionada. De acuerdo con los términos ligados a la velocidad de reacción, expresados en la página 36, se encuentra que, al principio del experimento, la reacción depende exclusivamente de la concentración del sustrato y se trata de una reacción de primer orden; al final de ella, cuando hay un exceso de sustrato, la reacción es independiente de la cantidad de sustrato y, por lo tanto, es de orden cero. Otra característica en relación con la finalidad de la enzima por el sustrato es la comprendida en el llamado número de recambio, el cual representa los moles de sustrato atacados por un mol de enzima en una unidad de tiempo determinada, generalmente un minuto. Este número de recambio, en algunas ocasiones, es muy elevado, como sucede con la catalasa que a 0º C., tiene un número de recambio de 2.5 millones; es decir, un mol de enzima es capaz, en un minuto, de desdoblar dos y medio millones de moles de H2O2 ; el citrocomo c, a 38º C, tiene un número de recambio de 1.4 X 103 ; la carboxialasa a 30º C., da un número de recambio de 1 X 103 , etc. Mecanismo Ping Pong: En la transaminación, la reacción avanza a través de los fenómenos alternos de adición de sustrato y liberación de producto . Iones sustrato: Estos facilitan la fijación del sustrato y la catálisis por creación de varias de complejo de puente constituidos por un enzima, metal y sustrato en la que os iones metálicos pueden actuar como catalizadores ácidos generales o facilitar la aproximación de los reactantes. 3