1.1 Criterios externos e internos de delimitación de la revolución

Anuncio
Tema V Parte 2ª. LA REVOLUCIÓN CIENTÍFICA

1. Algunos aspectos básicos de la revolución científica.
Sin embargo, el análisis histórico de la revolución galileana-newtoniana en la ciencia
no exige que participemos en los usuales debates tanto filosóficos como sociológicos en torno a estas
cuestiones  Porque en realidad el concepto de revolución científica surgió en la época de Newton:
1. Aplicándose en primer lugar al cálculo infinitesimal
2. Extendiéndose luego a sus trabajos de mecánica celeste.
 Consiguientemente, es legítimo restringir la tarea del historiador del pensamiento y de
la ciencia a la determinación de los rasgos de la ciencia de Galileo y Newton que en la
misma época de Newton parecieron tan extraordinarios como para merecer la designación
de revolucionarios.
El s. XVII ve triunfar en Europa la revolución científica iniciada por Copérnico, Kepler y Galileo.
1. Estos pioneros de la ciencia moderna habían asumido en su momento, como señala Koyré (1957:
publica Del mundo cerrado al Universo infinito) la tarea de destruir un mundo y sustituirlo por
otro.
A ellos se debe la destrucción de una idea: La idea de un mundo:
1. De estructura finita
2. Jerárquicamente ordenado
3. Cualitativamente diferenciado desde el punto de vista ontológico
Aristóteles: (poner esto mejor)
1.
2.
1.1 Criterios externos e internos de delimitación de la revolución científica
1.1.1. Aspectos externos: Comunidad e instituciones científicas.
La nueva ciencia que cobró forma durante el siglo XVII se puede distinguir mediante
criterios externos e internos a la ciencia.
Mundo sublunar (constituido por los 4 elementos: agua, fuego , tierra y aire): donde los cuerpos
están sometidos al cambio, al movimiento. Ordenado porque cada elemento ocupa su propio
lugar en el universo. Ej. El fuego tiende hacia la periferia del universo porque es menos pesado)
y mundo supralunar (constituido por el éter o quitan esencia, donde el movimiento de los
cuerpos es circular, eterno, no sometido al cambio y por tanto más perfecto.)
1. El principal criterio externo es la emergencia en el siglo XVII de una comunidad científica
que se caracterizaba por la organización de los científicos en sociedades permanentes
y de ámbito nacional, dependientes del estado.
 El objetivo fundamental de tales sociedades era la promoción del "conocimiento natural".
Que es sustituida por la idea de un universo:
1. Abierto, infinito, unificado y regido por las mismas leyes. (No hay dos leyes del movimiento, una del
movimiento rectilíneo y otra del movimiento circular)
2. Un universo en el que no hay grados de perfección (en el que todas las cosas están al mismo nivel, que no
será ya más perfecto en el cielo que en la tierra)  Un universo en el que la astronomía y la física se
hacen interdependientes.
1.
2.
Se ha producido una «revolución científica», una expresión que surgió en la época de Newton:
1. Aplicándose al descubrimiento del cálculo infinitesimal (Newton y Leibniz, de manera
independiente, descubrieron lo que hoy llamamos la derivada y la integral, instrumentos para
calcular áreas: los problemas de cuadraturas, tangentes, centros de gravedad, etc.
2. Y extendiéndose luego a sus trabajos de mecánica celeste. (Descubrimiento de la Ley de la
gravitación Universal)
Uno de los medios de los que se servían para tal fin era la comunicación
 Y por consiguiente el siglo XVII es testigo de la fundación de revistas científicas que con
frecuencia eran el órgano de tales sociedades, tal como ocurría con:
1. Las Philosophical Transactions de la Royal Society en Londres
3. O las Acta eruditorum de Leipzig.
Isaac Newton introdujo la idea de que el movimiento de los objetos en el cielo, como los planetas, el Sol, y la
Luna, y el movimiento de objetos en la Tierra, como las manzanas que caen de un árbol, podría describirse por las
mismas leyes de la física. En este sentido él unificó la dinámica celeste y terrestre por eso su Ley de gravitación
2.
se llama Universal.
2. Ahora bien, un estudio de la revolución científica de los siglos XVI y XVII implica la suposición
básica de que en la ciencia se dan de hecho revoluciones.

Un conjunto de individuos unidos entre sí por objetivos y métodos más o menos comunes
Y entregados al descubrimiento de conocimientos nuevos (sobre el mundo externo de la naturaleza y del hombre) que
fueran
consistentes
con
la
experiencia
(y,
por
tanto,
contrastables)
bajo
la
forma
de:
1º. Experimentos directos
2º. Y observación controlada
Afirmar esto nos lleva a una controversia.  Pues existe una amplia diversidad de opiniones en cuanto
a la cuestión de qué es lo que constituye una revolución:
1. Aunque casi todos los historiadores aceptan que tuvo lugar en las ciencias una genuina
alteración de naturaleza excepcionalmente radical (la revolución científica) en algún momento
entre finales del s. XV o comienzos del XVI y el final del XVII,
Otro signo visible de la existencia de una nueva ciencia es la fundación de instituciones para la
investigación, como el Observatorio Real de Greenwich, que celebró el tercer centenario de su
fundación en 1975. ( 1675).
1. Newton se benefició claramente de todo ello, …
2. …si bien podemos rastrear los primeros indicios de la existencia de tales comunidades en tiempos de
Galileo.

2. Sin embargo, están en desacuerdo en cuanto a:
Cuándo tuvo lugar exactamente dicha revolución Y cómo fue exactamente.
Las carreras científicas de Galileo y de Newton muestran aspectos de estas diferentes manifestaciones de
la nueva ciencia y de la comunidad científica, en estado embrionario en el caso de Galileo y muy
desarrolladas en el de Newton. Por ejemplo, en el caso de Newton, sabemos que éste:
1. Dependía del astrónomo real, John Flamsteed:
1. Para la obtención de pruebas observacionales de que Júpiter podía
perturbar el movimiento orbital de Saturno
2. Y más tarde le hicieron falta las posiciones lunares obtenidas por Flamsteed en
el Observatorio de Greenwich  Para comprobar y desarrollar su teoría lunar,
especialmente en los años de la década de 1690.
1. Algunos estudiosos situarían sus comienzos en 1543, el año de la publicación:
1. Tanto de la magna obra de Vesalio sobre la estructura del cuerpo humano
2. Como del trabajo de Copérnico sobre las revoluciones de las esferas celestes.
2. Otros pensarían que la revolución se inauguró con Galileo (descubrimientos astronómicos Ej
Anillos de Saturno…), quizá en conexión con Kepler
Kepler fue el primero en desarrollar las leyes que rigen las órbitas a partir de
observaciones empíricas del movimiento de Marte apoyadas, en gran parte, en
observaciones astronómicas realizadas por Tycho Brahe. Años después, Newton
desarrolló su ley de gravitación basándose en el trabajo de Kepler.
3. Mientras que unos terceros verían a Descartes como el primer revolucionario genuino. (Reglas
del método par que la mente conozca sin error)
4. Por el contrario, hay toda una escuela de historiadores que declaran que los aspectos más
significativos de la revolución galileana habían aparecido ya durante el final del Medievo.
2. Su primera publicación fue el famoso artículo sobre la luz y los colores, que apareció en las
páginas de las Philosophical Transactions, mientras que sus Principia los publicó
originalmente la Royal Society, de la que llegó a ser presidente en 1703, conservando el cargo
hasta su muerte en 1727.
0
Tema V Parte 2ª. LA REVOLUCIÓN CIENTÍFICA
1.2 Aspectos internos.
2.- LA IMAGEN GALILEANA DE LA CIENCIA
1.2.1. La aplicación de los resultados.
Las ciencias empíricas, tal como actualmente se entienden y cultivan, se caracterizan por tres rasgos
fundamentales: practicidad (utilidad o aplicación de sus resultados) matematización y
experimentalidad.
Estos rasgos distinguen nuestras ciencias empíricas frente al modo en que estas habían sido
entendidas y cultivadas, en general, por los griegos y a lo largo de la Edad Media.
Los signos de la revolución pueden verse también en los aspectos internos de la ciencia,
como sus objetivos, métodos y resultados.
 Tradicionalmente, el aspecto práctico de la ciencia residía en servir a la causa de la religión
 Por tanto, es un rasgo revolucionario de la nueva ciencia el objetivo pragmático adicional:
consistente en mejorar aquí y ahora la vida diaria mediante la ciencia aplicada
Estos tres rasgos de la ciencia moderna los podemos encontrar en Galileo.
Galileo Galilei está considerado el primer científico moderno, y no tanto por el alcance de sus
descubrimientos (por otra parte, decisivos), sino por inaugurar una nueva manera de hacer y
entender la ciencia.
Galileo se ocupó de los mismos problemas que habían interesado a las personas de ciencia
anteriores (el movimiento de los cuerpos...), pero lo hizo de una manera radicalmente
diferente y revolucionaria. Tenemos que señalar que esta forma de proceder sigue teniendo
en la actualidad estas mismas características.
Bacon y Descartes coincidían en uno de los objetivos de la nueva ciencia: que los frutos de la investigación
científica mejorasen la condición humana aquí en la tierra, atendiendo a la agricultura, la medicina, la
navegación y los transportes, la comunicación, las técnicas bélicas, las manufacturas y la minería. 
Galileo, con sus investigaciones sobre la trayectoria de los proyectiles y sus trabajos en el arsenal de Venecia,
 recoge: [ciencia aplicada]
1. Tanto la tradición de los ingenieros y técnicos medievales y renacentistas
2. Así como las reflexiones de la filosofía natural escolástica.
≠ Sin embargo, muchos científicos del siglo XVII eran partidarios de una perspectiva más arcaica, según la
cual la prosecución de la comprensión científica resultaba de utilidad en la medida en que fuese
capaz de promover la comprensión humana de la sabiduría y poder divinos. 
La ciencia moderna es la ciencia de Galileo. A continuación vamos a ver una serie de rasgos
distintivos que sirven para restituirnos la imagen galileana de la ciencia, y con ello su aportación al
cambio conceptual que caracteriza a la "revolución científica":
En efecto, a diferencia de Galileo, Newton manifestaba su adhesión a la más arcaica de las metas
prácticas de la ciencia, como cuando escribía Bentley mostrando su satisfacción por haber
contribuido a la causa de la verdadera religión con sus descubrimientos científicos.
Así era como estaba en el esquema pero está mejor como lo tengo
1. Ante todo, la ciencia de Galileo ya no es un saber al servicio de la fe; no depende de la fe; posee
un objetivo distinto al de la fe; se acepta y se fundamenta por razones distintas a las de la fe.
En pocas palabras, basándose en sus diferentes finalidades (la salvación, para la fe; el
conocimiento, para la ciencia), Galileo separa las proposiciones de la ciencia de las de la fe:
<<Me parece que en las disputas naturales (la Escritura) debería colocarse en último lugar>> [33];
1.2.2. El problema del método.
Otro aspecto de la revolución era la atención prestada al método: Los intentos de codificar un
método, fueron desarrollados por figuras tan diversas como Descartes, Galileo, Bacon, Huygens, Hooke,
Boyle y Newton
Para ellos, los descubrimientos que se realizasen mediante la aplicación de este nuevo instrumento de
investigación (un novum organum, como decía Bacon) deberían dirigir la mente sin error al
desvelamiento de los secretos de la naturaleza.
2. la ciencia es autónoma de la fe, pero también lo es de aquel saber dogmático representado por
la tradición aristotélica.
Características del nuevo método:
1.
2.
3.
4.
Experimental
Basado en la inducción
Cuantitativo
Y no meramente observacional (teórico, creación de situaciones ideales)
1.
Esto no significa, empero, que para Galileo la tradición resulte negativa en cuanto tal,
2.
sino negativa sólo cuando se erige en dogma incontrolable que pretende ser
intocable.
 Por lo que podía desembocar en principios y leyes matemáticas.

En consecuencia, Galileo pretende liberar el camino de la ciencia de un obstáculo
epistemológico en sentido estricto, <<del autoritarismo de una tradición sofocante
que bloquea el avance de la ciencia>> [34];
Parece haberse aceptado el postulado de que cualquiera debería ser capaz de reproducir un experimento u
observación.  Desde entonces, sólo se considera un experimento como científico si es reproducible por
cualquier investigador
 Tal actitud se basaba, y se basa, en la convicción de que los acontecimientos naturales son
constantes y reproducibles, estando por ello sujetos a leyes universales.
Este aspecto de la nueva ciencia también se pone de manifiesto en la nueva costumbre de comenzar
una investigación reproduciendo un experimento u observación que había llamado la atención
del investigador por medio de un rumor o un informe oral o escrito. 
3. La ciencia de Galileo es la ciencia de un realista. En efecto, no razona como un matemático
puro, sino como físico, y esto es así porque en su opinión <<la ciencia no es un conjunto de
instrumentos (calculísticos) útiles (para efectuar previsiones), sino que -al contrario- consiste
en una descripción verdadera de la realidad>>
EL REALISMO GALILEANO CONTRA EL INSTRUMENTALISMO DE BELARMINO
1. Cuando Galileo oyó hablar de un invento óptico holandés
que permitía al observador ver
objetos distantes con la misma claridad que si se hallasen al alcance de la mano, se puso a construir dicho
instrumento.
Galileo no compartía la interpretación instrumentalista del copernicanismo hecha por
Belarmino.
2. Newton nos cuenta cómo había comprado un prisma "a fin de ensayar con él los
famosos fenómenos de los colores".

1.
Esta doble exigencia de: 1º. Realizabilidad y 2º. Reproducibilidad  imponía un código de honestidad
a la comunidad científica que constituye otro de los aspectos característicos de la nueva ciencia y que ha
llegado hasta nuestros días: El carácter públicamente contrastable de las investigaciones sigue siendo
clave para que tal investigación sea considerada como científica.
2.
1
Según éste, el sistema copernicano no era más que un conjunto de instrumentos de
cálculo para efectuar previsiones o elaborar un calendario más perfecto.
Para Galileo, por el contrario,
1. el sistema copernicano constituía una descripción verdadera de la
realidad
Tema V Parte 2ª. LA REVOLUCIÓN CIENTÍFICA
2.
y <<las experiencias sensatas y las demostraciones ciertas proclamaban
(asimismo) la verdad del sistema copernicano>> [19].
Así las cosas, a juicio de Galileo, Copérnico:
1. no es un matemático que emita hipótesis como puros instrumentos de cálculo,
2. sino un físico que pretende decir cómo son realmente las cosas.
Por consiguiente, continúa Galileo, Copérnico <<no puede ser interpretado con
Pero Galileo no es un matemático teórico, no hace sus formulaciones numéricas y
geométricas de fenómenos naturales y se detiene ahí, sino que procede a diseñar y a realizar
experimentos con objeto de establecer si la naturaleza está de acuerdo con sus cálculos, en
vista de que, como él mismo dice:
(El experimento) es común y necesario en las ciencias que aplican
demostraciones matemáticas a sus conclusiones físicas
moderación, ya que la movilidad de la Tierra y la estabilidad del Sol son el elemento
principalísimo de su doctrina y su fundamento universal; hay que condenarlo del todo, o
que permanezca en su ser>>
1) Experimentación. Galileo introdujo una importante novedad a la hora de concebir el método
científico y en el papel reservado a la observación. ¿Por qué? Porque era consciente de que algunas
de sus hipótesis —como la referida a la caída libre— no eran observables en la vida cotidiana, por lo
que sólo podía contrastarlas creando una situación ideal en la que los elementos perturbadores,
tales como la fricción, fueran eliminados.
De esta manera, el experimento permite aislar el fenómeno y estudiar únicamente aquellas variables
consideradas decisivas.
(Arzobispo, Cardenal y Doctor de la Iglesia. 1543-1621)Amigo de Galileo Galilei
San Roberto era amigo de Galileo Galilei, a quien dedicó uno de sus libros. En 1616,
se le confió la misión de amonestar al gran astrónomo; pero en su amonestación,
que Galileo tomó muy bien, se limitó a rogarle que propusiese simplemente como
hipótesis las teorías que no estaban todavía probadas. Galileo, sin renunciar a sus
investigaciones, habría ganado mucho si se hubiese atenido a ese consejo.
4. Sin embargo, la ciencia debe limitarse a describir las cualidades objetivas (o primarias) de los
cuerpos, cuantitativas y mensurables, excluyendo de sí misma al hombre, esto es, las
cualidades subjetivas;
El principio de inercia plateado por Galileo (que afirma que un punto material no sometido a fuerza
externa alguna se encuentra en reposo o en movimiento rectilíneo y uniforme) no puede
deducirse observando la realidad, pues cualquier objeto que está en el universo se encuentra afectado por alguna
fuerza. Hechos como éste son habituales en la investigación científica y nos llevan a preguntarnos: ¿se origina la
ciencia en la experiencia, o más bien tenemos que considerarla una muestra de la capacidad creativa del ser
humano?
En efecto, tenemos que decir que se ha discutido mucho si Galileo iniciaba su investigación con una teoría sobre
el fenómeno que iba a examinar, o si esta teoría era consecuencia de sus experimentos y observaciones.
También fue el primero en usar instrumentos, como los telescopios, para realizar sus estudios. Esta tendencia
que inaugura Galileo será imparable en la ciencia que, cada vez más, dependerá de sofisticados instrumentos y
mecanismos de experimentación. Ej Acelerador de partículas.
5. Esta ciencia descriptiva de la realidad, objetiva y mensurable, tiene como base el siguiente
supuesto: <<El libro de la naturaleza está escrito en lenguaje matemático>> [36].
Matematización. Galileo afirmó sin rodeos que la naturaleza atiende a unas regularidades
expresables mediante funciones matemáticas (La naturaleza está escrita en lenguaje
matemático) La matematización, por tanto, constituyó una pieza angular de la nueva ciencia, en
contraste con la física anterior (tanto griega como medieval), dominada por cualidades ocultas
(éter, ej) y por tendencias naturales de los elementos.
“La filosofía está escrita en este gran volumen —me refiero al universo— que se mantiene
continuamente abierto a nuestra inspección, pero que no puede comprenderse a menos que uno
aprenda primero a entender el idioma y a interpretar los signos en que está escrito. Está escrito
en el idioma de las matemáticas y sus signos son triángulos, círculos y otras figuras geométricas,
sin las que es humanamente imposible entender una sola palabra; sin ellas, uno camina en un
oscuro laberinto”
Texto para entender el término “Situación Ideal”
Un ejemplo de los experimentos realizados por Galileo para resolver una cuestión específica es la famosa
observación de la caída de objetos de distinto peso "desde una torre". Es seguro que las descripciones de una
confrontación pública de Galileo con los aristotélicos en la torre inclinada de Pisa son puro cuento, pero en sus
cuadernos de notas están registrados experimentos diseñados para explorar la idea generalmente aceptada
entonces (y, entre el público menos refinado, todavía aceptada hoy) de que la velocidad de la caída libre de los
cuerpos es proporcional a sus pesos respectivos Los resultados de sus experimentos señalan claramente que
eso no es así, aunque los cuerpos más pesados sí tocan el suelo ligeramente antes que los más livianos; sin
embargo, Galileo atribuye esta pequeña diferencia a la fricción del aire y a la distinta capacidad de los
cuerpos pesados y ligeros para superar tal resistencia en el vacío, que sería la situación ideal, donde todos
los cuerpos caerían con idéntica velocidad. En relación con otra hipótesis matemática sobre el movimiento,
que la velocidad a la que caen los cuerpos es uniformemente acelerada, Galileo no podía (ni nadie puede hoy,
con los instrumentos técnicos accesibles a Galileo) diseñar un experimento para ponerla a prueba
directamente, pero en cambio Galileo decide examinar experimentalmente si otra hipótesis, que es una
consecuencia lógica de la primera (que es que la distancia es proporcional al cuadrado del tiempo)
corresponde a la realidad. Pero como esta segunda hipótesis también está más allá de sus posibilidades
técnicas, en vista de que los cuerpos caen con demasiada rapidez para hacer cualquier tipo de mediciones,
Galileo opta por "diluir la gravedad" (como él mismo dice) y hace sus experimentos en un plano inclinado.
Todo esto constituye una revolución en la noción de saber, de ciencia, en cuanto que:
a) excluye al hombre del universo investigado por la física;
b) excluye la indagación cualitativa a favor de la cuantitativa;
c) elimina las causas finales (en Aristóteles hay finalidad) en favor de las causas
matemáticas.
En pocas palabras: el mundo descrito por la física de Galileo ya no es el mundo de que
habla la física de Aristóteles, el universo determinista y mecanicista de Galileo ya no
es el universo antropocéntrico de Aristóteles y de la tradición; ya no está jerarquizado
y ordenado en función del hombre, y éste ya no constituye la finalidad de aquél:
<<está ordenado geométricamente, con un orden que se muestra ciego ante el
hombre>> .
6.
Atención prestada al método: La experimentación.
2
Descargar