2022 OSCILOSCOPIOS Nicole Valeiron; Valentin Sarli Higiene II 19/08/2022 ¿Qué es un osciloscopio? Un osciloscopio es un instrumento de medición electrónico para la representación gráfica de señales eléctricas que pueden variar en el tiempo. Es muy usado en electrónica de señal, frecuentemente junto a un analizador de espectro. Presenta los valores de las señales eléctricas en forma de coordenadas en una pantalla, en la que normalmente el eje X (horizontal) representa tiempos y el eje Y (vertical) representa tensiones. La imagen así obtenida se denomina oscilograma. Suelen incluir otra entrada, llamada "eje Z" o "Cilindro de Wehnelt" que controla la luminosidad del haz, permitiendo resaltar o apagar algunos segmentos de la traza. Los osciloscopios, clasificados según su funcionamiento interno, pueden ser tanto analógicos como digitales, siendo el resultado mostrado idéntico en cualquiera de los dos casos, en teoría. Utilización En un osciloscopio existen, básicamente, dos tipos de controles que son utilizados como reguladores que ajustan la señal de entrada y permiten, consecuentemente, medir en la pantalla y de esta manera se puede ver la forma de la señal medida por el osciloscopio, esto denominado en forma técnica se puede decir que el osciloscopio sirve para observar la señal que quiera medir. Para medir se lo puede comparar con el plano cartesiano. El primer control regula el eje X (horizontal) y aprecia fracciones de tiempo (segundos, milisegundos, microsegundos, etc., según la resolución del aparato). El segundo regula el eje Y (vertical) controlando la tensión de entrada (en Voltios, milivoltios, microvoltios, etc., dependiendo de la resolución del aparato). Estas regulaciones determinan el valor de la escala cuadricular que divide la pantalla, permitiendo saber cuánto representa cada cuadrado de ésta para, en consecuencia, conocer el valor de la señal a medir, tanto en tensión como en frecuencia. (en realidad se mide el periodo de una onda de una señal, y luego se calcula la frecuencia) . Tipos: Osciloscopio analógico La tensión a medir se aplica a las placas de desviación vertical oscilante de un tubo de rayos catódicos (utilizando un amplificador con alta impedancia de entrada y ganancia ajustable) mientras que a las placas de desviación horizontal se aplica una tensión en diente de sierra (denominada así porque, de forma repetida, crece suavemente y luego cae de forma brusca). Esta tensión es producida mediante un circuito oscilador apropiado y su frecuencia puede ajustarse dentro de un amplio rango de valores, lo que permite adaptarse a la frecuencia de la señal a medir. Esto es lo que se denomina base de tiempos. Limitaciones del osciloscopio analógico El osciloscopio analógico tiene una serie de limitaciones propias de su funcionamiento: • Las señales deben ser periódicas. Para ver una traza estable, la señal debe ser periódica ya que es la periodicidad de dicha señal la que refresca la traza en la pantalla. Para solucionar este problema se utilizan señales de sincronismo con la señal de entrada para disparar el barrido horizontal (trigger level) o se utilizan osciloscopios con base de tiempo disparada. • Las señales muy rápidas reducen el brillo. Cuando se observa parte del período de la señal, el brillo se reduce debido a la baja persistencia fosfórica de la pantalla. Esto se soluciona colocando un potencial post-acelerador en el tubo de rayos catódicos. • Las señales lentas no forman una traza. Las señales de frecuencias bajas producen un barrido muy lento que no permite a la retina integrar la traza. Esto se solventa con tubos de alta persistencia. También existían cámaras Polaroid especialmente adaptadas para fotografiar las pantallas de osciloscopios. Manteniendo la exposición durante un periodo se obtiene una foto de la traza. Otra forma de solucionar el problema es dando distintas pendientes al diente de sierra del barrido horizontal. Esto permite que tarde más tiempo en barrer toda la pantalla, y por ende pueden visualizarse señales de baja frecuencia pero se verá un punto desplazándose a través de la pantalla debido a que la persistencia fosfórica no es elevada . • Sólo se pueden ver transitorios si éstos son repetitivos; pero puede utilizarse un osciloscopio con base de tiempo disparada. Este tipo de osciloscopio tiene un modo de funcionamiento denominado "disparo único". Cuando viene un transitorio el osciloscopio mostrará este y sólo este, dejando de barrer una vez que la señal ya fue impresa en la pantalla. Osciloscopio digital En la actualidad los osciloscopios analógicos están siendo desplazados en gran medida por los osciloscopios digitales, entre otras razones por la facilidad de poder transferir las medidas a una computadora personal o pantalla LCD. En el osciloscopio digital la señal es previamente digitalizada por un conversor analógico digital. Al depender la fiabilidad de la visualización de la calidad de este componente, esta debe ser cuidada al máximo. Las características y procedimientos señalados para los osciloscopios analógicos son aplicables a los digitales. Sin embargo, en estos se tienen posibilidades adicionales, tales como el disparo anticipado (pre-triggering) para la visualización de eventos de corta duración, o la memorización del oscilograma transfiriendo los datos a un PC. Esto permite comparar medidas realizadas en el mismo punto de un circuito o elemento. Existen asimismo equipos que combinan etapas analógicas y digitales. La principal característica de un osciloscopio digital es la frecuencia de muestreo, la misma determinara el ancho de banda máximo que puede medir el instrumento, viene expresada generalmente en MS/s (millones de muestra por segundo). La mayoría de los osciloscopios digitales en la actualidad están basados en control por FPGA (del inglés Field Programmable Gate Array), el cual es el elemento controlador del conversor analógico a digital de alta velocidad del aparato y demás circuiteria interna, como memoria, buffers, entre otros. Estos osciloscopios añaden prestaciones y facilidades al usuario imposibles de obtener con circuitería analógica, como los siguientes: _Medida automática de valores de pico, máximos y mínimos de señal. Verdadero valor eficaz. _Medida de flancos de la señal y otros intervalos. _Captura de transitorios. _Cálculos avanzados, como la FFT para calcular el espectro de la señal. También sirve para medir señales de tensión. Principios de funcionamiento del osciloscopio El funcionamiento del osciloscopio está basado en la posibilidad de desviar un haz de electrones por medio de la creación de campos eléctricos y magnéticos. En la mayoría de osciloscopios, la desviación electrónica, llamada deflexión, se consigue mediante campos eléctricos. Ello constituye la deflexión electrostática. Controles del osciloscopio Manejo del osciloscopio 1. Primero se tiene que encender, para evitar daños al equipo se muestra un pequeño algoritmo de cómo hacerlo y para tener su correcto funcionamiento: No todos son iguales, por ende es aconsejable leer el manual antes. 2. Ajustar los controles de posición vertical y horizontal a sus posiciones medias aproximadamente ( si es analógico) 3. Asegurarse que el interruptor de potencia esté apagado y el control de ajuste de intensidad en el nivel más bajo. 4. Asegurarse que el interruptor de modo de disparo este en AUTO 5. Conectar el cable de AC 6. Esperar aproximadamente 1 minuto 7. Llevar la línea al centro del a retícula del osciloscopio 8. Dar el enfoque adecuado a la línea de la señal. ¿Cómo usar el osciloscopio? 1) Se conecta la punta BNC al osciloscopio en algún canal. 2) Se conecta la punta BNC en la punta de prueba del osciloscopio (probe adjust), en su magnitud al 1X. 3) Se coloca en la zona VERTICAL del osciloscopio( la de los canales CH1,CH2)y se ajustan todos los calibradores al máximo ( todos hacia la derecha). 4) Suponiendo que tenemos la punta de prueba en el CH1, colocar los interruptores en :CH1,NORM,CHOP. 5) Colocar la perilla de VOLTS/DIV del canal CH1 en 0.1 volts/div 6) Colocar el switch bajo la perilla de volts /div del CH1 en AC 7) En la zona HORIZONTAL del osciloscopio, colocar la magnitud en 1X 8) Colocar la perilla de SEC/DIV en valor de 0.2 ms. 9) Ajustar el TRIGGER cone l SLOPE hacia arriba 10) Ajustar el LEVEL aprox a una posición de las 12pm. 11) el MODE en AUTO. 12) LA FUENTE SOURCE en CH1 ( para el canal 1 en este caso) 13) Realizar cálculos para la comprobación de la especificación del fabricante. 14) Para la obtener la amplitud multiplicamos el valor de VOLTS/DIV por la de el numero de cuadros verticales pico-pico en la señal.... en este caso debemos de tener 5 cuadros p-p de esta manera A=(# cuadros vert)X(volts/div) , A=(5div)X(0.1vol/div), A= 500mv 15) Calcular la frecuencia que nos indica el fabricante ,como f=1/T , tenemos que obtener T primero; esto es entonces el numero de cuadros horizontales de fase a fase en la señal por el valor en la perilla de Sec/div , así entonces T=( # de cuadros Horizontales)X(Sec/div),debemos de tener 5 cuadros también ,así T=(5div)X(0.2sec/div)=0.001segs entonces f=T^-1 así f= 1000Hzcumpliendo con las especificaciones del fabricante. 16) Se desconecta la punta de prueba del canal 1 y se conectan ene l canal 2. 17) Se cambia en LA FUENTE "SOURCE" el switch del canal CH1 al CH2 18) Se realizan los pasos 5-15 para la calibración del canal CH2. 19) Se escoge el canal con el que se va a trabajar si no son ambos y se desconecta la sonda de "probe adjust" 20) Se puede proceder a usarlo.} Cabe destacar que el osciloscopio al igual que otro equipo de medición es de gran utilidad en la electrónica ya que gracias a estos dispositivos podemos obtener un valor preciso y exacto sobre los voltajes y corrientes de los circuitos estudiados entre las mediciones que se realizan en la electrónica con el osciloscopio podemos encontrar las siguientes: Periodo y Frecuencia. Si una señal se repite en el tiempo, posee una frecuencia (f). La frecuencia se mide en Hertz (Hz) y es igual al número de veces que la señal se repite en un segundo, es decir, 1Hz equivale a 1 ciclo por segundo. El voltaje es la diferencia de potencial eléctrico entre dos puntos de un circuito. Normalmente uno de esos puntos suele ser masa (GND, 0v), pero no siempre, por ejemplo se puede medir el voltaje pico a pico de una señal (V pp ) como la diferencia entre el valor máximo y mínimo de esta. Métodos de muestreo Se trata de explicar como se las arreglan los osciloscopios digitales para reunir los puntos de muestreo. Para señales de lenta variación, los osciloscopios digitales pueden perfectamente reunir más puntos de los necesarios para reconstruir posteriormente la señal en la pantalla. No obstante, para señales rápidas (como de rápidas dependerá de la máxima velocidad de muestreo de nuestro aparato) el osciloscopio no puede recoger muestras suficientes y debe recurrir a una de estas dos técnicas: Interpolación: es decir, estimar un punto intermedio de la señal basándose en el punto anterior y posterior. Muestreo en tiempo equivalente. Si la señal es repetitiva es posible muestrear durante unos cuantos ciclos en diferentes partes de la señal para después reconstruir la señal completa. Muestreo en tiempo real con Interpolación El método standard de muestreo en los osciloscopios digitales es el muestreo en tiempo real: el osciloscopio reúne los suficientes puntos como para reconstruir la señal. Para señales no repetitivas ó la parte transitoria de una señal es el único método válido de muestreo. Los osciloscopios utilizan la interpolación para poder visualizar señales que son más rápidas que su velocidad de muestreo. Existen básicamente dos tipos de interpolación: Lineal: Simplemente conecta los puntos muestreados con líneas. Senoidal : Conecta los puntos muestreados con curvas según un proceso matemático, de esta forma los puntos intermedios se calculan para rellenar los espacios entre puntos reales de muestreo. Usando este proceso es posible visualizar señales con gran precisión disponiendo de relativamente pocos puntos de muestreo. Muestreo en tiempo equivalente Algunos osciloscopios digitales utilizan este tipo de muestreo. Se trata de reconstruir una señal repetitiva capturando una pequeña parte de la señal en cada ciclo. Existen dos tipos básicos: Muestreo secuencial: los puntos aparecen de izquierda a derecha en secuencia para conformar la señal. Muestreo aleatorio: los puntos aparecen aleatoriamente para formar la señal Términos utilizados al medir Existe un término general para describir un patrón que se repite en el tiempo: onda. Existen ondas de sonido, ondas oceánicas, ondas cerebrales y por supuesto, ondas de tensión. Un osciloscopio mide estas últimas. Un ciclo es la mínima parte de la onda que se repite en el tiempo. Una forma de onda es la representación gráfica de una onda. Una forma de onda de tensión siempre se presentará con el tiempo en el eje horizontal (X) y la amplitud en el eje vertical (Y). La forma de onda nos proporciona una valiosa información sobre la señal. En cualquier momento podemos visualizar la altura que alcanza y, por lo tanto, saber si el voltaje ha cambiado en el tiempo (si observamos, por ejemplo, una línea horizontal podremos concluir que en ese intervalo de tiempo la señal es constante). Con la pendiente de las líneas diagonales, tanto en flanco de subida como en flanco de bajada, podremos conocer la velocidad en el paso de un nivel a otro, pueden observarse también cambios repentinos de la señal (ángulos muy agudos) generalmente debidos a procesos transitorios. Tipos de ondas Se pueden clasificar las ondas en los cuatro tipos siguientes: Ondas senoidales Ondas cuadradas y rectangulares Ondas triangulares y en diente de sierra. Pulsos y flancos ó escalones. Ondas senoidales: son las ondas fundamentales y eso por varias razones: Poseen unas propiedades matemáticas muy interesantes (por ejemplo con combinaciones de señales senoidales de diferente amplitud y frecuencia se puede reconstruir cualquier forma de onda), la señal que se obtiene de las tomas de corriente de cualquier casa tienen esta forma, las señales de test producidas por los circuitos osciladores de un generador de señal son también senoidales, la mayoría de las fuentes de potencia en AC (corriente alterna) producen señales senoidales. La señal senoidal amortiguada es un caso especial de este tipo de ondas y se producen en fenómenos de oscilación, pero que no se mantienen en el tiempo . Ondas cuadradas y rectangulares: son básicamente ondas que pasan de un estado a otro de tensión, a intervalos regulares, en un tiempo muy reducido. Son utilizadas usualmente para probar amplificadores (esto es debido a que este tipo de señales contienen en si mismas todas las frecuencias). La televisión, la radio y los ordenadores utilizan mucho este tipo de señales, fundamentalmente como relojes y temporizadores. Las ondas rectangulares se diferencian de las cuadradas en no tener iguales los intervalos en los que la tensión permanece a nivel alto y bajo. Son particularmente importantes para analizar circuitos digitales. Ondas triangulares y en diente de sierra: se producen en circuitos diseñados para controlar voltajes linealmente, como pueden ser, por ejemplo, el barrido horizontal de un osciloscopio analógico ó el barrido tanto horizontal como vertical de una televisión. Las transiciones entre el nivel mínimo y máximo de la señal cambian a un ritmo constante. Estas transiciones se denominan rampas. La onda en diente de sierra es un caso especial de señal triangular con una rampa descendente de mucha más pendiente que la rampa ascendente. Pulsos y flancos ó escalones: señales, como los flancos y los pulsos, que solo se presentan una sola vez, se denominan señales transitorias. Un flanco ó escalón indica un cambio repentino en el voltaje, por ejemplo cuando se conecta un interruptor de alimentación. El pulso indicaría, en este mismo ejemplo, que se ha conectado el interruptor y en un determinado tiempo se ha desconectado. Generalmente el pulso representa un bit de información atravesando un circuito de un ordenador digital ó también un pequeño defecto en un circuito (por ejemplo un falso contacto momentáneo). Es común encontrar señales de este tipo en ordenadores, equipos de rayos X y de comunicaciones. Conclusión La finalidad principal del osciloscopio es medir y mostrar voltaje en función del tiempo. Son ampliamente usados para el diseño, la prueba y la depuración eléctrica/electrónica de casi cualquier dispositivo que funcione con electricidad. Es gracias a este dispositivo podemos determinar directamente el periodo y el voltaje de una señal, determinar indirectamente la frecuencia de una señal así como localizar averías en un circuito, medir la fase entre dos señales y por supuesto obtener las ondas que deseamos investigar. En la actualidad este aparato ha servido de gran ayuda en el desarrollo de nuevas tecnologías que contribuyen a la investigación de varias áreas para estudiantes, investigares, ingenieros, entre otras áreas de formación que contribuyen al desarrollo de la electrónica. Bibliografía consultada: 1) 2) 3) 4) 5) 6) 7) https://acmax.mx/que-es-un-osciloscopio https://notatecnologica.com/dispositivos/para-que-sirve-un-osciloscopio/ https://www.finaltest.com.mx/product-p/art-9.htm http://personales.upv.es/jogomez/labvir/material/osciloscopio.htm https://www.ecured.cu/Osciloscopio https://www.youtube.com/watch?v=qqPsVg49DI0