I) FUNDICION Proceso de producción de piezas metálicas a través del vertido de metal fundido sobre un molde hueco, por lo general hecho de arena. El principio de fundición es simple: se funde el metal, se vacía en un molde y se deja enfriar, existen todavía muchos factores y variables que se deben considerar para lograr una operación exitosa de fundición. La fundición es un antiguo arte que todavía se emplea en la actualidad, aunque ha sido sustituido en cierta medida por otros métodos como el fundido a presión (método para producir piezas fundidas de metal no ferroso, en el que el metal fundido se inyecta a presión en un molde o troquel de acero), la forja (proceso de deformación en el cual se comprime el material de trabajo entre dos dados usando impacto o presión para formar la parte), la extrusión (es un proceso de formado por compresión en el cual el metal de trabajo es forzado a fluir a través de la abertura de un dado para darle forma a su sección transversal), el mecanizado y el laminado (es un proceso de deformación en el cual el espesor del material de trabajo se reduce mediante fuerzas de compresión ejercidas por dos rodillos opuestos). II) Procesos de Fundición La realización de este proceso empieza lógicamente con el molde. La cavidad de este debe diseñarse de forma y tamaño ligeramente sobredimensionado, esto permitirá la contracción del metal durante la solidificación y enfriamiento. Cada metal sufre diferente porcentaje de contracción, por lo tanto si la presión dimensional es crítica la cavidad debe diseñarse para el metal particular que se va a fundir. Los moldes se hacen de varios materiales que incluyen arena, yeso, cerámica y metal. Los procesos de fundición se clasifican de acuerdo a los diferentes tipos de moldes. Proceso: Se calienta primero el metal a una temperatura lo suficientemente alta para transformarlo completamente al estado líquido, después se vierte directamente en la cavidad del molde. En un molde abierto el metal líquido se vacía simplemente hasta llenar la cavidad abierta. En un molde cerrado existe una vía de paso llamada sistema de vaciado que permite el flujo del metal fundido desde afuera del molde hasta la cavidad, este es el más importante en operaciones de fundición. Cuando el material fundido en el molde empieza a enfriarse hasta la temperatura suficiente para el punto de congelación de un metal puro, empieza la solidificación que involucra un cambio de fase del metal. Se requiere tiempo para completar este cambio de fase porque es necesario disipar una considerable cantidad de calor. El metal adopta la forma de cavidad del molde y se establecen muchas de las propiedades y características de la fundición. Al enfriarse la fundición se remueve del molde; para ello pueden necesitarse procesamientos posteriores dependiendo del método de fundición y del metal que se usa. Entre ellos tenemos: - El desbaste del metal excedente de la fundición. - La limpieza de la superficie. - Tratamiento térmico para mejorar sus propiedades. - Pueden requerir maquinado para lograr tolerancias estrechas en ciertas partes de la pieza y para remover la superficie fundida y la microestructura metalúrgica asociada. 1) Fundición en arena Uno de los materiales más utilizados para la fabricación de moldes temporales es la arena sílica o arena verde (por el color cuando está húmeda). El procedimiento consiste en el recubrimiento de un modelo con arena húmeda y dejar que seque hasta que adquiera dureza. Existen dos métodos diferentes por los cuales la fundición a la arena se puede producir. Se clasifica en función de tipo de modelo usado, ellos son: modelo removible y modelo desechables. En el método empleando modelo removible, la arena comprimida alrededor del modelo el cual se extrae más tarde de la arena. La cavidad producida se alimenta con metal fundido para crear la fundición. Los modelos desechables son hechos de poliestireno y en vez de extraer el modelo de la arena, se vaporiza cuando el metal fundido es vaciado en el molde. 2) Fundición por Inyección: La fundición en esta forma y tratándose de gran cantidad de piezas, exige naturalmente un numero considerable de moldes. Es evidente que el costo de cada pieza aumenta con el precio del molde. En las técnicas modernas para la fundición de pequeñas piezas, se aplican maquinas con moldes de metal, que duran mucho tiempo, pudiendo fundirse en ellos millares de piezas, el metal se inyecta en el molde a presión, por cuya razón este sistema se denomina por inyección. El peso de las piezas que se pueden fundir por inyección en moldes mecánicos, varía entre 0.5 gramos hasta 8 kilos. Por lo general se funden por inyección piezas de Zinc, Estaño, Aluminio, y Plomo con sus respectivas aleaciones. La parte más delicada de la maquina para fundir por inyección es el molde. Este molde tiene que ser hecho con mucho cuidado y exactitud, tomando en cuenta los coeficientes de contracción y las tolerancias para la construcción de las piezas, de acuerdo con el metal y la temperatura con la que se inyecta. La cantidad de piezas que pueden fundir en un molde y con una sola maquina es muy grande, además, en una hora pueden fabricarse de 200 a 2000 piezas según su tamaño y forma, por lo tanto, repartiendo el costo del molde, de la maquina, así como también los gastos de mano de obra para la manutención del equipo y teniendo en cuenta la gran producción, a de verse que las piezas fundidas en serie por inyección resultan de bajo costos. 3) Fundición en Coquillas: Si se hecha un metal fluido en un molde permanente, fabricado de hierro o acero, se efectúa la fundición en coquillas. Este método tiene una ventaja importante en comparación con la fundición en arena; se puede fundir con la pieza misma, roscas exteriores mayores, agujeros, etc. Las piezas coladas en coquillas tienen una superficie pareja y limpia por lo que, generalmente, no es necesario un trabajo posterior de acabado. La exactitud de la medida es mucho más grande que la fundición de arena; pero mucho menor que cuando se funde por inyección. Se puede observar que la estructura de la pieza fundida en coquillas es densa de grano muy fino, por lo que las propiedades mecánicas en estas son mejores que las de piezas iguales coladas en molde de arena. Por esta razón es posible disminuir el peso de piezas fundidas en coquillas, con el consiguiente ahorro de material. 4) Fundición Centrífuga: La fundición centrifuga es el proceso de hacer girar el molde mientras se solidifica el metal, utilizando así la fuerza centrifuga para acomodar el metal en el molde. Se obtienen mayores detalles sobre la superficie de la pieza y la estructura densa del metal adquiere propiedades físicas superiores. Las piezas de forma simétricas se prestan particularmente para este método, aun cuando se pueden producir otros muchos tipos de piezas fundidas. Por fundición centrifuga se obtienen piezas más económicas que por otros métodos. Los corazones en forma cilíndrica y rebosaderos se eliminan. Las piezas tienen una estructura de metal densa con todo y las impurezas que van de la parte posterior al centro de la pieza pero que frecuentemente se maquinan. Por razón de la presión extrema del metal sobre el metal, se pueden lograr piezas de secciones delgadas también como en la fundición estática. Los moldes permanentes se han hecho frecuentemente en la fundición centrifuga de magnesio. Desde entonces las piezas de fundición de magnesio son forzadas nuevamente al molde, las piezas se enfrían mas rápidamente y el aire o gas atrapados se eliminan entre el molde y el material. Aunque en la fundición centrífuga hay limitaciones en el tamaño y forma de piezas fundida, se pueden hacer desde anillos de pistón de pocos gramos de peso y rodillo para papel que pesen arriba de 40 toneladas, Blocks de maquinas en aluminio. 5) Fundición en moldes metálicos La fundición en moldes permanentes hechos de metal es utilizada para la producción masiva de piezas de pequeño o regular tamaño, de alta calidad y con metales de baja temperatura de fusión. Sus ventajas son que tienen gran precisión y son muy económicos, cuando se producen grandes cantidades. Existen varios tipos de moldes metálicos utilizados para la fabricación de piezas por lo regular de metales no ferrosos, a continuación se mencionan algunos de las más utilizados. 6) Fundición en matrices En este proceso el metal líquido se inyecta a presión en un molde metálico (matriz), la inyección se hace a una presión entre 10 y 14 Mpa, las piezas logradas con este procedimiento son de gran calidad en lo que se refiere a su terminado y a sus dimensiones. Este procedimiento es uno de los más utilizados para la producción de grandes cantidades de piezas fundidas. Se pueden utilizar dos tipos de sistema de inyección en la fundición en matrices. Cámara caliente Cámara fría El procedimiento de fusión en cámara caliente se realiza cuando un cilindro es sumergido en el metal derretido y con un pistón se empuja el metal hacia una salida la que descarga a la matriz. Las aleaciones más utilizadas en este método son las de bajo punto de fusión como las de zinc, estaño y plomo. Las piezas que se producen son de 20 a 40 kg y se llegan a manejar presiones superiores a los 35 Mpa. Es un proceso rápido que se puede fácilmente mecanizar. Fundición con cámara caliente El proceso con cámara fría se lleva metal fundido por medio de un cucharón hasta un cilindro por el cual corre un pistón que empuja al metal a la matriz de fundición, las piezas obtenidas son de unos cuantos gramos a 10 kg y sólo es recomendable en trabajos de poca producción. 7) Fundición en cámara fría Fundición con molde permanente por gravedad Este tipo de fundición es utilizado para piezas en las que la calidad de terminado y dimensional no está sujeto a restricciones de calidad, debido a que la única fuente de energía que obliga al metal a llenar la cavidad del molde es la fuerza de la gravedad, un ejemplo de la utilización de este método el la fabricación de lingotes de metal. La fusión de moldes de baja presión Es un sistema de fusión que consiste en la colocación de un tallo sobre un crisol sellado, al inyectar presión al centro del crisol la única salida del metal fundido será el tallo por lo que se genera el flujo del metal por el tallo hasta que se llena la matriz y se forma la pieza. Con este procedimiento se pueden fabricar piezas hasta de 30 kg y es rentable para grandes cantidades de piezas sin grandes requerimientos de calidad. Fundición a vacio 8) Fundición hueca Es un sistema de producción de piezas metálicas huecas sin corazones fijos. Consiste en vaciar metal fundido en un molde que es volteado cuando se empieza a solidificar el metal. El metal que no se ha solidificado sale del molde para ser utilizado en otra pieza y el metal solidificado forma las paredes de la pieza. El resultado son paredes delgadas de metal. 9) Fundición prensada o de Corthias Es un proceso para producir piezas huecas pero de mayor calidad que la fundición hueca. Se vacía una cantidad específica de metal fundido en el interior de un molde con un extremo abierto por el que se introduce un corazón que obliga al metal fundido a distribuirse uniformemente en todo el molde, una vez que empieza a solidificarse el metal del molde, se extrae el corazón, lo que origina una pieza de buena calidad. Este sistema de fundición es considerado como artesanal y sólo es rentable cuando se van a fabricar pocas piezas. 10) Fundición centrífuga La fundición centrífuga es un método en el que aprovecha la fuerza centrífuga que se puede general al hacer girar el metal en tordo de un eje. Existen tres tipos de fundición centrífuga: I. II. III. Fundición centrífuga real Fundición semicentrífuga Centrifugado I) Fundición centrífuga real Es el procedimiento utilizado para la fabricación de tubos sin costura, camisas y objetos simétricos, los moldes se llenan del material fundido de manera uniforme y se hace girar al molde sobre su eje de rotación. II) Fundición semicentrífuga Es un método en el que el material fundido se hace llegar a los extremos de los moldes por la fuerza centrífuga que genera hacer girar a los moldes, los extremos se llenan del material fundido, con buena densidad y uniformidad. El centro tiene poco material o de poca densidad. Por lo regular el centro en este tipo de sistemas de fundición es maquinado posteriormente. III) Centrifugado Es un sistema donde por medio de un tallo se hace llegar metal fundido a racimos de piezas colocadas simétricamente en la periferia. Al poner a girar el sistema se genera fuerza centrífuga la que es utilizada para aumentar la uniformidad del metal que llena las cavidades de los moldes. 11) Proceso de fundición a la cera perdida Es un proceso muy antiguo para la fabricación de piezas artísticas. Consiste en la creación de un modelo en cera de la pieza que se requiere, este modelo debe tener exactamente las características deseadas en la pieza a fabricar. El modelo de cera es cubierto con yeso o un material cerámico que soporte el metal fundido. Para que seque ese material cerámico se introduce a un horno, con ello el material cerámico se endurece y el modelo de cera se derrite. En el molde fabricado se vacía el metal fundido y se obtiene la pieza deseada. Es un proceso que es utilizado para la fabricación de piezas ornamentales únicas o con muy pocas copias. 12) Proceso de cáscara cerámica Es un proceso parecido al de la cera perdida, sólo que en este proceso el modelo de cera o un material de bajo punto de fusión se introduce varias veces en una lechada refractaria (yeso con polvo de mármol) la que cada vez que el modelo se introduce este se recubre de una capa de la mezcla, generando una cubierta en el modelo. Posteriormente el modelo y su cáscara se meten en un horno con lo que el material refractario se endurecerá y el modelo se derrite. Así se tiene un molde listo para ser llenado con un metal y producir una fundición sólida o hueca. 13) Fundición en molde de yeso Cuando se desea la fabricación de varios tipos de piezas de tamaño reducido y de baja calidad en su terminado superficial, se utiliza el proceso de fundición en molde de yeso. Este consiste en la incrustación de las piezas modelo que se desean fundir, en una caja llena con pasta de yeso, cuando se ha endurecido el yeso, se extraen las piezas que sirvieron de modelo y por gravedad se llenan las cavidades con metal fundido. El sistema anterior puede producir grandes cantidades de piezas fundidas con las formas deseadas. III) VACIADOS EN ARENA A parte de los metales metalúrgicos formados por métodos en que interviene la metalurgia de polvos, los metales y las aleaciones se funden primero y luego se vacían en un molde de forma predeterminada. En algunos casos, el molde puede ser de forma simple obteniéndose lingote que subsecuentemente se forma plásticamente por forjado, laminado o extrusión. Pasos básicos en un proceso de vaciado de arena: Requiere primero del moldeo en arena de fundición, alrededor de un patrón adecuado de tal manera que este pueda retirarse, dejando un cavidad de la forma requerida en arena. Para facilitar este procedimiento, el molde de arena se divide en dos o mas partes. En vaciados de formas simples, puede usarse un molde de dos partes, en el que cada mitad esta contenida en un marco en forma de caja. IV) Composición química y característica de la arena de molde Arena Sílica (SiO2) se encuentra en muchos depósitos naturales, y es adecuada para propósitos de moldeo por que puede resistir altas temperaturas sin descomponerse. Esta arena es de bajo costo, tiene gran duración y se consigue en una gran variedad de tamaño y formas de grano. Por otra parte, tiene una alta relación de expansión cuando esta sometida al calor y tiene cierta tendencia a fusionarse con el metal. La arena sílica pura no es conveniente por si misma para el trabajo de moldeo puesto que adolece de propiedades aglomerantes. Las propiedades aglomerantes se pueden obtener por adición de 8 a 16% de arcilla. Los tres tipos de arcilla comúnmente usados son, la Caolinita, Ilita y Bentonita. Esta ultima, usadas con mas frecuencia, proviene de cenizas volcánicas. Arenas naturales (semisintéticas): estas se han formado por la erosión de las rocas ígneas; se mezclan adecuadamente con arcillas al extraerlos en las canteras y solo se requiere agregarles agua para obtener una arena conveniente para moldeos de piezas fundidas de hierro y metales no ferrosos. La gran cantidad de materia orgánica encontrada en las arenas naturales impiden que sean lo suficientemente refractarias para usos en temperaturas elevadas, tal y como en el modelo de metales y aleaciones con alto punto de fusión. Las arenas de moldeo sintéticas se componen de Sílice lava de granos agudos, a lo que se añade 3 a 5% de arcilla. Con las arenas sintéticas se generan menos gas ya que se requiere menos del 5% de humedad para que desarrolle su resistencia adecuada. V) Modelos y sus diferentes tipos Modelos desechables y removibles Los moldes se fabrican por medio de modelos los que pueden ser de madera, plástico, cera, yeso, arena, poliuretano, metal, etc. Si los modelos se destruyen al elaborar la pieza, se dice que éstos son disponibles o desechables y si los modelos sirven para varias fundiciones se les llama removibles. VI) Tolerancias en los modelos En el diseño de los modelos que se utilizan para construir un molde es necesario tener en consideración varias tolerancias. 1. Tolerancia para la contracción. Se debe tener en consideración que un material al enfriarse se contrae dependiendo del tipo de metal que se esté utilizando, por lo que los modelos deberán ser más grandes que las medidas finales que se esperan obtener. 2. Tolerancia para la extracción. Cuando se tiene un modelo que se va a remover es necesario agrandar las superficies por las que se deslizará, al fabricar estas superficies se deben considerar en sus dimensiones la holgura por extracción. 3. Tolerancia por acabado. Cuando una pieza es fabricada en necesario realizar algún trabajo de acabado o terminado de las superficies generadas, esto se logra puliendo o quitando algún material de las piezas producidas por lo que se debe considerar en el modelo esta rebaja de material. 4. Tolerancia de distorsión. Cuando una pieza es de superficie irregular su enfriamiento también es irregular y por ello su contracción es irregular generando la distorsión de la pieza, estos efectos deberán ser tomados en consideración en el diseño de los modelos. 5. Golpeteo. En algunas ocasiones se golpean los modelos para ser extraídos de los moldes, acción que genera la modificación de las dimensiones finales de las piezas obtenidas, estas pequeñas modificaciones deben ser tomadas en consideración en la fabricación de los modelos. VII) Machos o Núcleos Si la pieza que se quiere fabricar es hueca, será necesario disponer machos que eviten que el metal fundido rellene dichas oquedades. Los machos se elaboran con arenas especiales debido a que deben ser más resistentes que el molde, ya que es necesario manipularlos manualmente para su colocación en el molde. Una vez colocado, se juntas ambas caras del molde y se sujetan. VIII) Tipos de hornos usados en fundición: El cubilote de fundición. Los hornos de reversos. Hornos rotatorios. Hornos de crisol. Hornos de crisol de tipo sosa. Hornos basculantes. Hornos de aire. Hornos eléctricos. Pueden ser de acero o de inducción. IX) Horno de cubilote Son equipos muy económicos y de poco mantenimiento, se utilizan para hacer fundición de hierros colados. Consisten en un tubo de más de 4 metros de longitud y pueden tener desde 0.8 a 1.4 m de diámetro, se cargan por la parte superior con camas de chatarra de hierro, coque y piedra caliza. Para la combustión del coque se inyecta aire con unos ventiladores de alta presión, este accede al interior por unas toberas ubicadas en la parte inferior del horno. También estos hornos se pueden cargar con pelets de mineral de hierro o pedacería de arrabio sólido. Por cada kilogramo de coque que se consume en el horno, se procesan de 8 a 10 kilogramos de hierro y por cada tonelada de hierro fundido se requieren 40kg de piedra caliza y 5.78 metros cúbicos de aire a 100 kPa a 15.5°C. Los hornos de cubilote pueden producir colados de hasta 20 toneladas cada tres horas. Este tipo de equipo es muy parecido al alto horno, sólo sus dimensiones disminuyen notablemente. El mayor problema de estos hornos es que sus equipos para el control de emisiones contaminantes es más costoso que el propio horno, por ello no se controlan sus emisiones de polvo y por lo tanto no se autoriza su operación.