Conductores, semiconductores y aislantes

Anuncio
CONDUCTORES, AISLANTES Y SEMICONDUCTORES
TEORIA DE BANDAS
DEFINICION:
Al separar dos átomos (de carga n) considerablemente no interactúan entre sí y sus niveles de energía se
pueden considerar casi nulos, o sea, como aislados pero al juntar estos dos átomos, sus órbitas exteriores
empezaran a traslaparse y al llegar a una interacción bastante intensa forman dos niveles diferentes (n). Al
realizar esto con un gran numero de átomos ocurre algo similar. Conforme los átomos se acercan unos a otros,
los diversos niveles de energía atómicos empiezan a dividirse. A esta división es a lo que podemos llamar una
Banda, y el ancho de esta banda de energía que surge de un nivel de energía atómica particular es
independiente del número de átomos en un sólido. El ancho de una banda de energía depende sólo de las
interacciones de vecinos cercanos, en tanto que el número de niveles dentro de la banda depende del número
total de partículas interactuando.
En otras palabras seria lo mismo decir que los electrones pueden ocupar un número discreto de niveles de
energía, pueden tener solamente aquellas energías que caen dentro de las bandas permitidas. La banda donde
se mueven normalmente los electrones de valencia se conoce como banda de valencia, y los electrones que se
mueven libremente y conducen la corriente se mueven en la banda de conducción.
Conductores: Para los conductores la banda de conducción y la de valencia se traslapan, en este caso, el
traslape favorece ya que así los electrones se mueven por toda la banda de conducción.
Aislantes: En este caso las bandas de valencia y conducción se encuentran muy bien separadas lo cual casi
impide que los electrones se muevan con mayor libertad y facilidad.
Semiconductores: En el caso de los semiconductores estas dos bandas se encuentran separadas por una brecha
muy estrecha y esta pequeña separación hace que sea relativamente fácil moverse, no con una gran libertad
pero no les hace imposible el movimiento.
LISTA DE 15 CONDUCTORES
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
Propiedad
No metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Nombre
Hidrogeno
Plata
Cobre
Oro
Aluminio
Berilio
Sodio
Magnesio
Rodio
Molibdeno
Iridio
Volframio
Lantano
Resistividad, 10−8 m
−−−−−−−−−−
1.59
1.6730
2.35
2.6548
4.0
4.2
4.45
4.51
5.2
5.3
5.65
5.70
1
14
15
Metal
Metal
Cinc
Potasio
5.916
6.15
TIPOS DE SEMICONDUCTORES
Primero que nada tenemos que definir claramente lo que es un semiconductor el cual no es más que un
material ya sea sólido o liquido con una resistividad intermedia entre la de un conductor y la de un aislador.
Gracias a los semiconductores la tecnología del estado sólido a sido reemplazada por completo a los tubos al
vació, estos materiales están formados por electrones externos de un átomo, y los cuales son conocidos como
electrones de valencia.
Existen dos tipos de semiconductores los de tipo N y los de tipo P y la unión de estos dos formando así un
tercero llamado unión PN.
SEMICONDUCTOR TIPO N:
Este tipo de semiconductor trata de emparejar los materiales con respecto a sus cargas y lo realiza con enlace
de impurezas a ambos materiales. Por lo tanto, la impureza puede donar cargas con carga negativa al cristal, lo
cual nos explica el nombre de tipo N (por negativo).
El material semiconductor de tipo N comercial se fabrica añadiendo a un cristal de silicio pequeñas cantidades
controladas de una impureza seleccionada. A estas impurezas también se les llama contaminantes, claro así se
le llaman a las impurezas que se agregan intencionalmente. Los contaminantes de tipo N mas comunes son el
fósforo, arsénico y antimonio. A estos semiconductores se les conoce también como donadores, y como este
nombre lo indica estos semiconductores pasas cargas a el material que le hace falta para así poder emparejar
este material, y es por eso que se les conoce mayormente como donadores.
SEMICONDUCTOR TIPO P:
El semiconductor tipo P se produce también comercialmente por el proceso de contaminación, en este caso el
contaminante tiene una carga menos que el semiconductor tipo N, entre los mas comunes podemos encontrar
el aluminio, boro, galio y el indio. Conocidos como aceptores el cual contiene espacios y necesita que sean
llenados para emparejar el material.
SEMICONDUCTOR UNION PN:
Al combinar los materiales de tipo P y N se obtienen datos y cosas muy curiosas pero lo mas importante y
relevante es la formación del tipo unión PN. Una unión se compone de tres regiones semiconductoras, la
región tipo P, una región de agotamiento y la región tipo N.
La región de agotamiento se forma al unir estos dos materiales y aquí es donde los átomos que le sobran al
tipo N pasan a llenar los espacios que deja el tipo P así complementándose uno con otro. Lo mas importante
de la unión es su capacidad para pasar corriente en una sola dirección.
CLASES DE AISLANTES
1Antes que nada tenemos que definir claramente lo que es un aislante y no son mas que cualquier material que
conduce mal el calor o la electricidad y que se emplea para suprimir su flujo, o sea, que las cargas se mueven
con mucha dificultad.
2
1 Son aquellos materiales en los cuales los electrones no se desprenden fácilmente, aún aplicando una
diferencia de potencial, es decir, una presión eléctrica elevada.
Las dos clases de aislantes mas importantes que existen son:
• Aislantes Eléctricos.
• Aislantes Térmicos.
AISLANTES ELÉCTRICOS
Como su nombre lo dice es perfecto para las aplicaciones eléctricas y sería aun mas perfecto si fuera
absolutamente no conductor, pero claro ese tipo de material no existe. Los materiales empleados como
aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica
hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Un buen
aislante apenas poseen electrones permitiendo así el flujo continuo y rápido de las cargas.
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los
cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con
una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o
mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se
emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aislan con
vidrio, porcelana u otro material cerámico.
La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se
emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay
que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para
temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros
materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los
poliésteres de poxy y los poliuretanos pueden proteger contra los productos químicos y la humedad.
AISLANTES TÉRMICOS
Los materiales de aislamiento térmico se emplean para reducir el flujo de calor entre zonas calientes y frías.
Por ejemplo, el revestimiento que se coloca frecuentemente alrededor de las tuberías de vapor o de agua
caliente reduce las pérdidas de calor, y el aislamiento de las paredes de una nevera o refrigerador reduce el
flujo de calor hacia el aparato y permite que se mantenga frío.
El aislamiento térmico puede cumplir una o más de estas tres funciones: reducir la conducción térmica en el
material, que corresponde a la transferencia de calor mediante electrones; reducir las corrientes de convección
térmica que pueden establecerse en espacios llenos de aire o de líquido, y reducir la transferencia de calor por
radiación, que corresponde al transporte de energía térmica por ondas electromagnéticas. La conducción y la
convección no tienen lugar en el vacío, donde el único método de transferir calor es la radiación. Si se
emplean superficies de alta reflectividad, también se puede reducir la radiación. Por ejemplo, puede emplearse
papel de aluminio en las paredes de los edificios. Igualmente, el uso de metal reflectante en los tejados reduce
el calentamiento por el sol. Los termos o frascos Dewar impiden el paso de calor al tener dos paredes
separadas por un vacío y recubiertas por una capa reflectante de plata o aluminio.
El aire presenta unas 15.000 veces más resistencia al flujo de calor que un buen conductor térmico como la
plata, y unas 30 veces más que el vidrio. Por eso, los materiales aislantes típicos suelen fabricarse con
materiales no metálicos y están llenos de pequeños espacios de aire. Algunos de estos materiales son el
carbonato de magnesio, el corcho, el fieltro, la guata, la fibra mineral o de vidrio y la arena de diatomeas. El
amianto se empleó mucho como aislante en el pasado, pero se ha comprobado que es peligroso para la salud y
3
ha sido prohibido en los edificios de nueva construcción de muchos países.
En los materiales de construcción, los espacios de aire proporcionan un aislamiento adicional; así ocurre en
los ladrillos de vidrio huecos, las ventanas con doble vidrio (formadas por dos o tres paneles de vidrio con una
pequeña cámara de aire entre los mismos) y las tejas de hormigón (concreto) parcialmente huecas. Las
propiedades aislantes empeoran si el espacio de aire es suficientemente grande para permitir la convección
térmica, o si penetra humedad en ellas, ya que las partículas de agua actúan como conductores. Por ejemplo, la
propiedad aislante de la ropa seca es el resultado del aire atrapado entre las fibras; esta capacidad aislante
puede reducirse significativamente con la humedad.
Los costes de calefacción y aire acondicionado en las viviendas pueden reducirse con un buen aislamiento del
edificio. En los climas fríos se recomiendan unos 8 cm de aislamiento en las paredes y entre 15 y 20 cm de
aislamiento en el techo.
Recientemente se han desarrollado los llamados superaislantes, sobre todo para su empleo en el espacio,
donde se necesita protección frente a unas temperaturas externas cercanas al cero absoluto. Los tejidos
superaislantes están formados por capas múltiples de mylar aluminizado, cada una de unos 0,005 cm de
espesor, separadas por pequeños espaciadores, de forma que haya entre 20 y 40 capas por centímetro.
INTRODUCCION
El siguiente trabajo de investigación que se presenta es sobre Conductores, Semiconductores y Aislantes, en el
cual se maneja lo que es Teoría de Bandas de cada uno de los tres materiales, una lista de conductores del de
mayor calidad al de menor, los tres tipos de semiconductores existentes que son muy útiles en nuestros
tiempos y las diferentes clases de aislantes que como se vera mas adelante una de ellos nos ahorra grandes
cantidades de dinero y muchos recursos.
CONCLUSIONES
• Un conductor es un material a través del cual se transfiere fácilmente la carga.
• Un aislante es un material que se resiste al flujo de carga.
• Un semiconductor es un material intermedio en su capacidad para transportar carga.
• Un semiconductor tipo N contiene impurezas donadoras y electrones libres.
• Un semiconductor tipo P esta formado por átomos aceptores y por huecos faltantes de electrones.
• Los tipos de aislantes son dos: Eléctricos y Térmicos.
BIBLIOGRAFIA
• Enciclopedia de Microsoft Encarta
• Monasterios Loaiza, Rafael
Ingeniero Electricista
ELECTRICIDAD estudio de la CORRIENTE CONTINUA
Ministerio de Educación Pública
Misión de Asistencia Técnica de UNESCO
Guatemala, C.A. 1957.
• Serway, Raymond A.
4
James Madison University
FÍSICA Tomo II
McGRAW−HILL Interamericana Editores
México, D.F. 1996.
• Tippens, Paul E.
Department of Physics Souther Technical Institute
FÍSICA Conceptos y Aplicaciones
Quinta Edición
McGRAW−HILL Interamericana Editores
México, D.F. 1996.
5
Descargar