Separalum EXPEIUENTIA 25, 1110 (1969) J i i i k l i a u s e r Verla;;, l¡asel (Si lnveiz) Purothionins in Aegilops-Triticiini spp. Purothionin was first obtained from the endosperm oíí hexaploid ssheat {Triticnm aestivum I-.) and crystallizedl by BALLS et al.'. This high sulphur protein nioicty oí ai proteolipid has bactericida] and fungicida! activity 2 . Receñí work3 ° has established tlaat the crystallizedl material is a mixture of approximately equal amounls off 2 íonns: purothionins a and ft. Molecular wcight determinations, aniinoacid eoniposition and other properties; indícate that the 2 forms are sery closely related 5 . \Ye: have íound tliat both the allohexaploid T. aestivum L. (genonies A B D) and the allotetraploid T. dunim Desí. (genomes.-i B) synthetize the a and />' íonns 0 . This note is; lo reporl some phylogenetic implications of purothionins. The diploid species T. monococcum (A) synthetizes; only the [l form, suggesting that the A genome of T. diirttm is responsible for the genetic control oí [> formi synthesis and thc B genome for that of the a fonn. Analysis of the potential B genome donor, namely, the: diploid species Aegilops speltaides (S — B), which doesi synthetize the a form, substaritiates the hypothesis. This; indicates that a and fi purothionins are the result of: divergen! evolution at the diploid level and have come toi coexist by thc convergcnt process of alloploid formal ion. Diploid species Alloploid species Ñame Ñame Genome Phenolype T. monococcum A Ae. caudata C Ae. squarrosa D Ae. speltoiúes S=B Ae. ¡onguissima 5'. Ae. bicornís S" ^-~x\ Ancestral \ 9 6 2 A¡T s ^_^r hi^uniarlstata 1Ae. comosa H"] Hj \Ac. mteüulala C \Ae. tnutica M1 p, L This points to hetcrogeneity within the x and ¡i purothionins, but further characterization of purothionins from these species must wait. until enough material is grown. In alloploid species where the parental genomes have genetic information for electrophoret ically difieren! purothionins, the coexistence of the a and fi forms is not always observed. A similar observation can be madc with the /?-sitoslerol ester systems. It seems that duplícate genetic activity íor similar systeins represents an adaptive advantage but not nccessarily a physiological one. Consequentiy redundant systems might. be lost in the course of cvolution following alloploid íormation. It is to be noted that all observed losses afíeet the additional genomes and not the so-called pivotal genomes. This is consistent with the cytogenetical observation that pivotal genomes are completéis- homologous with knosvn diploids. while the additional genomes are extensively modified and only partially homologous with diploid analyzers. Be sumen. En Triticnm durvm Desf. (genoniios AB), el genomio A controla la síntesis de purotionina ¡i y el genomio B la de purotionina a. Las especies diploides del grupo Acgilops-Triiicitm sintetizan a ó fi, pero no las dos. Genomes Phenotype * T. durum AB a,ÍU T. aestivum ABO a,P,PL Ae. cy/indrica DC a.PL Ae. crassa DMcr a,PL Ae. ventricosa Dhf C } -'•- Ae. juvena/is DC M a,PL Ae. triuncialis 6 L l a,PL Ae. variabilis CUS' Ae. triaristata CuM'r a,f3,PL •- Ae. biuncia/is ñ PI rs \Ae. ovota CUM° Ae. columnaris C M a,PL * Purothionin a or p ; síerol esters PL (¡¡dimítate-lino/cale) or L (linoieaie) C y t o g e n e t i c a l r e l a t i o n s h i p s in Aef¡ilof>s-Trilinini speeio* a n d d i s t v i h u t i o n of pnrotliioiiins a n d /?-sito>lerol e s t e r s s y s t e i n s . We liave íuiiher invcstigated the occurrenee oí a and /? En numerosos aloploides de este grupo se observa la forms in the reinaining species of the Acgilo ps-Tri ticit m ] pérdida de la' actividad sintética para la purotionina group. A mkromet.ltod was used because only small <correspondiente a uno de los genomios. amounts of material were available. The samplcs, 2()ü to 4()() mg of g round kernels were macerated for 2 h with P. CAUHONIÍKÜ and V. GAKCÍA-OJ.MKDO twice the aniotmt (v/w) oí petroleum ether (b.p. 35-G0°C). The supernalant was transferred with the aid oí a capilInstituto Nacional de Investigaciones Agronómicas, la ry tnl>e to a piece of paper (Whatman No. 3, 2 x S mm) Madrid-3 {Spain), 2 June 1969 and evapora!ed in the process. Lipid was dissociated from ])iirothionin by treating the paper with 1 A' 11C1 in ethanol: petroleum ether (3:1) with the aid of a capillarv i1 A. K. I.ÍAI.I.S, \ V . S. M A L K a n d T . I I . H A K R I S , Cereal C h c i u . 19, and then svas extracled by ¡inmersión in petroleum 27<J (1912). ether íor 1 h. The dried pnj)er was wet with buffer and -"- L. S. S T U A K T a n d T . 11. H A K I Í I S , C e r e a l C h e m . 19, 28S (1912). a3 C. C. XI.MMO, M. 1". O ' S U I . I . I V A N ' a n d J . ]•'.. H I Í K N A U I M N , Cereal the purolhionins fract ionnled by starch-gel electrophoresis. Cliem. /.;, 28 (l'JGS). Tile results are summarized in the Figure.The occurrence 4 Nr. l-'isiiEK, 1). G . K K H M A N anrl G . A . K. K I . T O N , Cereal Cliein. 7 5 , o! the previously deseribcd7 linoleaíe (L) and pahnilatc-IS (I«JOS). linoleati- (l'L) systems íor />'-silosterol esters synthesis 5 IX G. K K D M A N a n d N . Kisnr.K, J . S e i . F d A^rie. 10, G51 (10hK). has been also recorded. * <¡fi 1". (¡Aurí.\-üi.Mi:no, J. S n n - r o a n d K. G A K C Í A - I ' A I I U K . , A n . Inst. In diploid species, all -1 possiblc combinations of nao. Invt-st. a n i ó n . 17, 133 (19í">fi). 77 purothionin and slerol esters pheuots'pes are present. I'. G A K C Í A - O I . M I Í I K ) , N a t n r e 220, l i l i (lOí.S).