METODOS ELECTRICOS METODOS ELECTRICOS Los métodos eléctricos de análisis tienen en cuenta las relaciones entre los fenómenos químicos y eléctricos. Son particularmente útiles en la química del agua, puesto que ofrecen monitoría y registros continuos. El medidor de pH es probablemente el método de análisis más usado. En este método, se insertan en la solución un electrodo de vidrio y otro de referencia, y el potencial o voltaje eléctrico que existe entre ellos es una medida de la concentración de iones hidrógeno en la solución. Los métodos que se basan en este principio son los potenciómetros. En otros métodos eléctricos, se introduce en la solución los electrodos adecuados y se aplica un pequeño voltaje determinado. La corriente que fluye depende de la composición de la solución y, en consecuencia, se puede utilizar para hacer mediciones analíticas. Los métodos que se basan en este principio son los polarográficos. Celda electroquímica Una celda electroquímica es un dispositivo capaz de obtener energía eléctrica a partir de reacciones químicas, o bien, de producir reacciones químicas a través de la introducción de energía eléctrica. Un ejemplo común de celda electroquímica es la "pila" estándar de 1,5 voltios. En realidad, una "pila" es una celda galvánica simple, mientras una batería consta de varias celdas conectadas en serie. Hay dos tipos fundamentales de celdas y en ambas tiene lugar una reacción redox, y la conversión o transformación de un tipo de energía en otra: Cuba electrolítica, mostrando los electrodos y la fuente de alimentación que genera la corriente eléctrica. La celda voltaica transforma una reacción química espontánea en una corriente eléctrica, como las pilas y baterías. También reciben los nombres de celda galvánica, pila galvánica o pila voltaica. Son muy empleadas por lo que la mayoría de los ejemplos e imágenes de este artículo están referidos a ellas. METODOS ELECTRICOS La celda electrolítica transforma una corriente eléctrica en una reacción química de oxidación-reducción que no tiene lugar de modo espontáneo. En muchas de estas reacciones se descompone una sustancia química por lo que dicho proceso recibe el nombre de electrolisis. También reciben los nombres de celda electrolítica o cuba electrolítica. A diferencia de la celda voltaica, en la célula electrolítica, los dos electrodos no necesitan estar separados, por lo que hay un sólo recipiente en el que tienen lugar las dos semirreacciones. Las semiceldas o semireacciones en una celda voltaica La pila de Bunsen, inventada por Robert Bunsen. Una celda galvánica o celda voltaica consta de dos semiceldas conectadas eléctricamente mediante un conductor metálico, y también mediante un puente salino. Cada semicélula consta de un electrodo y un electrolito. Las dos semicélulas pueden utilizar el mismo electrolito, o pueden utilizar electrolitos diferentes. Las reacciones químicas en la celda pueden implicar al electrolito, a los electrodos o a una sustancia externa (como en las pilas de combustible que puede utilizar el hidrógeno gaseoso como reactivo). En una celda voltaica completa, las especies químicas de una semicelda pierden electrones (oxidación) hacia su electrodo mientras que las especies de la otra semicelda ganan electrones (reducción) desde su electrodo. Un puente salino se emplea a menudo para proporcionar un contacto iónico entre las dos medias celdas con electrolitos diferentes, para evitar que las soluciones se mezclen y provoquen reacciones colaterales no deseadas.[1] Este puente salino puede ser simplemente una tira de papel de filtro empapado en solución saturada de nitrato de potasio. Otros dispositivos para lograr la separación de las disoluciones son vasijas porosas y disoluciones gelificadas. Un recipiente poroso se utiliza en la pila de Bunsen (derecha). También se les denomina semirreacciones pues en cada una de ella tiene lugar una parte de la reacción redox: La pérdida de electrones (oxidación) tiene lugar en el ánodo. La ganancia de electrones (reducción) en el cátodo. METODOS ELECTRICOS Reacción de equilibrio Cada semicelda tiene una tensión característica llamada potencial de semicelda o potencial de reducción. Las diferentes sustancias que pueden ser escogidas para cada semicelda dan lugar a distintas diferencias de potencial de la celda completa, que es el parámetro que puede ser medido. No se puede medir el potencial de cada semicelda, sino la diferencia entre los potenciales de ambas. Cada reacción está experimentando una reacción de equilibrio entre los diferentes estados de oxidación de los iones; cuando se alcanza el equilibrio, la célula no puede proporcionar más tensión. En la semicelda que está sufriendo la oxidación, cuanto más cerca del equilibrio se encuentra el ion/átomo con el estado de oxidación más positivo, tanto más potencial va a dar esta reacción. Del mismo modo, en la reacción de reducción, cuanto más lejos del equilibrio se encuentra el ion/átomo con el estado de oxidación más negativo, más alto es el potencial Potenciales de electrodo y fuerza electromotriz de una pila El potencial o fuerza electromotriz de una pila se puede predecir a través de la utilización de los potenciales de electrodo, las tensiones de cada semicelda. (Ver tabla de potenciales de electrodo estándar). La diferencia de voltaje entre los potenciales de reducción de cada electrodo da una predicción para el potencial medido de la pila. Los potenciales de pila tienen un rango posible desde 0 hasta 6 voltios. Las pilas que usan electrolitos disueltos en agua generalmente tienen potenciales de celda menores de 2,5 voltios, ya que los oxidantes y reductores muy potentes, que se requerirían para producir un mayor potencial, tienden a reaccionar con el agua. Un electrodo es un conductor utilizado para hacer contacto con una parte no metálica de un circuito, por ejemplo un semiconductor, un electrolito, el vacío (en una válvula termoiónica), un gas (en una lámpara de neón), etc. La palabra fue acuñada por el científico Michael Faraday y procede de las voces griegas elektron, que significa ámbar y de la que proviene la palabra electricidad y hodos, que significa camino A nivel químico, se entiende por electrodo, cada una de las superficies donde se produce un proceso redox Ánodo y Cátodo en Celdas Electroquímicas Un electrodo en una celda electroquímica se refiere a cualquiera de los dos conceptos, sea ánodo o cátodo, que también fueron acuñados por Faraday. El ánodo es definido como el electrodo al cual los electrones vienen de la celda y ocurre la oxidación, y el cátodo es definido como el electrodo en el cual los electrones entran a la celda y ocurre la reducción. Cada electrodo puede convertirse en ánodo o cátodo dependiendo del voltaje que se aplique a la celda. Un electrodo bipolar es un electrodo que funciona como ánodo en una celda y como cátodo en otra. METODOS ELECTRICOS Celda Primaria Una celda primaria es un tipo especial de celda electroquímica en la cual la reacción no puede ser revertida, y las identidades del ánodo y cátodo son, por lo tanto, fijas. El Ánodo siempre es el electrodo negativo. La celda puede ser descargada pero no recargada. Celda Secundaria Una celda secundaria, una batería recargable por ejemplo, es una celda en que la reacción es reversible. Cuando la celda está siendo cargada, el ánodo se convierte en el electrodo positivo (+) y el cátodo en el negativo (-). Esto también aplica apara la celda electrolítica. Cuando la celda está siendo descargada, se comporta como una celda primaria o voltaica, con el ánodo como electrodo negativo y el cátodo como positivo. Típicas celdas secundarias son el acumulador de plomo o de Planté, constituido por Pb(0) y PbO2 en ácido sulfúrico, o los acumuladores de Ni-Cd o Ni-HMe En un tubo de vacío o un semiconductor polarizado (diodos, capacitores electrolíticos) el ánodo es el electrodo positivo (+) y el cátodo el negativo (-). Los electrones entran al dispositivo por el cátodo y salen por el ánodo. En una celda de tres electrodos, un electrodo auxiliar es usado sólo para hacer la conexión con el electrolito para que una corriente pueda ser aplicada al electrodo en curso. El electrodo auxiliar esta usualmente hecho de un material inerte, como un metal noble o grafito. Hecho por Anthony QC