MODELO OSI Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar cómo puede estructurarse una "pila" de protocolos de comunicaciones. El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas: CAPA FISICA Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información. Sus principales funciones se pueden resumir como: Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica. Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos. Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico). Transmitir el flujo de bits a través del medio. Manejar las señales eléctricas del medio de transmisión, polos en un enchufe. Garantizar la conexión (aunque no la fiabilidad de dicha conexión). CAPA DE ENLACES DE DATOS Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso al medio, de la detección de errores, de la distribución ordenada de tramas y del control del flujo. Como objetivo o tarea principal, la capa de enlace de datos se encarga de tomar una transmisión de datos” cruda” y transformarla en una abstracción libre de errores de transmisión para la capa de red. Este proceso se lleva a cabo dividiendo los datos de entrada en marcos (también llamados tramas) de datos (de unos cuantos cientos de bytes), transmite los marcos en forma secuencial, y procesa los marcos de estado que envía el nodo destino. CAPA DE RED El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadotes, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewall actúan sobre esta capa principalmente, para descartar direcciones de máquinas. En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final. CAPA DE TRANSPORTE Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a TCP o UDP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión. Trabajan, por lo tanto, con puertos lógicos y junto con la capa red dan forma a los conocidos como Sockets IP: Puerto (192.168.1.1:80). CAPA DE SESIÓN Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole. Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles. CAPA DE PRESENTACIÓN El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible. Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas. Esta capa también permite cifrar los datos y comprimirlos. Por lo tanto, podría decirse que esta capa actúa como un traductor. CAPA DE APLICACIÓN Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (Post Office Protocol y SMTP), gestores de bases de datos y servidor de ficheros (FTP), por UDP pueden viajar (DNS y Routing Información Protocol). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar. Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente. IEEE 802 IEEE 802 es un estudio de estándares elaborado por el Instituto de Ingenieros Eléctricos y Electrónicos (IEEE) que actúa sobre Redes de Ordenadores. Concretamente y según su propia definición sobre redes de área local (RAL, en inglés LAN) y redes de área metropolitana (MAN en inglés). También se usa el nombre IEEE 802 para referirse a los estándares que proponen, algunos de los cuales son muy conocidos: Ethernet (IEEE 802.3), o Wi-Fi (IEEE 802.11). Está, incluso, intentando estandarizar Bluetooth en el 802.15 (IEEE 802.15). MODELO TCP/IP El modelo TCP/IP es un modelo de descripción de protocolos de red creado en la década de 1970 por DARPA, una agencia del Departamento de Defensa de los Estados Unidos. Evolucionó de ARPANET, el cual fue la primera red de área amplia y predecesora de Internet. EL modelo TCP/IP se denomina a veces como Internet Modela, Modelo DoD o Modelo DARPA. El modelo TCP/IP, describe un conjunto de guías generales de diseño e implementación de protocolos de red específicos para permitir que una computadora pueda comunicarse en una red. TCP/IP provee conectividad de extremo a extremo especificando como los datos deberían ser formateados, diseccionados, transmitidos, enrutados y recibidos por el destinatario. Existen protocolos para los diferentes tipos de servicios de comunicación entre computadoras. Cuadro comparativo sobre los modelos de referencia OSI VS TCP/IP MODELO DE REFERENCIA OSI MODELO DE REFERENCIA TCP/IP El modelo OSI consiste en siete El protocolo TCP/IP se divide en 5 capas, las cuales son: capas, a saber: La Capa de Aplicación: Esta provee el acceso al entorno OSI para los usuarios y los servicios de información distribuida. La Capa de Presentación: Proporciona independencia a los procesos de aplicación respecto a las diferencias existentes en las representaciones de los datos. La Capa de Sesión: Facilita el control de la comunicación entre las aplicaciones; establece, gestiona y cierra las conexiones entre las aplicaciones cooperadoras (nivel lógico). La Capa de Transporte: Ofrece seguridad, transferencia transparente de datos entre los puntos interconectados y además establece los procedimientos de recuperación de errores y control de flujo origendestino. La Capa de Red: Da a las capas superiores independencia en lo que se refiere a las técnicas de conmutación y de transmisión utilizadas para conectar los sistemas, es responsable del establecimiento, mantenimiento y cierre de las conexiones (nivel hardware). La Capa de Enlace de Datos: Suministra un servicio de transferencia de datos seguro a través del medio físico enviando bloques de datos, llevando a cabo la sincronización, el control de errores y el de flujo de información que se requiere. La Capa Física: Encargada de la transmisión de cadenas de bits no estructuradas sobre el medio físico, se relaciona con las características mecánicas, eléctricas, funcionales y La Capa de Aplicación: En esta capa se encuentra toda la lógica necesaria para posibilitar las distintas aplicaciones del usuario. La Capa de Origen-Destino: También llamada Capa de Transporte, es la que tiene aquellos procedimientos que garantizan una transmisión segura. La Capa de Internet: En las situaciones en las que los dispositivos están conectados a redes diferentes, se necesitarán una serie de procedimientos que permitan que los datos atraviesen esas redes, para ello se hace uso de esta capa, en otras palabras, el objetivo de esta capa es el de comunicar computadoras en redes distintas. La Capa de Acceso a la Red: Es la responsable del intercambio de datos entre el sistema final y la red a la cual se esta conectado, el emisor debe proporcionar a la red la dirección de destino. Se encuentra relacionada con el acceso y el encaminamiento de los datos a través de la red. La Capa Física: Define la interfaz física entre el dispositivo de transmisión de datos (por ejemplo, la estación del trabajo del computador) y el medio de transmisión o red. Esta capa se encarga de la especificación de las características del medio de transmisión, la naturaleza de las señales, la velocidad de los datos y cuestiones afines. procedimientos para acceder al medio físico. Cuadro comparativo de Características, Ventajas y Desventajas de los modelos OSI Y TCP/IP Características: OSI define claramente las diferencias entre los servicios, las interfaces, y los protocolos. o Servicio: lo que un nivel hace o Interfaz: cómo se pueden acceder los servicios o Protocolo: la implementación de los servicios OSI MODELOS DE REFERENCI A TCP/IP no tiene esta clara separación. Ventajas: Proporciona a los fabricantes un conjunto de estándares que aseguraron una mayor compatibilidad e interoperabilidad entre los distintos tipos de tecnología de red utilizados por las empresas a nivel mundial. Desventajas: Las capas contienen demasiadas actividades redundantes, por ejemplo, el control de errores se integra en casi todas las capas siendo que tener un único control en la capa de aplicación o presentación sería suficiente. La gran cantidad de código que fue necesario para implantar el modelo OSI y su consecuente lentitud hizo que la palabra OSI fuera interpretada como "calidad pobre", lo que contrastó con TCP/IP que se implantó exitosamente en el sistema operativo Unix y era gratis. Características: Estándar en EE.UU. desde 1983 Dispone de las mejores herramientas para crear grandes redes de ordenadores Independencia del fabricante TCP/I P Ventajas: Encaminable Imprescindible para Internet Soporta múltiples tecnologías Puede funcionar en máquinas de todo tamaño (multiplataforma) Desventajas: El modelo no distingue bien entre servicios, interfaces y protocolos, lo cual afecta al diseño de nuevas tecnologías en base a TCP/IP. Peor rendimiento para uso en servidores de fichero e impresión Relación del modelo TCP/IP con el modelo OSI No hace mucho tiempo, ATM era visto por todos los operadores de telecomunicaciones como la única tecnología integradora de todo tipo de tráficos: datos, vídeo y por supuesto voz. Sin embargo, ATM ha visto como su desarrollo e implantación han ido más lentos de lo esperado y su extensión sobre todo al entorno LAN está en duda. A la vez, IP a surgido como un protocolo de LAN de transmisión de datos, el cual ha ido extendiéndose hacia las redes MAN y las WAN de un modo imparable debido en parte a su sencillez, su bajo costo en equipos y por su transporte tanto a través de redes IP como de Internet. El protocolo IP ha tenido su origen en transmisión de datos y no está demasiado adaptado a la transmisión de datos e imágenes. La tecnología de transmisión de paquetes, en la que está basada IP, ofrece tamaño de celdas variable, que en comparación con tecnologías de tamaño de celda fija como ATM, introduce ineficiencias y necesidad de procesos extras. Además IP es un protocolo que solamente ofrece un tipo de calidad e servicio (QoS) basado en proporcionar el mejor rendimiento posible en el enlace disponible. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL UNEFA EXTENSIÓN-MIRANDA NÚCLEO-OCUMARE DEL TUY ING. SISTEMAS NOCTURNO CÁTEDRA: TEGNOLOGÍA DE REDES (ELECTIVA TÉCNICA) COMPARACION Y RELACION PROF: INTEGRANTES: KRISTIAN CEDEÑO CI: 18.388.660 GERALDINE BRACHO CI: 16.861.964 RICARDO JIMÉNEZ CI: 11.263.503 JOSÉ ALVARADO OCUMARE DEL TUY; 15 DE MAYO DE 2012