s1-fis05 desarrollo y caracterización de un cuerpo negro para

Anuncio
DESARROLLO Y CARACTERIZACIÓN DE UN CUERPO NEGRO PARA
CALIBRACION DE TERMOMETROS DE RADIACIÒN
E. Escotoa, V. Martínezb
a
División de Temperatura. Centro De Ingeniería Y Desarrollo Industrial, Querétaro, Qro.
[email protected]
b
División de Termometría. Centro Nacional de Metrología. El Marqués, Qro. México
[email protected]
RESUMEN
Con el aumento de la exactitud en la medición de temperatura con termómetros de radiación (pirómetros) se
hace necesario el desarrollo de un cuerpo negro de alta emisividad para la calibración de este tipo de
termómetros. En este trabajo se muestra el desarrollo de un cuerpo negro diseñado para cumplir con los
requisitos del servicio de calibración de termómetros que proporciona el CIDESI. Se presentan los criterios
que se utilizan para seleccionar la geometría y dimensiones de la cavidad, los materiales y el proceso de
fabricación del cuerpo negro. Se analiza el intercambio de calor para conocer la potencia mínima necesaria
para los calefactores. Para mantener uniforme la temperatura se propone el uso de un tubo de calor de alta
temperatura. Finalmente, se presenta el trabajo a futuro necesario para optimizar el diseño y caracterizar el
cuerpo negro.
1. INTRODUCCIÓN
Es un hecho conocido que todos los cuerpos emiten ondas electromagnéticas, o radiación que depende de su
temperatura. Durante la dispersión de la radiación se transporta energía, lo que significa que se puede utilizar
la radiación para medir sin contacto la temperatura de un cuerpo. La energía radiada y sus longitudes de onda
características dependen principalmente de la temperatura del cuerpo radiante.
A diferencia de otras formas de la termometría (tal como líquido en vidrio, termopares, termometría de
resistencia) la termometría de radiación es una técnica sin contacto lo que implica que no influye en la
temperatura del objeto a medir por lo que pueden realizarse mediciones en superficies sensibles y productos
estériles, además permite registrar la temperatura en forma simple incluso en procesos rápidos y dinámicos así
como mediciones en productos peligrosos o en puntos de difícil acceso.
La termometría de radiación se basa en la descripción de la mecánica cuántica del espectro de la radiación
emitido por un cuerpo negro, fenómeno descubierto en 1900 por el físico alemán Max Planck y conocido
como ley de la radiación de Planck. Un termómetro de la radiación mide la radiación de un objeto y utiliza la
ley de Planck para relacionar la señal detectada con la temperatura termodinámica equivalente de un cuerpo
negro.
Las mediciones exactas de la termometría de radiación requieren de un buen conocimiento del objeto (blanco)
a ser medido y del ambiente circundante. En general, los objetos reales no son cuerpos negros y por lo tanto
emiten menos radiación que un cuerpo negro cuando están a la misma temperatura, su capacidad para emitir
radiación se caracteriza por una cantidad llamada emisividad. Así, la emisividad de un cuerpo negro ideal
corresponde a 1 y la de un reflector perfecto a 0. La emisividad de objetos reales se encuentra entre estos dos
extremos.
Sin embargo, la emisividad de las superficies generalmente no es bien conocida, y varía para un material dado
según la rugosidad superficial, el grado de oxidación, etc. Además no existen datos para todos los tipos de
materiales y para diferentes acabados superficiales o geometrías y para todas las longitudes de onda.
Por lo anterior, la calibración de un termómetro de radiación requiere del uso de una fuente de referencia con
emisividad conocida y estable y de un patrón de temperatura calibrado. Este patrón puede ser un termómetro
de contacto calibrado que mida la temperatura de la cavidad ó un termómetro de radiación calibrado [1, 2].
Una buena fuente de referencia es un cuerpo negro con una cavidad con emisividad independiente de su
superficie y con temperatura uniforme.
En la actualidad existen varios sistemas comerciales de cuerpos negros para calibrar pirómetros, sin embargo
algunas veces no cumplen con los requerimientos de emisividad de un cuerpo negro para todas las longitudes
de onda o su exactitud está limitada al sensor y lector de temperatura inter-construído. Entonces es cuando el
diseño y la construcción de un cuerpo negro empiezan a tener importancia si lo que se quiere es lograr una
mayor exactitud en las calibraciones de los pirómetros.
2. CUERPO NEGRO
Un cuerpo negro es aquel que absorbe toda la radiación que incide en él y no refleja ninguna; posee una
emisividad igual a la unidad y emite la máxima energía radiante. Se utilizan como mejor referencia para
determinar cuantitativamente la energía irradiada por un objeto caliente.
Se puede obtener un cuerpo negro con un material no negro sólo si se logra que la radiación encerrada
dentro de una cavidad alcance el equilibrio con los átomos de las paredes y que la cantidad de energía que
emiten los átomos en la unidad de tiempo sea igual a la que absorben. Y da como resultado que la radiación
dentro de la cavidad está en equilibrio con las paredes y la densidad de energía del campo electromagnético
es constante.
Figura 1. Cavidad de cuerpo negro en
que se observa la múltiple reflexión y
extinción de una onda electromagnética
La calibración de termómetros de radiación se puede hacer de cualquiera de las dos formas: usando una
lámpara patrón calibrada o por medio de un cuerpo negro. Sin embargo, dadas las características de los
termómetros de radiación industriales para los que se solicita el servicio de calibración, es preferible usar un
cuerpo negro.
Para cumplir con las necesidades de calibración de los clientes, se tomó una muestra de pirómetros típicos que
tiene demanda de calibración. Todo lo anterior para especificar el cuerpo negro de acuerdo a su uso. En la
tabla 1 se muestran las especificaciones de una muestra de pirómetros con demanda de calibración.
Tabla 1. Intervalo de operación, ancho de banda y resolución óptica
Pirómetro
Marca RAYTEK (-30 °C a 900 °C )
Marca OMEGA (-18 °C a 538 °C )
Marca 3M (-18 °C a 870 °C )
Longitud de onda o banda
espectral
8 a 14 m
8 a 14 m
8 a 14 m
2
Tamaño de blanco y distancia al
blanco ( resolución óptica ( D:S) )
60:1
10:1
8:1
En la tabla 1 se muestra que aunque los pirómetros tienen un intervalo de operación de temperaturas bajo
cero, la mayor parte de ellos se utilizan para medición altas temperaturas en un intervalo de trabajo que va de
400 a 1000 °C.
3. CÁLCULOS PARA LA EMISIVIDAD A PARTIR DE LA GEOMETRÍA DEL CUERPO NEGRO.
Con referencia al método de Gouffé y De Vos se obtiene una estimación de la emisividad basada en la
geometría de la cavidad cilíndrica [3].
0 `

 s  s
 1     
 S S
(1)
 emisividad del material que forma la superficie de
cuerpo negro
s= área de la apertura
S= área de la superficie interior
Figura 2. La figura de la derecha es una gráfica para calcular la emisividad de la cavidad de las
formas geométricas mostradas en la parte inferior de la misma según Gouffé y De Vos (tomada
de la referencia [3]). La gráfica a la izquierda se muestra un esquema del cuerpo negro dentro
de un tubo de calor de alta temperatura y rodeado de aislante térmico.
Tabla 2. Valores usados para el cálculo de la emisividad de una cavidad cilíndrica.
Material
De la
cavidad
Emisividad
de material
Longitud
(mm)
Ancho
(mm)
S
Área
interior
Diámetro
Apertura
(mm)
s
área
apertura
longitud /
diámetro
apertura
Grafito
0,9
436
60
85011,5
40
1256,6
21,8
`0
Emisividad
en la
cavidad
0,9978
El artefacto adecuado para ayudar a lograr una temperatura uniforme en la cavidad de cuerpo negro es un
tubo de calor que se calienta por medio de calefactores con potencia requerida mencionada en la sección 4..
Ver tabla 3 para las características de este tubo de calor.
3
Tabla 3. Características físicas del tubo de calor
tubo de calor
Características y
Dimensiones
Sodio
Inconel 600
500 to 1100 °C
102mm
141mm
457mm
Fluido de trabajo –
Material de construcción:
Alcance de Operación:
Diámetro interior:
Diámetro exterior:
Longitud:
4. EVALUACIÓN DE LA POTENCIA REQUERIDA.
A partir de analogías de la transferencia de calor con circuitos eléctricos se realizaron estimaciones de
transferencia de calor del sistema compuesto por el ensamble del cuerpo negro, el tubo de calor, los
calefactores y el aislamiento térmico con los alrededores. La estimación de la transferencia de calor nos
proporcionó valores de la potencia mínima requerida que se tiene que suministrar a los calefactores, así como
las temperaturas que se alcanzan en los diferentes componentes.
Esta analogía nos permite hacer equivalentes la resistencia térmica con la resistencia eléctrica, la diferencia de
temperatura en dos puntos con la diferencia de potencial, y el flujo de calor con la intensidad de corriente. Las
resistencias térmicas se conocen a partir de la conductividad térmica del material, el área perpendicular al
flujo de calor y el coeficiente de película de convección natural. Este último se obtuvo de aproximaciones
reportadas en referencia [4]. En la tabla 2 se muestra la potencia requerida para tres diferentes temperaturas de
operación, el porcentaje de la potencia que se pierde por radiación a través del extremo abierto del horno que
se usa para medir, y la temperatura que necesita tener el calefactor para lograr la temperatura del cuerpo negro
dada.
Tabla 4. Potencia requerida y temperatura del calefactor para lograr temperatura del cuerpo negro deseada.
Temperatura
cuerpo negro
(°C)
500
750
1000
Potencia
requerida
(W)
329
762
1560
Porcentaje de la
Temperatura del
potencia disipada por
calefactor
radiación (%)
(°C)
49
502
65
756
77
1016
Los valores mostrados en la tabla 2 se obtuvieron para condiciones de estado estacionario. La fuente de
potencia y el control de temperatura se diseñan para manejar un porcentaje mayor de potencia que el
requerido.
5. INCERTIDUMBRE
El grupo de trabajo de termometría de radiación de Comité Consultivo de Temperatura del BIPM (CCTWG5) emitió un documento en el que se establecen los presupuestos de incertidumbre que se tienen que
considerar en la termometría de radiación [5]. El conocer de antemano las principales fuentes de
incertidumbre ayuda a mantener un control para minimizarlas, en lo posible, en el proceso de diseño. Las
incertidumbres de un cuerpo negro son emisividad de la pared del cuerpo negro, caída de temperatura por
pérdida de flujo radiante, factores geométricos e imperfecciones en el maquinado. En la tabla 3 se dan los
valores típicos de incertidumbres.
4
Tabla 5 Valores típicos de incertidumbre considerados en la ref [5]
Fuente de incertidumbre
Emisividad de la pared del cuerpo negro
(grafito)
Caída de temperatura por pérdida de flujo
radiante
Factores geométricos (largo , diámetro
cavidad, etc)
Valores típicos
incertidumbre
0,025
5 mK
Observaciones
Considerando especularidad por
maquinado
Teniendo un valor estimado de 10 mK de
falta de uniformidad en temperatura
Desde 0,25 a 1
mm
6. CONCLUSIONES
Como el diseño y la construcción del cuerpo negro tienen mucha más importancia cuando lo que se quiere es
lograr una mayor exactitud y reducir incertidumbres reportadas en las calibraciones de los termómetros. Este
diseño se basó en los requisitos de servicio de calibración de termómetros que proporciona el CIDESI como
las resoluciones ópticas (D:S), la temperatura a medir más alta de 1000°C y la exactitud para la gran
variedad de termómetros industriales. También el conocer de antemano las principales fuentes de
incertidumbre [5] ayudó a enfocarnos en el diseño y en el proceso de fabricación del cuerpo negro
principalmente para minimizar y controlarlas en lo posible.
7. TRABAJO FUTURO
Hasta ahora se tiene el diseño de un cuerpo negro basado en cálculos que suponen que las superficies de
radiación del cuerpo negro son difusas. En años recientes, se ha propuesto considerar las superficies de los
cuerpos negros como una combinación de superficies difusa-especular [6, 7]. Esta última aproximación
permite considerar adicionalmente las reflexiones especulares que ocurren dentro de la cavidad. Se estudiará
el uso de estos resultados o la realización de un algoritmo para optimizar la geometría que ya se tiene para
lograr resultados más exactos.
Aunque se utiliza un, el intercambio de calor por radiación con el medio que rodea al cuerpo negro produce
un gradiente de temperatura dentro de la cavidad. Por lo anterior se considera realizar un estudio de estos
gradientes por medio de métodos numéricos.
REFERENCIAS
1 "Suplementary Information for the International Temperature Scale of 1990." BIPM,
2 Nicholas,J. V., White,D. R “Traceable Temperatures: An Introduction to Temperature Measurement
and Calibration”; John Wiley and Sons: 2002;
3 La Rocca, A. J. In The Infrared and Electro-Optical Systems Handbook; David L. Shumaker, Joseph S.
Accetta, Ed.; SPIE-International Society for Optical Engine: 1999; Vol. 1,
4 Holman, J. P. "Transferencia de calor." Mexico: McGraw-Hill, 1989.
5 Fischer, J., Battuello, M., Sadli, M., Ballico, M., Park, S. M., Saunders, P., Zundong, Y., Johnson, B. C.,
van der Ham, E., Li, W., Sakuma, F., Graham, M., Fox, N., Ugur, S., Matveyev, M. "Uncertainty
budgets for realisation of scales by radiation thermometry." CCT-WG5, 2003.
6 Prokhorov, A. V., Hanssen, L.M. (2004). “Effective emissivity of a cylindrical cavity with an inclined
bottom: I. Isothermal cavity”. Metrologia, 41, 421-431.
7 Sapritsky, V. I., Khromchenko, V.B., Mekhntsev, S.N., Samoilov, M. L., Prokhorov, A.V., Ogarev, S.
A. "Medium Background Blackbody BB1000." 2000 Conference on Characterization and
Radiometric Calibration for Remote Sensing 2000.
5
Descargar