Ejercicio 7: Transferencia de Calor por Conducción Ley de Fourier. Objetivo Al finalizar este ejercicio los estudiantes serán capaces de realizar las siguientes tareas. Estimar el calor especifico de un alimento utilizando el modelo de Siebel. Realizar balances de energía en sistemas abiertos. Calcular la conductividad térmica de un material experimentalmente utilizando la ley de Fourier. Introducción La transferencia de calor es el proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. En términos generales el calor se transfiere mediante cualquiera de tres mecanismos: convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos. En los sólidos, la principal forma de transferencia de calor es la conducción. Si se calienta un extremo de una varilla metálica, de forma que aumente su temperatura, el calor se transmite hasta el extremo más frío por conducción. No se comprende en su totalidad el mecanismo exacto de la conducción de calor en los sólidos, pero se cree que se debe, en parte, al movimiento de los electrones libres que transportan energía cuando existe una diferencia de temperatura. Esta teoría explica por qué los buenos conductores eléctricos también tienden a ser buenos conductores del calor. En 1822, el matemático francés Joseph Fourier dio una expresión matemática precisa de la conducción del calor que hoy se conoce como ley de Fourier. Esta ley afirma que la velocidad de conducción de calor a través de un cuerpo, por unidad de sección transversal, es proporcional al gradiente de temperatura que existe en el cuerpo (con el signo cambiado). q x kA Conducción lineal El principio de conducción de calor en forma lineal permite predecir la conductividad térmica de un material (k) a partir de la razón de cambio de la temperatura con la posición (dT/dx) , el área de transferencia (A) y el calor suministrado (qx). El equipo a dT dx utilizado para tales efectos es similar al que se muestra en la figura. La muestra a ser evaluada se coloca en el centro del tubo de conducción lineal. Este tubo es de forma cilíndrica y su área seccional (A) equivale al área de un circulo de diámetro D. A D2 4 El equipo tiene varios termopares (elementos que proveen una señal eléctrica proporcional a la temperatura a la que están expuestos) que se utilizan para medir el gradiente de temperatura en función de la distancia lineal (dT/dx o T). Finalmente, la energía (o calor) aplicada se puede estimar con el voltaje (V) y la corriente (I) suministrada al elemento . térmico del equipo y retirada en el otro extremo por un flujo de agua (m ). C P TW q x VI m Con estos datos, es posible encontrar la conductividad térmica del material al despejar la ecuación de Fourier para k. k C P TW VI m AT Conducción Radial De manera similar se pueden establecer ecuaciones para transferencia de calor de forma radial. Este sería el caso, por ejemplo, del tubo de retención donde hay que aguantar los fluidos luego de la pasteurización. Estos tubos no pueden ser calentados, pero transfieren el calor que reciben del líquido que transportar hacia el ambiente exterior. Esta conducción es radial debido a que ocurre a lo largo del radio del tubo y atraviesa el área de superficie del tubo. A 2rL Donde r es el radio y L es el largo del tubo. Asumamos que el radio interno del tubo es rI y el radio externo rO. El fluido en el interior, y por ende la superficie interna del tubo, está a temperatura T I, mientras que la temperatura en el exterior del tubo es T O. Se puede demostrar que, para este caso, el diferencial (dT/dr) en la ecuación de Fourrier resulta en una ecuación de primer orden. T C1 lnr C 2 C1 T I TO r ln O rI C 2 TI T I TO r ln O rI lnrI Entonces, podemos estimar k de la siguiente forma. k rO rI VI m C P TW ln 2LT I TO Ganancia o pérdida de calor Cuando dos cuerpos a diferentes temperaturas entran en contacto habrá una transferencia de calor entre ellos solamente porque existe tal gradiente térmico. En esto se basan muchos de los procesos de cocción de alimentos. Veamos el caso mas simple en el que, por ejemplo, cocinamos un trozo de carne en la plancha. TF qX trozo de carne TH plancha caliente Asumamos que la temperatura de la plancha se mantiene constante a una temperatura (TH) mayor que la temperatura de la carne (TF). El hecho de que existe una diferencia en temperatura entre la plancha y la carne (T=TH-TF) conlleva que ocurra la transferencia de calor (qX) de un cuerpo al otro. La carne va a transferir el calor que recibe de la plancha de su lado expuesto al calor hasta el lado opuesto. Esta transferencia depende del área seccional (A) donde ocurre la transferencia (contacto entre los cuerpos o área que tiene el cuerpo en su interior), la conductividad térmica de la carne (k), y el grosor de la carne (L) que cambia de temperatura. En otras palabras qx kAT L Nótese que el valor de qX está limitado por la conductividad térmica del material de la plancha. Si qX que provee la plancha es excesivo y la conductividad térmica de la carne en menor que la de la plancha (como típicamente es), o la carne es muy gruesa, y la carne no podrá transferir apropiadamente todo el calor que recibe. Esto provocará que la carne se queme por un lado mientras está crudo por el otro. De aquí que debemos bajarle el fuego a la comida al cocinar. En la ecuación anterior aparece el término kA/L. El inverso de este valor se conoce como la resistencia térmica (R) del material y es muy utilizado para estimar pérdidas o ganancias de calor por conducción en neveras o empaques refrigerados. Esta definición ayuda a simplificar los problemas de transferencia de calor por conducción donde hay varios materiales diferentes unos tras el otro (serie) o uno al lado del otro (paralelo). R kA L Materiales en Serie Materiales en Paralelo RTOTAL Ri RTOTAL 1 Ri 1 TF L1 L2 TF k1 qX k2 L3 L1 = L2 = L3 qX k3 TH k3 TH r1 k2 r3 TF TH TH qX r2 k1 k2 qX k2 k1 r1 r2 TF k1 qX qX TH TH Para tubos o conductos circulares, la resistencia térmica se define como sigue. r ln OUT rIN R 2kL Donde L es el largo del tubo o conducto, rOUT es el radio externo del tubo, y rIN es el radio interno del tubo. Calor especifico Las propiedades térmicas de los alimentos resultan de interés durante las operaciones de transformación y procesado, bien en condiciones de refrigeración, secado y esterilización. El calor específico es el calor ganado o perdido por unidad de peso necesario para establecer un incremento de temperatura sin que tenga lugar un cambio de estado. El calor específico de un alimento se puede estimar a partir de la composición del producto según las ecuaciones propuestas en el modelo de Siebel. Modelos de siebel Congelado No congelado Sin Grasa 1256*M+837.36 3349*M+837.36 Con grasa 1674.72*F + 837.365*SNF +2093.4*M 1674.72*F+837.36*SNF+4186.8*M Cp (J/Kg*K) Donde M es el contenido de humedad, F es el contenido de grasa y SNF es el contenido de sólidos no grasos. Conservación de energía La ley de la conservación de la energía constituye el primer principio de la termodinámica y afirma que la cantidad total de energía en cualquier sistema aislado (sin interacción con ningún otro sistema) permanece invariable con el tiempo, aunque dicha energía puede transformarse en otra forma de energía. Temperatura y energía de calor no es lo mismo. La temperatura es una medida de la energía cinética de las moléculas del material. La temperatura y la energía cinética de las moléculas cambian cuando el objeto toca un material con una temperatura más baja o más alta. La energía de calor tiene que ver con la naturaleza del material, la masa del material, y la temperatura del material. Por ejemplo, 100 g de agua caliente tiene más energía que 100 g de agua fría por la diferencia en temperatura. Se puede calcular el aumento o pérdida de energía de dos o más sustancias cuando se mezclan usando la relación para cada una de las sustancias: Q= m*Cp*Δt. Procedimiento Estimación del calor específico (Cp) de los alimentos 1) Prepare 3 soluciones de leche reconstituida (leche en polvo + agua). Cada solución debe tener una concentración diferente. 2) Estime el calor específico (Cp) de cada solución Utilizando el modelo de Siebel. 3) Encienda la estufa y espere a que se estabilice su temperatura. 4) En un envase de aluminio pese 200 ml de agua y anote su temperatura (Ti). Calientela en la estufa anteriormente pre-calentada por 3 minutos. Anote la temperatura final del agua (Tf). 5) Use los datos para estimar el calor entregado por la estufa (q = m*Cp*[Tf-Ti]) utilizando como calor especifico del agua Cp = 1BTU/lb.K = 4186.8J/kg.K. Masa de agua (g) Tinicial (K) Tfinal (K) q estufa 6) Adicione 200 mL de cada una de las muestras al envase de aluminio, pesar y calentar por 3 minutos. Asegúrese de medir las temperaturas antes y después de calentar cada solución. 7) Estimar Cp de las soluciones y comparar con el estimado de la ecuación de Siebel. 8) Hacer un gráfico x-y en Excel de Concentración (Leche) vs. Cp que incluya los estimados (curva 1) y los valores experimentales (curva 2). Solución # °Brix Masa (Kg) Tinicial (K) Tfinal (K) Cp Estimado Siebel Cp experimental Balance de energía. Estimar la temperatura final de una mezcla de dos líquidos 1) Preparar 4 muestras de leche de 50, 100, 150 y 200 mL en beakers y refrigere y mida la temperatura de cada una de estas. 2) Caliente 600 ml de agua hasta ebullición mida su temperatura. 3) Para cada muestra de leche, tomar un beaker limpio a temperatura ambiente y mezclar la leche con agua hasta completar un volumen total de 250mL. 4) Inmediatamente, tomar la temperatura de la mezcla y registrarla. 5) Preparar un gráfico x-y en Excel que presente concentración de leche (en por ciento del total) vs temperatura final. Esta debe tener dos curvas: datos experimentales (curva 1) y datos teóricos (curva 2). 6) Asumiendo que vamos a mezclar leche y agua habiendo calentado uno de estos hasta 85ºC y manteniendo esotro a 25ºC. ¿Cuál debemos calentar para que la temperatura final sea mayor? ¿hace diferencia? Explique. Muestra de leche (ml) 50 100 150 200 Cantidad de agua adicionada (ml) TiLeche Ti Agua (K) (K) Tf mezcla Teorico. (K) Tf mezcla Exp. (K) Estimar la conductividad térmica 1) Encienda la estufa y determine el calor que entrega (Q) de forma similar a como se realizó en el experimento 1. Mantener el fuego bajo o moderado. Masa de agua (g) Tinicial (K) Tfinal (K) q estufa 2) Usando sacabocado de 1cm, preparar cilindros del material (papa, manzana y zanahoria) los cilindros para obtener muestras de 1.0, 2.0, y 3.0 cm de largo del material. 3) Usando el termómetro laser medir la temperatura en el centro de cada muestra cada 30 segundos por un total de 10 minutos. Repetir para cada material. 4) Para cada material, preparar un gráfico x-y de grosor de muestra vs. Temperatura. Estimar la temperatura promedio de la gráfica y la pendiente correspondiente. Estime k para cada material de acuerdo a la primera ley de Fourier q/A = -k(dT/dx). 5) Finalmente, hacer una gráfico x-y de temperatura-k con los datos obtenidos. Material Grosor (cm) Tf en el centro (K) Material Grosor (cm) Tf en el centro (K) Material Grosor (cm) Tf en el centro (K) Informe de Laboratorio 1) Someta los datos recopilados. 2) Un conducto lleva aire caliente a 300ºF hacia una secadora por atomización. El mismo está cubierto con 2 pulgadas de material aislante de fibra de vidro (k = 0.025 BTU/(hr·ft·ºF). Calcule la pérdida de calor por pie cuadrado si la temperatura exterior es 75ºF. 3) Se va a construir un horno de ladrillos. Para el mismo se utilizan ladrillos de construcción de 8 pulgadas de grueso (0.4 BTU/hr·ft·ºF) que forman la estructura del horno. La parte interior del horno se cubre con ladrillos de barro de igual grosor (0.9 BTU/hr·ft·ºF). La superficie interna del horno está a 1800ºF mientras que la superficie externa está a 90ºF. Halle la pérdida en calor por unidad de área y la temperatura de superficie en la interface de los ladrillos de barro y estructural. 4) La pared de un almacén refrigerado (3m * 6m) es de 0.15m de grueso y construida en concreto (1.73 W/m·C). Para mantener la pérdida en calor por conducción bajo los 100W es necesario instalar material aislante de corcho (0.04 W/m·C). calcule el grosor de la cubierta de corcho si la temperatura dentro del almacén debe ser 5ºC y afuera puede estar hasta a 38ºC en el peor de los casos. 5) Una tubería acero inoxidable (43 W/m·C ) de 0.02 m de grueso tiene diámetro interior de 0.06 m. Esta se utiliza para llevar vapor a 115ºC de la caldera a un proceso localizado a 6 metros de distancia. La tubería está cubierta por material aislante (0.07 W/m·C) de 0.05m. ¿Cuánto es la pérdida en calor del vapor si la temperatura en el exterior está a 24ºC? 6) Calcule la pérdida en calor por metro cuadrado de área de superficie de una pared aislante para un almacén refrigerado de alimentos. La temperatura exterior es 299.9 ºK y la interior es 267.5 ºK. La pared esta construida de corcho (0.0433 W/m·K) con un grosor de 2504mm. 7) Durante un experimento para determinar la conductividad térmica de cierto alimento se midieron las temperaturas a ambos lados de una placa del alimento de 25 mm de grosor. Las temperaturas fueron 318.4 y 303.2 ºK. El flujo de calor medido fue 35.1 W/m2. Estime al conductivita térmica en W/m·K y BTU/ h·ft·F 8) Un almacén refrigerado está construido con una capa interna de 19.1 mm de pino (0.151 W/m·K), una capa intermedia de corcho (0.0433 W/m·K), y una capa exterior de 50.8 mm de concreto (0.762 W/m·K). La temperatura del almacén debe mantenerse a -17.8ºC y se espera que la temperatura fuera este en los 29.4ºC. Si el área de superficie del almacén es de unos 39 m 2, ¿cuál debe ser el grosor de la capa de corcho para mantener la pérdida de calor por conducción en 586 W? 9) Un horno construido con un material cuya conductividad térmica es 1.30 W/m·K tiene paredes de 0.244 m de grosor. Las paredes se vana aislar con otro material cuya conductividad térmica es 0.346 W/m·K de forma tal que la pérdida de calor por conducción no exceda 1830 W/m 2. ¿Cuál debe ser el grosor del aislante para que la temperatura fuera sea de 299 K cuando la de adentro es de 1588 K?