Tabla de integrales ∫ dx = x + C x2 +C 2 ∫ xdx = x n +1 ∫ x dx = n + 1 + C , (n ≠ −1) n 1 ∫ x dx = ln x + C www.vaxasoftware.com/indexes.html ∫ kdx = kx + C x3 +C 3 2 ∫ x dx = n ∫ u ' u dx = u' ∫u u n +1 + C , (n ≠ −1) n +1 dx = ln u + C ∫ x + a dx = ln x + a + C 1 ∫ u + a dx = ln u + a + C ∫e dx = e x + C ∫ u' e x ax + C , ( a > 0, a ≠ 1) ln a x ∫ a dx = ∫ sen xdx = − cos x + C ∫ cos xdx = sen x + C 1 ∫ cos 2 dx = tan x + C x ∫ (1 + tan 1 ∫ sen ∫ 2 x 1− x 1 2 2 x ) dx = tan x + C dx = − cotan x + C 1 ∫1+ x ∫a 2 2 dx = arcsen x + C dx = arctan x + C 1 1 x dx = arctan + C 2 a a +x u' u dx = e u + C au ∫ u ' a dx = ln a + C , (a > 0, a ≠ 1) u ∫ u' sen udx = − cos u + C ∫ u' cos udx = sen u + C u' ∫ cos 2 u dx = tan u + C ∫ u ' (1 + tan 2 u ) dx = tan u + C u' ∫ sen u dx = −cotan u + C 2 u' ∫ 1− u2 u' ∫1+ u ∫a 2 2 dx = arcsen u + C dx = arctan u + C u' 1 u dx = arctan + C 2 +u a a Integral de la suma o resta ∫ (u ± v)dx = ∫ udx ± ∫ vdx Integración por partes ∫ udv = uv − ∫ vdu Regla de Barrow ∫ Siendo: u, v funciones de x; b a b f ( x) dx = F ( x) a = F (b) − F (a ) a, k, n, C constantes.