Descarga - Biblioteca de Ingeniería

Anuncio
Trabajo Fin de Grado
Grado en Ingeniería de Tecnologías Industriales
Rediseño de la Planta Multiprocesos y mejora del
Sistema de Control
Autor: José Luis Pozo Acosta
Tutores: Daniel Limón Marruedo
José Enrique Alonso Alfaya
Equation Chapter 1 Section 1
Dep. Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería
Universidad de Sevilla
Sevilla, 2015
ii
Trabajo Fin de Grado
Grado en Ingeniería de Tecnologías Industriales
Rediseño de la Planta Multiprocesos y mejora del
Sistema de Control
Autor:
José Luis Pozo Acosta
Tutores:
Daniel Limón Marruedo
José Enrique Alonso Alfaya
Dep. Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería
Universidad de Sevilla
Sevilla, 2015
iii
iv
Trabajo Fin de Grado: Rediseño de la Planta Multiprocesos y mejora del Sistema de Control
Autor:
José Luis Pozo Acosta
Tutores: Daniel Limón Marruedo
Jose Enrique Alonso Alfaya
El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:
Presidente:
Vocales:
Secretario:
Acuerdan otorgarle la calificación de:
Sevilla, 2015
El Secretario del Tribunal
v
vi
Agradecimientos
A mi familia, por haberme apoyado en todo momento.
A mi compañeros y amigos, por haber compartido conmigo los duros días que conlleva esta carrera.
A Daniel Limón, por ofrecerme la oportunidad de llevar a cabo este trabajo.
A José Enrique Alonso, por su enorme ayuda, desde el inicio hasta el fin de este proyecto.
José Luis Pozo Acosta
Sevilla, 2015
En esta escuela enseñamos a trabajar y a pensar…y de
paso formamos ingenieros.
-Emilio Freire-
vii
viii
Resumen
La Planta Multiprocesos del Departamento de Ingeniería de Sistemas y Automática, ubicada en el Laboratorio
de Control, fue concebida para poder realizar ideas propias referentes a la ingeniería de procesos,
automatización y control de una manera sencilla y flexible.
El sistema lo conforman numerosos sensores, actuadores, controladores lógicos programables (PLC’s) y
dispositivos de visualización y control que, debidamente interconectados y comunicados, permiten plantear el
estudio y la práctica de diversos problemas de control.
El sistema consta de una serie de elementos de carácter hidráulico que, según la configuración que tomen,
forman un determinado circuito para poder implementar diferentes arquitecturas de la teoría del control
automático. Se dispone, además, de una conexión con la planta de frío, situada en el tejado del edificio del
departamento, que sirve para poder realizar el control de la temperatura.
Para poder realizar el control de la planta se dispone de un Programmable Logic Controller (PLC) del
fabricante Schneider con las conexiones físicas de los cables ya realizadas en sus correspondientes tarjetas de
adquisición de datos. El PLC se puede gestionar a través de una pantalla de explotación del mismo fabricante.
Adicionalmente, se dispone de un equipo informático con los programas necesarios ya instalados.
El objetivo que perseguimos con este proyecto, es la remodelación de la topología y el rediseño de la
estructura de la planta, con el fin de simplificar el sistema y solucionar los problemas vigentes.
En su origen, la planta permitía hasta cinco configuraciones distintas. Tras los cambios realizados en este
proyecto, éstas se han reducido a tres. También se han llevado a cabo cambios en aquellos sistemas que no
funcionaban correctamente (sensores, actuadores y conexiones), así como la inclusión de nuevos sensores que
permitan obtener mejores medidas y con ellas mejores resultados en el control de las variables.
Además, se ha implementado un protocolo que, mediante software, permita llevar a cabo la calibración del
sensor de nivel del tanque contenedor, mejorando la medida de dicho sensor y con ello obteniendo un mejor
control del sistema.
Por último, mediante la síntesis de [1] y las actualizaciones e implementaciones llevadas a cabo en el marco de
este trabajo fin de grado, se ha desarrollado una guía de usuario con el fin de permitir a futuros alumnos e
investigadores un conocimiento completo y un uso funcional de la planta multiprocesos.
ix
x
Abstract
The Multiprocess Plant of the Systems and Automation Engineering Department, located at the Control
Laboratory, was conceived to perform, in an easy and flexible way, ideas related to process engineering,
automation and control.
The system is formed of numerous sensors, actuators, programmable logic controllers (PLCs) and display
devices and control, which given their proper communication and interconnection, allow us the study of
various control problems. The system includes a number of hydraulic elements which, depending on their
configuration, will form a circuit able to implement different architecture of the automated control theory.
Furthermore, the connection with the cold plant (located in the roof) will facilitate the control of the
temperature.
A Programme Logic Controller from Scheider (PLC) system is in place to control the plant. The wire’s
connections are already set up in their corresponding data acquisition cards. The PLC can be managed through
a display screen, from the same company. Additionally, all the necessary software is available.
The main objective of this project is the renovation of the topology and the redesigning of the plant's structure,
in order to simplify the system and fix current problems.
Originally, the plant allowed up to five different configurations, but the changes described in this project
reduced these configurations to three. Moreover, a concise study of the current problems of the plant (sensors,
actuators and connections) has been made, together with proposed changes to these problematic systems, as
the inclusion of new sensors that allow us to get more accurate measurements and a better control of the
variables.
In addition, a protocol to calibrate the container level sensor using software will facilitate the functioning of the
sensor and offer a more precise and sensitive control of the whole system.
Finally, this text is intended as a guide for future students and users of the plant.
Finally, thanks to the synthesis of [1] and the updates and improvements contained in this ‘last year degree
project’, the text is intended as a guide for future students and user of the plant, so they can have a wide and
complete understanding of the functioning of this multiprocess plant.
xi
xii
Índice
Agradecimientos
vii
Resumen
ix
Abstract
xi
Índice
xiii
Índice de Tablas
xvii
Índice de Figuras
xix
1
Antecedentes de partida y objetivos
1
2
Descripción de la planta
2.1 Introducción
2.2 Descripción física de la planta
2.2.1
Dispositivos y actuadores
2.2.2
Sensores
2.2.3
Válvulas
2.2.4
PLC
2.2.5
Pantalla de explotación Magelis HMI STU 655/855
3
3
6
6
13
16
18
18
3
Descripción del sistema de control
3.1 Introducción
3.2 Programmable Logic Controler (PLC)
3.2.1
Guía GEMMA
3.2.2
Modos de conexión
3.2.3
Funcionamiento del sistema
3.2.4
Secciones
3.2.5
Bloques FBD
3.3 Pantalla de explotación Magelis
3.3.1
Botones
3.3.2
Displays
3.3.3
Gráficas
3.3.4
Paneles
3.3.5
Acciones
3.3.6
Esquema general
3.4 Conexión remota OPC
3.5 Control de la planta con Matlab Simulink
3.5.1
Configuraciones
21
21
21
21
22
23
23
29
34
34
35
35
36
36
36
38
39
39
4
Descripción de las configuraciones y cambios topológicos realizados
4.1 Introducción
4.2 Planta multiprocesos antes de las modificaciones
4.2.1
Configuración 1
4.2.2
Configuración 2
4.2.3
Configuración 3
4.2.4
Configuración 4
43
43
43
45
45
46
46
xiii
5
4.2.5
Configuración 5
4.3 Planta multiprocesos después de las modificaciones
4.3.1
Configuración 1
4.3.2
Configuración 2
4.3.3
Configuración 3
4.3.4
Desagüe de la planta
4.4 Trabajos y modificaciones topológicas realizadas
4.5 Sustitución de elementos defectuosos
47
48
50
51
52
53
54
58
Cambios realizados en el sistema de control
5.1 Introducción
5.2 Cambios en Unity Pro (PLC) para las nuevas configuraciones
5.3 Cambios en Vijeo Designer (Pantalla de explotación) para las nuevas configuraciones
5.4 Implementación de la calibración del sensor de nivel
5.4.1
Ajuste del rango de señal del sensor al rango de medida del autómata
5.4.2
Calibración mediante la pantalla de explotación
5.5 Implementación del desagüe de la planta
5.5.1
Montaje
5.5.2
Programación
61
61
61
63
65
66
66
70
70
73
6
Conclusiones
77
7
Acciones y mejoras futuras
79
8
Referencias
81
9
Glosario
83
10
Anexos
10.1 Anexo A: Variables
10.1.1 Introducción
10.1.2 Variables Internas
10.1.3 Variables externas
10.2 Anexo B: Planos de las Configuraciones y Diagramas P&ID
10.2.1 Planta Multiprocesos
10.2.2 Configuración 1
10.2.3 Configuración 2
10.2.4 Configuración 3
10.2.5 Desagüe
10.3 Anexo C: Tarjetas de entradas y salidas del PLC
10.4 Anexo D: Guía de usuario de la Planta Multiprocesos
xiv
87
87
87
87
98
111
111
112
113
114
115
116
119
xv
xvi
ÍNDICE DE TABLAS
Tabla 1: Estructura
6
Tabla 2: Bomba
7
Tabla 3: Armario de distribución
8
Tabla 4: Depósito contenedor
9
Tabla 5: Variación del caudal tras las modificaciones
74
Tabla 6: Variables de salida digital de las tarjetas de adquisición
88
Tabla 7: Variables de entrada digital de las tarjetas de adquisición
88
Tabla 8: Variables de salida analógica de las tarjetas de adquisición
89
Tabla 9: Variables de entrada analógica de las tarjetas de adquisición
89
Tabla 10: Variables internas del PLC
92
Tabla 11: Parámetros utilizados en los bloques de la programación del autómata
95
Tabla 12: Variables internas de la pantalla de explotación
96
Tabla 13: Variables compartidas PLC-Pantalla
108
Tabla 14: Variables compartidas de OPC
110
Tabla 15: Módulos del PLC
117
Tabla 16: Características del Procesador BMX P34 2020
118
xvii
xviii
ÍNDICE DE FIGURAS
Figura 1: Planta Multiprocesos
3
Figura 2: Esquema de funcionamiento del equipo de frío
3
Figura 3: PLC y tarjetas de E/S analógicas y digitales
4
Figura 4: Pantalla de Explotación
4
Figura 5: Posibilidades de control
4
Figura 6: Esquema de la comunicación de la planta multiprocesos
5
Figura 7: Estructura
6
Figura 8: Bomba
7
Figura 9: Armario de distribución
8
Figura 10: Depósito contenedor
9
Figura 11: Depósito colector y válvula de entrada a la bomba
9
Figura 12: Resistencia RT 450.4
10
Figura 13: Resistencia de 4 kW
11
Figura 14: Intercambiadores de calor
11
Figura 15: Planta de frío e interruptor de encendido
12
Figura 16: Cuadalímetro electro-magnético
13
Figura 17: Rotámetro
13
Figura 18: Sensor de nivel capacitivo
14
Figura 19: Sensor de presión
14
Figura 20: Sonda de temperatura
15
Figura 21: Sensor de temperatura
15
Figura 22: Válvula de ajuste y válvula manual
16
Figura 23: Funcionamiento de las válvulas solenoides
16
Figura 24: Válvula solenoide
16
Figura 25: Válvula electro-neumática
17
Figura 26: Válvula de regulación eléctrica
17
Figura 27: Modicon M340
18
Figura 28: Pantalla de explotación
18
Figura 29: Guía GEMMA
21
Figura 30: Guía GEMMA aplicada en la Planta Multiprocesos
22
Figura 31: Secciones
23
Figura 32: Red de Petri principal – GEMMA
24
Figura 33: Sección de inicio y preparación
25
Figura 34: Red de Petri secundaria – Asignación de control
25
xix
Figura 35: Conexión y envio por OPC
26
Figura 36: Bloques auxiliares
29
Figura 37: Bloque de selección de las variables manipulables
29
Figura 38: Bloque de selección de la variable a controlar
30
Figura 39: Bloque de selección de configuración
30
Figura 40: Filtro de nivel
31
Figura 41: Bloque de conversión de entero a booleano
31
Figura 42: Bloque de Watchdog
32
Figura 43: Bloque de conexión con la pantalla
32
Figura 44: Bloque de escalado de variables
33
Figura 45: Pantalla Magelis y Vijeo Designer
34
Figura 46: Botones de la pantalla
34
Figura 47: Botones de la pantalla
35
Figura 48: Displays de lectura y escritura
35
Figura 49: Gráfica
35
Figura 50: Paneles y ventanas emergentes
36
Figura 51: Acciones programadas
36
Figura 52: Esquema de movimiento entre pantallas
37
Figura 53: Modo de conexión OPC
38
Figura 54: Estructura de datos de Matlab
39
Figura 55: Ejemplo de Control de Nivel con Matlab
40
Figura 56: Planta multiprocesos – Antiguo diseño
43
Figura 57: Diagrama P&ID – Planta multiprocesos – Antiguo diseño
44
Figura 58: Diagrama P&ID – Configuración 1 (Antigua)
45
Figura 59: Diagrama P&ID – Configuración 2 (Antigua)
45
Figura 60: Diagrama P&ID – Configuración 3 (Antigua)
46
Figura 61: Diagrama P&ID – Configuración 4 (Antigua)
46
Figura 62: Diagrama P&ID – Configuración 5 (Antigua)
47
Figura 63: Planta multiprocesos – Nuevo diseño
48
Figura 64: Diagrama P&ID – Planta multiprocesos – Configuraciones
48
Figura 65: Diagrama P&ID – Planta multiprocesos – Nuevo diseño
49
Figura 66: Diagrama P&ID – Configuración 1 (Nueva)
50
Figura 67: Diagrama P&ID – Configuración 2 (Nueva)
51
Figura 68: Válvula VS5 que debe accionarse a mano
52
Figura 69: Diagrama P&ID – Configuración 3 (Nueva)
52
Figura 70: Diagrama P&ID – Desagüe de la planta (Nueva)
53
Figura 71: Planta antes y después de las modificaciones
54
Figura 72: Racores de apriete
55
Figura 73: Herramientas utilizadas
55
xx
Figura 74: Medidas de los tubos y conexiones
56
Figura 75: Tubos y racores de apriete
56
Figura 76: Unión flexible
56
Figura 77: Uniones de PVC mediante pegamento
57
Figura 78: Válvula senoidal averiada
58
Figura 79: Válvula defectuosa
58
Figura 80: Bloque de control de válvulas
61
Figura 81: Lógica de control de válvulas
62
Figura 82: Flujos de agua en las diferentes configuraciones
62
Figura 83: Modificación de Panel 2
63
Figura 84: Modificaciones en los paneles de texto
63
Figura 85: Modificación del panel de selección
64
Figura 86: Ventanas emergentes – Configuraciones 1, 2 y 3
64
Figura 87: Sensor de nivel y filtro implementado
65
Figura 88: Potenciómetros Span y Zero
66
Figura 89: Bloque de escalado de la señal
66
Figura 90: Cálculo del escalado
67
Figura 91: Panel principal con el botón de AJUSTES añadido
67
Figura 92: Ajustes de la planta
68
Figura 93: Configurando la planta para la calibración
68
Figura 94: Explicación de la calibración
69
Figura 95: Calibración
69
Figura 96: Válvula utilizada
70
Figura 97: Diagrama P&ID – Desagüe de la planta
70
Figura 98: Union de la bomba con el desagüe y VR1
71
Figura 99: Unión flexible entre VR1 y caudalímetro
71
Figura 100: Boca de admisión
72
Figura 101: Boca de admisión modificada
72
Figura 102: Panel principal y sección de ajustes de la planta
73
Figura 103: Panel espera para el desagüe
73
Figura 104: Panel que aparece durante el desagüe
74
Figura 105: Sensor de presión futuramente instalado
79
Figura 106: Diagrama P&ID – Planta Multiprocesos
111
Figura 107: Diagrama P&ID - Configuración 1
112
Figura 108: Diagrama P&ID - Configuración 2
113
Figura 109: Diagrama P&ID - Configuración 3
114
Figura 110: Diagrama P&ID – Desagüe de la planta
115
Figura 111: Tarjetas del PLC
117
xxi
1 ANTECEDENTES DE PARTIDA Y OBJETIVOS
El objetivo de este proyecto consiste en la remodelación, cambio de la topología y mejora de la sensorización
y el sistema de control de la planta multiprocesos, desarrollada por el Departamento de Ingeniería de Sistemas
y Automática para su uso académico y/o para la investigación.
El proyecto abarca desde la reforma de la estructuración de la planta, así como del programa que gobierna el
autómata, hasta pantalla de explotación.
También realizaremos cambios en aquellos sensores o actuadores que resulten insatisfactorios o bien sean
susceptibles de mejora y complementación software o hardware.
Además, se han implementado, tanto en el software como en el hardware de la planta, sistemas automáticos
para poder calibrar algunos de los sensores. Así como también permitir el desaguado automático de la planta.
Por ultimo, se ha desarrollado una guía de usuario que permita, tanto a alumnos como a investigadores,
conocer y trabajar con la planta. En la guía se detallan los componentes físicos de la planta, el sistema de
control que la gobierna, los diversos paneles de la pantalla de explotación y las configuraciones que la planta
puede adortar. En resumen, todo lo necesario para poder hacer un uso debido y funcional de la planta.
La planta multiprocesos, por sus características y flexibilidad, es una herramienta útil para la explicación de la
teoría del control automático y la automatización, proveyendo de más posibilidades de aprendizaje al alumno.
Su aplicación en proyectos de investigación puede ser interesante al poner en funcionamiento una planta con
una gran flexibilidad para adaptarse a distintas configuraciones físicas y poder conectar cualquier herramienta
que el usuario necesite utilizando un mismo estándar de comunicación.
La planta multiprocesos ha sido ideada, diseñada y planificada por componentes del Departamento de
Sistemas y Automática de la Universidad de Sevilla para su uso académico.
Además, el desarrollo de la programación y la implementación de la comunicación y el sistema de control de
la planta fueron realizados por José Enrique Alonso en 2013, bajo la supervisión y tutoría de Daniel Limón
Marruedo y Fernando Castaño Castaño.
Gran parte de la información de este trabajo de fin de grado está sacada de [1].
1
2
2 DESCRIPCIÓN DE LA PLANTA
2.1 Introducción
La planta consta de una serie de elementos de carácter hidráulico que, según la configuración que tomen,
forman un determinado circuito para poder implementar diferentes arquitecturas de la teoría del control
automático.
Figura 1: Planta Multiprocesos
Se dispone, además, de una conexión con la planta de frío, situada en el tejado del edificio del departamento,
que sirve para poder realizar el control de la temperatura.
Figura 2: Esquema de funcionamiento del equipo de frío
3
Para poder realizar el control de la planta multiprocesos se dispone de un Programmable Logic Controller (en
adelante PLC) del fabricante Schneider con las conexiones físicas de los cables ya realizadas en sus
correspondientes tarjetas de adquisición de datos.
Figura 3: PLC y tarjetas de E/S analógicas y digitales
El PLC se puede gestionar a través de una pantalla de explotación del mismo fabricante ya conectada entre sí.
Adicionalmente, se dispone de un equipo informático conectado con los programas necesarios.
Figura 4: Pantalla de Explotación
La planta ofrece una serie de posibilidades de control como pueden ser:

Control monovariable: PID

Control multivariable: 2 PID independientes

Control multivariable: Cascada

Feed Forward.
Figura 5: Posibilidades de control
4
Además, el sistema cuenta con una comunicación externa mediante el estándar de comunicación OPC.
Este estándar permite la comunicación entre cualquier número de dispositivos o programas sin necesidad de
tener un controlador para cada dispositivo que se desea comunicar.
Dicha implementación permite comunicar otros programas con el fin de poder aplicar arquitecturas de control
más complejas o de realizar un seguimiento del proceso de la planta más preciso.
En la siguiente figura se muestra el esquema que se desea seguir para la comunicación general de planta.
Figura 6: Esquema de la comunicación de la planta multiprocesos
La planta multiprocesos está conectada al autómata (PLC) para que éste tenga el control íntegro de los
procesos.
A su vez, la pantalla de explotación y el autómata están conectados entre sí exclusivamente para realizar la
configuración de la planta.
En la función control de la planta existen dos modos:

El primero a través de la pantalla, para aplicar un tipo de control preestablecido.

El segundo modo a través del Servidor OPC para realizar cualquier tipo de control de forma externa.
El servidor OPC conecta los clientes deseados con el autómata de forma virtual o inalámbrica.
5
2.2 Descripción física de la planta
La planta multiprocesos se compone de distintos elementos físicos que, colocados en un orden establecido,
permiten realizar el control de ésta. La descripción de dichos elementos es necesaria para conocer su
funcionamiento, las características dinámicas y la respuesta que se puede esperar del sistema.
Gran parte de la instrumentación utilizada en este proyecto se ha adquirido del fabricante GUNT.
Ciertos elementos de otros fabricantes han sido añadidos para ampliar las posibilidades de control de la planta
multiprocesos, además de incluir módulo de control del fabricante Schneider.
Algunas ilustraciones, así como cierta información, de esta descripción han sido extraídas de [2].
2.2.1
2.2.1.1
Dispositivos y actuadores
Estructura
El armazón está compuesto por rieles de perfil, en los que se fijan los componentes. Sirve para el montaje y la
realización de todos los ensayos, sirviendo de elemento portante para tuberías, actuadores y sensores.
Figura 7: Estructura
Número
Denominación
1
Rieles de perfil
2
Armario de distribución
3
Depósito
4
Bomba
Tabla 1: Estructura
6
2.2.1.2
Bomba
Se emplea una bomba centrífuga de la marca comercial Lowara. Su funcionamiento consiste en hacer circular
el agua del circuito a un caudal constante entre 1200 y 4200 L/h.
La bomba no es regulada, sino solamente encendida y apagada por medio del interruptor de bomba.
En ensayos con un sistema controlado de temperatura, el agua puede ser conducida alternativamente por un
bypass a través del sistema de tuberías sin que fluya a través del depósito. Este ajuste se realiza a través del
conmutador de tres vías (Elemento 2). Ésto es especialmente razonable en el caso de la regulación de
temperatura para reducir la cantidad de agua a calentar dentro del sistema controlado.
Figura 8: Bomba
Número
Denominación
Número
Denominación
1
Retorno del agua del sistema
5
Depósito
2
Conmutador de tres vías para bypass
6
Bomba
3
Salida de la bomba
7
Entrada de la bomba
4
Llave de cierre
8
Bypass
Tabla 2: Bomba
7
2.2.1.3
Armario de distribución
A través del armario de distribución los ensayos son alimentados con energía eléctrica y aire comprimido.
Figura 9: Armario de distribución
Número
Denominación
1
Interruptor principal
2
Interruptor de paro de emergencia
3
Interruptor de bomba
4
Regulador de aire comprimido con manómetro (0...6bares) con acoplamiento rápido para la
alimentación de los ensayos
5
Regulador de aire comprimido con manómetro (0...2,5bares) con acoplamiento rápido para la
alimentación de los ensayos.
Tabla 3: Armario de distribución
2.2.1.4
Depósito contenedor
Toda la planta funciona con agua como medio de trabajo.
El depósito contenedor es un recipiente de nivel hecho de vidrio Duran de unos 44 cm de altura. A través del
conducto de afluencia (10) se puede bombear agua al recipiente de nivel (4); el agua puede salir otra vez del
recipiente a través del desagüe (1) en cuanto se abra la llave de descarga (13).
Como medida de seguridad, el recipiente de nivel está cubierto por una funda protectora de plástico
transparente (5). Para poder ventilar el recipiente de nivel de manera casual durante los ensayos, éste también
dispone de una válvula de ventilación separada (6).
El tubo de rebose (3) sirve para evitar un sobrellenado por descuido del recipiente de nivel. Para ello, la llave
de rebose (2) tiene que estar abierta.
8
Figura 10: Depósito contenedor
Número
Denominación
Número
Denominación
1
Descarga de agua
8
Válvula de sobrepresión
2
Llave de rebose
9
Orificio de montaje para el sensor de nivel
3
Tubo de rebose
10
Afluencia de agua
4
Recipiente de nivel
11
Conexión de presión superior
5
Funda protectora
12
Conexión de presión inferior
6
Válvula de ventilación
13
Llave de descarga de agua
7
Manómetro para la presión del recipiente
Tabla 4: Depósito contenedor
2.2.1.5
Depósito colector
Depósito cúbico y metálico que sirve para guardar el agua no utilizada durante el proceso. Tiene un volumen
superior al depósito contenedor puesto que está calculado para tener suficiente líquido para llenar las tuberías y
el depósito contenedor y además mantener la bomba por debajo del su propio nivel.
Recientemente se le ha añadido una válvula de PVC que regula la entrada de agua a la bomba, la cual no debe
estar cerrada si la bomba está funcionando.
Figura 11: Depósito colector y válvula de entrada a la bomba
9
2.2.1.6
Tuberías y conexiones
El sistema está compuesto por tuberías, codos, piezas en T, válvulas y elementos especiales prefabricados. Las
tuberías de agua están hechas de tubos de PP-H de 25mm x 2,3mm.
El empalme se realiza con conectores de apriete especialmente adaptados al tubo en forma de ángulo de 90° o
en forma de T. Para un montaje limpio y correcto, los tubos se tienen que cortar en piezas que tengan las
longitudes adecuadas.
Todos los elementos prefabricados están equipados con conectores de apriete.
Las tuberías de aire comprimido se montan con mangueras de aire comprimido de PE 6/4. Las mangueras de
aire comprimido se insertan en acoplamientos rápidos y se pueden soltar fácilmente con sólo presionar la tapa
hacia atrás.
Como las mangueras son flexibles, no es necesario atenerse exactamente a las longitudes.
2.2.1.7
Resistencias
Existen dos resistencias en la planta multiprocesos de diferente potencia que se emplean para elevar la
temperatura del fluido que pasa por ellas en los procesos de control de temperatura. Se encuentran situadas en
la parte derecha de la planta.
1. Resistencia RT 450.04
Funciona con agua como medio de trabajo y consta de un dispositivo de calefacción eléctrico de 2
kW, que está incorporado en un tubo.
Como medida de seguridad, el dispositivo de calefacción dispone de un regulador de temperatura que
está ajustado a un máximo de 65°C y de una protección contra funcionamiento en seco que reacciona
a 110°C aprox.
Figura 12: Resistencia RT 450.4
10
2. Resistencia de 4 kW
Esta segunda resistencia ha sido adquirida a un proveedor distinto a GUNT. Tiene una potencia de 4
kW y ha sido recubierta de un material aislante para aumentar su eficacia.
Figura 13: Resistencia de 4 kW
2.2.1.8
Intercambiadores de calor
El caudal del circuito de agua primario se tiene que seleccionar de tal modo que el agua fluya primero a través
del dispositivo de calefacción y luego a través del circuito primario del cambiador de calor de placas.
El circuito de agua secundario del cambiador de calor de placas es conectado a un suministro de agua y
contiene agua fría. El circuito de agua secundario se puede conectar con ayuda de mangueras y los adaptadores
con acoplamientos rápidos.
Mediante la selección adecuada de la afluencia y el desagüe en este circuito de refrigeración es posible
disponer de una refrigeración en contraflujo o de una refrigeración en flujo continuo.
Se emplean dos intercambiadores de calor de idénticas características de la marca SWEP.
Figura 14: Intercambiadores de calor
11
2.2.1.9
Equipo de refrigeración
El equipo de refrigeración se emplea en el segundo circuito de los intercambiadores como fuente fría de
caudal. Se ha empleado el modelo MQH 06-18 de la empresa Airwell Air-Conditioning Co.
Se dispone de un depósito de agua, una tubería de entrada y otra de salida conectadas a los intercambiadores
de la planta. La bomba hace circular el caudal y existe una válvula de tres vías para regular la temperatura.
Adicionalmente en el depósito se introduce un serpentín y un sensor de temperatura gobernados por la planta
de producción de frío, la cual se encarga de hacer circular por el serpentín el líquido refrigerante a la
temperatura adecuada.
Todo el equipo de frío dispone de su propio controlador ya ajustado, permitiendo exclusivamente su encendido
desde la planta multiprocesos.
Figura 15: Planta de frío e interruptor de encendido
2.2.1.10 Router
Se ha utilizado un router para poder conectar todos los dispositivos empleados en el proyecto. El router
utilizado es el modelo USR-8054 del fabricante US Robotics con 4 conexiones de Ethernet.
Dispositivo
Router
Dirección IP
192.168.0.1
Modicon M340 192.168.0.4
Modicon M340 192.168.0.12
Ordenador
IP dinámica (14 generalmente)
12
2.2.2
2.2.2.1
Sensores
Caudalímetro electro-magnético
Para mediciones de caudal el sistema dispone de un sensor electrónico con indicador. Este sensor es apropiado
para realizar mediciones de caudal de líquidos en tuberías cerradas. La magnitud a medir es la velocidad del
flujo. La velocidad óptima del flujo es de 1...3m/s.
Después de una conversión, en la salida se dispone de una señal de corriente estandarizada de 4...20mA que es
proporcional al caudal.
Este sensor tiene la ventaja de que no se producen pérdidas de presión a causa de resistencias al flujo, ya que
no están involucrados elementos mecánicos movibles y la sección transversal del tubo es igual en todo el
sistema.
Figura 16: Cuadalímetro electro-magnético
2.2.2.2
Rotámetro
Este consiste en un flotador cilíndrico, más denso que el fluido, colocado dentro de un tubo cónico vertical con
el área menor abajo y el área mayor arriba. Al pasar el flujo de abajo hacia arriba levanta el flotador, con lo
cual la posición de este será proporcional al flujo.
Con ayuda de una válvula se puede ajustar la resistencia al flujo y, por consiguiente, modificar las
características de caudal del sistema controlado.
Sirve, por tanto, para obtener una medida directa del caudal que transita por la planta, y así poder compararlo
con el valor de caudal obtenido por el caudalímetro electromagnético.
Figura 17: Rotámetro
13
2.2.2.3
Sensor de nivel capacitivo
El Sensor de nivel capacitivo es un palpador que funciona de manera capacitiva. La varilla de medición, que es
sumergida en el agua, representa un condensador eléctrico. Como las constantes dieléctricas de agua y aire se
diferencian enormemente, la capacidad del condensador varía según el nivel de agua.
El palpador ha sido diseñado en técnica bifilar y está equipado con un convertidor. Se emite una señal estándar
de 4...20mA que es proporcional al nivel.
Es necesario comprobar de vez en cuando si la indicación del nivel en el regulador concuerda con el nivel que
indica la escala en el recipiente de nivel. Si los valores en el regulador y en el recipiente de nivel difieren, se
debe calibrar el sensor de nivel.
Figura 18: Sensor de nivel capacitivo
2.2.2.4
Sensor de presión
El sistema sistema contiene transmisores de presión piezocerámicos como sensores de presión.
Una ventaja de esta técnica es el comportamiento dinámico favorable de esos sensores. Gracias a sus tiempos
de respuesta sumamente cortos, son igualmente apropiados para mediciones de presión tanto estáticas como
dinámicas. Prácticamente no es necesario realizar una recalibración de este tipo de dispositivos.
Se mide la presión relativa de 0 a 2 bares, es decir, la diferencia de presión con respecto al medio ambiente y
se obtiene una señal de corriente estandarizada de 4...20mA que es proporcional a la presión a medir.
La conexión de los sensores al sistema de tuberías se realiza con un acoplamiento rápido para neumática.
Figura 19: Sensor de presión
14
2.2.2.5
Sonda de temperatura
Estas sondas se sitúan en las entradas y salidas del intercambiador en la parte del circuito del equipo de frío.
Son sensores de humedad y temperatura del fabricante CAREL, modelo Sondas DPD. Su rango de
funcionamiento es de -20 °C a +70 °C.
Figura 20: Sonda de temperatura
2.2.2.6
Sensor de temperatura
El Sensor de temperatura es un palpador PT100. Una resistencia eléctrica dependiente de la temperatura es
utilizada como sensor. El valor de resistencia eléctrica es convertido en una señal eléctrica.
Los sensores han sido diseñados en técnica bifilar y están equipados con un convertidor que emite una señal
estándar de 4...20mA proporcional a la temperatura. 4mA equivalen a 0°C, 20mA equivalen a 100°C.
Figura 21: Sensor de temperatura
15
2.2.3
2.2.3.1
Válvulas
Válvulas manuales
Modelo 751 del fabricante COMAP. Es una válvula de ajuste manual que tiene una precisión para el ajuste de
4 vueltas completa de la tuerca. Se utiliza para regular con precisión la salida del agua del depósito contenedor.
Adicionalmente, se emplean válvulas manuales estándares para cerrar el paso de líquido en ciertos puntos de la
planta, como pueden ser a la salida de la bomba, salida del depósito contenedor y entrada del rotámetro.
Figura 22: Válvula de ajuste y válvula manual
2.2.3.2
Válvulas solenoides
Las válvulas solenoides se componen de un actuador que acciona una válvula de tres vías.
El funcionamiento consiste en mantener el sentido del caudal recto en el caso de estar apagado el actuador,
mientras que si el actuador está activado el caudal que pasa por la válvula sufre un giro de noventa grados
manteniendo siempre el sentido de la corriente.
Figura 23: Funcionamiento de las válvulas solenoides
Estas válvulas tardan 60 segundos en cambiar de una posición a otra. Cuando las válvulas están cambiando, un
piloto led verde parpadea. Cuando el giro ha finalizado, dicho piloto se mantiene constante.
Figura 24: Válvula solenoide
16
2.2.3.3
Válvulas de regulación electro-neumáticas (VR1)
En la válvula de control se modifica el caudal por medio de la carrera de la válvula.
El accionamiento de la biela del cono es realizado a través de la biela motora que es accionada por aire
comprimido que actúa sobre una membrana dentro de la cabeza de la válvula. La membrana está acoplada a un
resorte mecánico, el cual es comprimido por la fuerza de compresión generada. Por consiguiente, para cada
valor de presión en la cámara de presión se obtiene una carrera definida.
El posicionador, combinado con la válvula, tiene la función de hacer la válvula de accionamiento neumático
utilizable para señales de entrada eléctricas.
La señal de corriente eléctrica controladora (4...20mA) es convertida en una presión de mando que actúa sobre
la membrana. Para poder funcionar, la válvula tiene que ser alimentada con energía auxiliar neumática de 2,5
bares.
Figura 25: Válvula electro-neumática
2.2.3.4
Válvulas de regulación eléctricas (VR2 y VR3)
Se emplean dos válvulas de regulación para el control por temperatura del agua a la entrada del intercambiador
en el circuito del equipo de refrigeración.
Para cada una de las válvulas de regulación se han empleado una válvula de tres vías, modelo VG1805 de
Johnson Controls, en conjunto con un actuador, modelo M9216 de Johnson Controls.
La válvula de tres vías tiene el mismo funcionamiento que el explicado para las válvulas solenoides. Por otro
lado el actuador es de accionamiento eléctrico y tiene una señal de retorno de la posición alcanzada. El tiempo
del actuador para el cambio de sentido del caudal es de 30 segundos.
Figura 26: Válvula de regulación eléctrica
17
2.2.4
PLC
El sistema de control utilizado es un Modicon M340 del fabricante Schneider. El PLC Modicon M340 es un
autómata programable muy extendido en la industria, cuya función principal es realizar el control y la
supervisión de la planta durante su uso, controlando en todo momento que los sensores estén dentro de los
límites adecuados de funcionamiento y los actuadores no sobrepasen sus rangos de uso.
El PLC cuenta con una serie de tarjetas de adquisición de datos que han sido previamente cableadas. Las
entradas y salidas se describen en el Anexo C.
Figura 27: Modicon M340
2.2.5
Pantalla de explotación Magelis HMI STU 655/855
La pantalla empleada es el modelo Magelis HMI STU 655/855. Es una pantalla táctil resistiva fabricada por
Schneider, pensada para ser utilizada como periférico local en autómatas o microcontroladores, con el fin de
comprobar el estado del sistema en cualquier momento. Funciona en comunicación con el autómata, con el
que comparte variables e información de su estado.
Internamente posee una memoria independiente del autómata para guardar su programación y sus propias
variables. Tiene dos puntos de comunicación externa: USB y Ethernet. La primera sirve para su programación,
mientras que la segunda conexión se ha utilizado exclusivamente para conectarse con el autómata mediante el
router instalado.
A la derecha de la pantalla se habilitado un botón para su encendido y apagado.
En este proyecto se usa como pantalla de explotación, interaccionando de manera directa con el autómata para
poner en funcionamiento la planta.
Figura 28: Pantalla de explotación
18
19
20
3 DESCRIPCIÓN DEL SISTEMA DE CONTROL
3.1 Introducción
En este capítulo se desarrolla descripción del control de la planta multiprocesos y las comunicaciones del
autómata con la pantalla de explotación.
Primero plantearemos la solución adoptada desde un punto de vista teórico, aplicando la guía GEMMA como
estructura de control.
Posteriormente se explica la programación del autómata y de la pantalla de explotación.
3.2 Programmable Logic Controler (PLC)
Para realizar la programación del autómata se ha utilizado el programa Unity de Schneider en versión XL y S.
3.2.1
Guía GEMMA
Se ha seguido la Guía de Estudios de Modos de Marcha y Parada ¡Error! No se encuentra el origen de la
referencia. (en adelante guía GEMMA) para definir los modos de funcionamiento, parada y fallo de forma
general.
La guía GEMMA define tres situaciones comunes en todo proceso: Parada, Funcionamiento y Fallo. Cada
estado tiene unos subestados correspondientes a diferentes casos que pueden ocurrir.
Figura 29: Guía GEMMA
Debido a las características de la planta y en concreto a la consideración de la producción hay varios estados
que no se han considerado necesarios. En la siguiente figura se muestra la red de estados que quedaría
aplicando la teoría de la guía GEMMA a nuestro caso.
21
Figura 30: Guía GEMMA aplicada en la Planta Multiprocesos
Se puede observar que en este caso se ha considerado que la producción empieza cuando la configuración de
la planta termina. El resto de estados no se tienen en cuenta inicialmente debido a las características de la
planta.
3.2.2
Modos de conexión
La programación del autómata y la pantalla de explotación se han estructurado de forma que el PLC tenga
siempre la prioridad en la ejecución de las acciones sobre la pantalla, lo que significa que el PLC puede
impedir la realización de cualquier acción si lo estima conveniente.
La pantalla de explotación se ha diseñado para que haga la tarea de periférico de aviso y actuación del usuario.
Esto significa que la pantalla escribe, en caso de necesitarlo, directamente en las variables compartidas del
autómata, las cuales se guardan en éste mismo.
Se han desarrollado tres modos de conexión para poder controlar la planta multiprocesos:

Modo manual local: Implica que se pueden manipular, mediante la pantalla de explotación, la
actuación de las válvulas y las resistencias de la planta según la configuración seleccionada.

Modo automático local: Implica introducir arquitecturas de control para realizar lazos en bucle
cerrado. Se han diseñado varias arquitecturas de control como son: control multivariable, control en
cascada y Feed Forward.

Modo remoto vía OPC: Permite la comunicación con un dispositivo externo de los datos de los
sensores y las variables de los actuadores para realizar cualquier función externa.
22
3.2.3
Funcionamiento del sistema
Debido al gran número de variables que se han manejado durante la programación de los diversos dispositivos
y programas que intervienen en el proyecto, éstas se han detallado en el Anexo A: Variables.
Para estructurar el programa, se han colocado todas las lecturas de variables de la planta en la primera parte de
la ejecución del PLC y las escrituras o variables de salida de la planta al final del programa. El orden del resto
de secciones también se ha tenido en cuenta y se ha decidido colocar en orden inverso al orden de ejecución de
las secciones según la red de Petri desarrollada.
El programa se ordena en función de unas hojas de código llamadas secciones. Cada sección se puede realizar
en distintos lenguajes de programación.
3.2.4
Secciones
El lenguaje principal utilizado en la programación de las secciones es el lenguaje de contactos llamado Ladder
(LD). Adicionalmente, para las redes de Petri se utiliza el lenguaje SFC o Grafcet. Éste es un lenguaje muy
simple para poder modelar las redes de Petri que se emplean en la programación del PLC. Por último, se ha
empleado el lenguaje ST para ciertas partes en las que sólo se necesita actualizar numerosas variables.
Existe una sección por cada estado de la red de Petri del autómata y varias secciones extras para el control y la
supervisión de las variables de entrada y salida.
Además, hay una sección de condiciones de seguridad que, debido a las características de la planta, no se
puede tener la realimentación de posibles fallos, y por tanto, se ha decidido establecer dichas condiciones de
seguridad para evitar averías.
A continuación se muestra el orden establecido para la ejecución de la programación:
Figura 31: Secciones




Entrada de variables
 Secciones de los estados de la red de Petri general
 Secciones de los estados de la red de Petri secundaria
Red de Petri secundaria
Red de Petri general
Salida de variables
23
3.2.4.1
GEMMA
La sección principal llamada GEMMA, es una Red de Petri escrita en lenguaje SFC. Esta sección gobierna el
funcionamiento del PLC, habilitando el resto de secciones, a excepción de las secciones de entrada y salida,
según el estado en el que se encuentra el autómata dentro de la red.
El autómata avanza en la red de Petri según la interacción del usuario con la pantalla de explotación.
Figura 32: Red de Petri principal – GEMMA
24
3.2.4.2
A1 – REPOSO
Estado inicial de la red de Petri. No hay ninguna acción a realizar, la planta está parada.
3.2.4.3
F2.1 – INICIO, PREPARACIÓN
Sección de configuración de la planta multiprocesos. Llega la variable de configuración para activar las
válvulas solenoides (VS) adecuadas. Se introducen las condiciones de seguridad de parada de bomba y
resistencias apagadas. La condición de franqueo es la variable de confirmación desde la pantalla.
Figura 33: Sección de inicio y preparación
3.2.4.4
F2.2 – INICIO
Sección de espera para que se realice la configuración. La condición de franqueo es el tiempo de espera de
configuración de la planta, 60 segundos, que es el tiempo que necesitan las vávulas soleniodes para
posicionarse.
3.2.4.5
F1 – CONTROL (ASIGNACIÓN DE CONTROL)
En este estado se habilita una red de Petri secundaria para determinar qué conexión se realiza para el control de
la planta. Las condiciones de franqueo llegan desde variables compartidas con la pantalla. Según se active un
modo u otro también se activan sus correspondientes secciones.
Figura 34: Red de Petri secundaria – Asignación de control
25
3.2.4.6
F1 – CONEXIÓN REMOTA CON OPC
En esta sección se habilita el intercambio de información para las variables de OPC. Se escriben los valores de
los sensores y se permite el control externo de las válvulas y las resistencias de la planta.
Figura 35: Conexión y envio por OPC
3.2.4.7
F1 – CONEXIÓN MANUAL LOCAL
En este modo se permite la manipulación de los actuadores a través de la pantalla y también se puede
visualizar los valores de todos los sensores de la planta.
La sección correspondiente a este modo alberga pulsadores para la variables booleanas y asignaciones de los
valores de las variables intercambiadas con la pantalla en variables internas del autómata y viceversa.
3.2.4.8
F1 – CONEXIÓN AUTOMÁTICO LOCAL
En el modo automático local se permite la configuración previa y el diseño en línea de varias arquitecturas de
control desde la pantalla de explotación. Se accede desde el modo manual local y, estando éste todavía activo,
se realiza la configuración de las arquitecturas de control que se quieren aplicar y de las propiedades
adicionales de los controladores.
Para introducir los valores de las propiedades se han habilitado dos opciones. La primera opción es introducir
los valores de las propiedades teniendo en cuenta su magnitud física. Es decir, que en el caso de activar
Variables Ingenieriles se debe introducir el valor físico de la propiedad. Por el contrario si se activa la opción
Variables Normalizadas el valor de las propiedades hay que introducirlos en tantos por ciento.
En esta parte de la programación se han creado dos secciones:

La primera utiliza el lenguaje ST para actualizar todas las propiedades y parámetros de diseño de los
controladores.

La segunda sección, en el lenguaje LD habitual, se usa para implementar los PIDs y las variables
necesarias para la utilización de las variables en valores normalizados o valores ingenieriles. Esta
sección se ha estructurado según el siguiente orden:
1. Recepción de valores de las propiedades y de los parámetros: En esta parte solo se realizan
escalados de variables y asignaciones de valores de propiedades.
2. Normalizado de variables: Obligatorio para todas las variables y, dependiendo del tipo de
control, se activan o no los bloques correspondientes.
3. Cálculo de la acción de control (PIDs)
4. Conversión a variables ingenieriles (si procede)
5. Adaptación de las variables para la visualización de las gráficas.
26
3.2.4.9
A2 – PUESTA EN REPOSO
En esta sección se finaliza el control de la planta. Para ello se resetean todas las variables a sus valores
iniciales. La condición de franqueo es un breve intervalo de tiempo.
3.2.4.10 A3 – CONGELAR (PAUSA)
A este estado se accede desde algún modo de conexión o desde el estado de fallo leve. Se trata de un estado en
el que se mantiene la configuración seleccionada pero se paran los actuadores de la planta. Por último, el
estado permite seleccionar si parar la planta o por el contrario volver a algún modo de conexión.
3.2.4.11 D3 – FALLO LEVE
Esta sección surge de la detección de algún fallo de carácter leve por parte del autómata. En esta sección se
mantiene la configuración de la planta mientras que los actuadores son detenidos.
Esta sección se activa cuando en alguna otra sección se activa la variable I73_COND_FALLO_LEVE.
Por las características de la planta el único fallo leve que existe es la desconexión de la comunicación en el
modo remoto. Una vez eliminado dicho fallo se puede volver al estado de control previo, ir al estado congelar
o realizar la parada de la planta.
3.2.4.12 D2 – FALLO GRAVE
La activación del fallo se realiza con la variable I72_COND_FALLO_GRAVE y se puede activar desde
cualquier otra sección.
Esta sección se activa cuando el PLC detecta algún fallo con dicha consideración. Actualmente no se ha
determinado ningún fallo, salvo la parada por pulsación de la seta de emergencia, debido a que no existe
ninguna realimentación desde la planta de alguna característica de este tipo.
3.2.4.13 D1 – EMERGENCIA
Esta sección se activa como consecuencia de la activación de la seta de emergencia y, por tanto, de la variable
de entrada digital correspondiente. La activación de la seta viene determinada por el usuario a modo de
emergencia en caso de detectar comportamientos anómalos en la planta.
3.2.4.14 SECCIONES DE ENTRADA
Las secciones de entrada son específicas para gestionar las entradas de variables desde la planta y desde la
pantalla de explotación.
Para ello en la sección de entradas de variables de la planta se gestionan las entradas analógicas de todos los
sensores de la planta. Básicamente se realiza un cambio de variable para adaptar la variable de entrada a la
exigencia del bloque de escalado. En este bloque se realiza el escalado de la variable en función de la relación
entre los valores que se obtienen del sensor y los valores reales correspondientes.
Por otro lado, en la sección de recepción de variables de la pantalla de explotación lo único que se reciben son
variables booleanas de gran parte de las condiciones de franqueo de la red de Petri que controla el autómata.
27
3.2.4.15 CONDICIONES DE SEGURIDAD
Esta sección se crea debido a la necesidad de controlar el uso de ciertos elementos para que no se lleguen a
situaciones en las cuales se genere un fallo grave. Para ello se ha decidido restringir el uso de ciertos elementos
físicos.
1. Para poner en funcionamiento la planta se deben tener dos variables distintas de cero:

La primera condición es tener activo el control de la bomba, que en cualquier modalidad de conexión
a la planta se activa automáticamente.

La segunda variable necesaria es que la válvula VR1, que regula el caudal de la bomba, esté abierta al
menos un uno por ciento. Esta condición de seguridad se ha implantado para evitar que la bomba se
averíe en caso de estar funcionamiento sin desplazar caudal.
2. Otra condición de seguridad implantada tiene relación con las resistencias. Para evitar posibles averías
por sobrecalentamiento de las resistencias debido a la falta de movimiento de fluido a través de estas, la
válvula solenoide número uno debe estar apagada (flujo en línea recta hacia la entrada de las resistencias)
y la bomba activada. Si se cumple esta condición significa que al menos hay un pequeño flujo pasando
por las resistencias y así evitar su sobrecalentamiento.
3. Por último en este apartado, se ha diseñado una condición de reinicio de las variables del PLC para los
casos en los que se apague la planta sin realizar debidamente los pasos. Al encender por primera vez la
planta se activa la variable del sistema %S21 durante un ciclo, esa variable activa la variable %S0,
denominada arranque frío, inicializa todas las variables y vuelve todo el programa al estado inicial del
sistema.
3.2.4.16 SECCIONES DE SALIDA
Existen dos secciones de salida, una para las variables de actuación de la planta y otra para las variables
compartidas con la pantalla de explotación.
Las secciones de variables de salida son las correspondientes variables de los actuadores de la planta y consta
de tres tipos distintos:

Variables de configuración de la planta.

Variables de control de las válvulas regulables 1, 2 y 3.

Variables de control de las resistencias.
La idea principal de esta sección es servir de intermediario entre la variable externa que pide la acción del
actuador y la variable que lo gobierna.

Las variables de configuración son variables booleanas que gobiernan el estado de las válvulas
solenoides. De forma general se activan durante el paso F2.1 de preparación de la planta y luego se
mantienen encendidas hasta la finalización del control.

Las variables de control de las válvulas regulables 1, 2 y 3 son variables de salida analógicas. Se
observa que para modificar la variable de salida primero hay que realizar un escalado previo para
enviar los datos según los requerimientos del actuador.

Las variables de control de las resistencias son salidas digitales. La forma de controlarlas es utilizando
un tren de pulso de encendido y apagado.
Por otro lado, existe otra sección de salida de variables, pero en esta ocasión es hacia la pantalla de
explotación. En esta sección principalmente se intercambia los valores de los sensores, el tiempo de espera
para finalizar la configuración de la planta y las señales de control del estado de la planta.
28
En la siguiente figura se emplean dos bloques interesantes:
Figura 36: Bloques auxiliares
La línea superior consiste en un bloque que mantiene la señal de fallo por activación de la seta de emergencia
durante un segundo. La utilidad de ésto consiste en que la planta se quede en estado D1 desde cualquier otro
estado, estando para ello habilitado el franqueo de todas las secciones previas en dicho caso. El segundo
bloque sirve para controlar la pantalla que se visualiza en la pantalla de explotación.
3.2.5
3.2.5.1
Bloques FBD
Selección de variable manipulable (Selección_VM)
Bloque empleado en el modo de conexión automático local para asignar la acción de control obtenida de los
PIDs a la variable de la planta oportuna.
Hay que destacar las entradas-salidas Ini para i=1, 2, 3, 4,5 son un tipo de variables recursivas de los bloques
que sirven para copiar la entrada en la salida pero sin sobrescribirse siempre el mismo valor. Teniendo en
cuenta ésto, se ha decidido usar este tipo de entrada de los actuadores para mantener el valor que se asigne a
cada actuador en el modo de conexión manual local, para así mantener dicho valor durante el uso del modo
automático local (a menos que se use como variable a controlar).
Figura 37: Bloque de selección de las variables manipulables
29
3.2.5.2
Selección de variables a controlar (Selección_VC)
Bloque empleado en el modo automático local para asignar el valor de la variable a controlar para un
controlador del modo. Hay que destacar que los parámetros de desescalado (tercera de las variables de salida)
se utilizan posteriormente para realizar las conversiones de las variables normalizadas a ingenieriles, si
proceden.
Figura 38: Bloque de selección de la variable a controlar
3.2.5.3
Caso de selección de la configuración (Selección_Configuración)
Bloque empleado en el estado F2, inicio de preparación. El bloque recibe un valor entero de uno a tres. Las
salidas son variables booleanas que activan los actuadores correspondientes a cada configuración.
Figura 39: Bloque de selección de configuración
30
3.2.5.4
Filtro de nivel (Filtro_LT)
Este bloque ha sido empleado para eliminar los ruidos que introduce el sensor de nivel.
El filtro realiza la media del número de muestras especificado en la variable pública N_muestras, unas diez
muestras por segundo. La segunda variable pública es dif_max_LT y sirve para determinar la diferencia
máxima admisible de un valor respecto al valor de la media.
Figura 40: Filtro de nivel
3.2.5.5
INT_TO_BOOL
Este bloque se ha diseñado para cumplir la condición de seguridad de activación de la bomba. El bloque recibe
un valor entero, el cual, en caso de ser positivo activa la salida a uno y en caso de ser negativo o cero, la
desactiva. El objetivo de este bloque, por tanto, consiste en comprobar si la variable que entra es un valor
mayor que cero.
Figura 41: Bloque de conversión de entero a booleano
3.2.5.6
Watchdog
La comunicación vía OPC no tiene un protocolo típico de señales, como el tipo IIC en el cual, el mensaje se
codifica entre una serie de bits de control; sino que un servidor conoce las variables que corresponden al
standard OPC y el servidor realiza las modificaciones de las variables. Consecuentemente, no se puede
conocer si hay algún sistema externo conectado a OPC. Por tanto, para solucionar este inconveniente se ha
diseñado un bloque de Unity que tiene por objetivo conocer el estado del sistema externo.
El bloque dispone de dos variables de control booleanas, una de salida y una de entrada, la cual se lee
continuamente.
En caso de que la entrada cambie constantemente, el bloque mantiene activa la salida OK y asigna el valor
contrario al de llegada a la salida de control booleana. Si, por el contrario, la entrada de control se mantiene en
el mismo valor durante un tiempo determinado (que se puede modificar en la pantalla de explotación) el
bloque activa la salida de FAIL, se bloquea la comunicación con OPC y se activa el estado de Fallo Leve.
31
Figura 42: Bloque de Watchdog
3.2.5.7
Conexión con la pantalla (Conexión_pantalla)
Este bloque se creó para evitar perder la pantalla visualizada en situaciones en las que ésta se apague
involuntariamente.
El bloque recibe el tiempo que lleva funcionando el panel y la identificación del panel actual. El bloque copia
y pega la identificación de entrada en la variable de salida. En el caso de que el tiempo no varíe durante un
tiempo mínimo se considera que la pantalla se ha apagado y se muestra el último valor guardado antes de
pararse la variable de tiempo. Ésto se realiza así porque la identificación del panel cambia al volver a encender
la pantalla.
Por último, el tiempo mínimo se considera de varios segundos puesto que el encendido del dispositivo no es
instantáneo, sino que existe un tiempo de carga de los datos almacenados (intervalo en el cual no varía la
variable de tiempo).
Figura 43: Bloque de conexión con la pantalla
3.2.5.8
Escalado de Variables Ingenieriles/Normalizadas (Escalado_VI_VN)
Este bloque se emplea fundamentalmente para el normalizado y la reconversión de las variables empleadas en
el modo de conexión automático local. El bloque admite el escalado de dos variables a la vez. Tiene
almacenado todos los escalados que se realizan en la planta para los distintos sensores.
La idea es poder utilizar la misma variable de selección de variable a controlar y manipulable, asignadas
previamente en la pantalla de explotación, para asignar el escalado de la variable de entrada, y así hacer más
sencilla la programación.
Los valores de los parámetros de escalado se suponen que están correctamente calibrados. Para realizar la
calibración se debe modificar el valor del parámetro adecuado en el programa Unity.
32
Figura 44: Bloque de escalado de variables
33
3.3 Pantalla de explotación Magelis
La pantalla Magelis es una interfaz hombre-máquina que permite la gestión y visualización del estado de la
misma.
El programa Vijeo Designer [4] permite la creación de los paneles gráficos, semejantes a los llamados HMI o
SCADA, en los cuales se pueden implementar diversos elementos, siendo útiles para el desarrollo de
procedimientos de arranque, funcionamiento y parada de la planta multiprocesos.
Figura 45: Pantalla Magelis y Vijeo Designer
La programación realizada consta de una serie de paneles gráficos y acciones. Los paneles generalmente
muestran las posibilidades de trabajo o permiten la visualización de valores de los sensores, actuadores o del
estado de la planta y de las tareas que se deben desarrollar para realizar un correcto. Las acciones se utilizan
para realizar cambios sobre la pantalla debido a la interacción de ésta con el autómata. Mientras que en los
paneles suelen emplear elementos para ser activados, las acciones son instrucciones que son activadas al llegar
la variable correspondiente desde el PLC.
Existen varios tipos de elementos en la pantalla:
3.3.1
Botones
Sirven para activar variables o asignar un valor determinado a la variable que contengan. Tienen un uso fijo, o
sea que cada botón es asignado para que realice siempre las mismas acciones. Se pueden configurar
operaciones de cambios de panel, activación o desactivación de variables para las señales booleanas, o
asignación de valores en el caso de variables enteras o reales.
Hay dos tipos de botones principales: botones que mueven de un panel a otro y botones de
activación/desactivación. A la izquierda, en tono anaranjado, se ejemplifica los botones que sirven para ir de
un panel a otro. A la derecha, en tonos verde y rojo, aparecen los botones de activación y desactivación
respectivamente.
Figura 46: Botones de la pantalla
Existen también otro tipo de botones a caballo entre la tipología de botones anteriores y que sirven para
avanzar a siguientes paneles de configuración, pero en caso de volver al panel anterior resaltan la última
opción seleccionada.
34
Figura 47: Botones de la pantalla
3.3.2
Displays
Elementos utilizados para permitir la visualización de instrucciones, valores de sensores y la configuración
seleccionada, y para introducir los valores de los actuadores o de propiedades.
Hay dos tipos de displays numéricos: azules y grises. Los azules sólo muestran datos de la variable que
representan; mientras que los grises son sólo asignables, ésto quiere decir que se pueden pulsar para desplegar
un panel numérico e introducir el valor apropiado a cada elemento.
Figura 48: Displays de lectura y escritura
3.3.3
Gráficas
Representan la información de los sensores de un modo visual.
Figura 49: Gráfica
35
3.3.4
Paneles
La pantalla de explotación se compone de una sucesión de paneles y ventanas emergentes donde se visualizan
los distintos elementos gráficos que permiten realizar diferentes acciones.
Figura 50: Paneles y ventanas emergentes
3.3.5
Acciones
Son tareas que se disparan al modificarse la variable supervisada. En ocasiones la activación no depende de
una acción realizada por el usuario sino que el autómata modifica la variable de supervisión para disparar la
tarea.
Figura 51: Acciones programadas
3.3.6
Esquema general
Se deja como ayuda el esquema de los movimientos entre paneles para tener una idea global del uso de la
pantalla. Este esquema tiene como objetivo aportar una visión global de los movimientos que se realizan,
dejando claro qué parte de los paneles corresponde al inicio de la planta, a la conexión remota, a la conexión
local y a la finalización.
En línea gruesa están marcados los paneles que se activan en caso de realizar el movimiento habitual de estos.
36
Figura 52: Esquema de movimiento entre pantallas
37
3.4 Conexión remota OPC
OPC (OLE (Object Linking and Embedding) for Process Control) es un estándar de comunicación en el
campo del control y supervisión de procesos industriales, basado en una tecnología de Microsoft, que ofrece
una interfaz común para la comunicación de componentes Software y Hardware entre sí.
La comunicación OPC se realiza a través de una arquitectura cliente-servidor. El servidor OPC es la fuente de
datos (como un dispositivo hardware a nivel de planta) y cualquier aplicación basada en OPC puede acceder a
dicho servidor para leer/escribir cualquier variable que ofrezca el servidor. Es una solución abierta y flexible al
clásico problema de los drivers propietarios.
Este modo es el que menos trabajo requiere desde la pantalla. Una vez activado este modo, la pantalla sólo
refleja el estado de la conexión con el ente externo que se conecta al PLC.
Para realizar una correcta conexión a este modo se recomienda ejecutar en primer lugar el sistema externo que
se desea conectar al autómata, para posteriormente permitir dicha conexión desde la pantalla. Se recomienda
hacerlo de esta forma por dos sencillas razones. La primera es que si se conecta primero Matlab, este programa
no reporta ningún fallo ni se detiene en caso de no estar conectado.
La segunda razón es que el PLC tiene un tiempo máximo para detectar la conexión OPC y si se excede ese
tiempo sin realizarse dicha conexión se incurre en un fallo leve, el cual se puede subsanar sin problemas pero
es desaconsejable que esto ocurra.
Figura 53: Modo de conexión OPC
38
3.5 Control de la planta con Matlab Simulink
En este apartado se explican los bloques característicos desarrollados en Matlab para cada configuración y un
ejemplo de aplicación de cada bloque.
Cuidado: En el caso de usar OPC en Matlab, cuando se finalice el uso del programa se debe cerrar siempre en
primer lugar el fichero de Matlab que se haya utilizado y luego el “OPC Factory Server”. En caso contrario,
Matlab absorbe todos los recursos del ordenador, impidiendo que se pueda incluso guardar archivo alguno.
3.5.1
Configuraciones
Los bloques de las configuraciones desarrollados para el proyecto tienen una serie de características comunes:



La variables manipulables son las entradas de cada bloque y están colocadas en la parte izquierda
del bloque, mientras que las variables controlables son variables que se reciben desde el servidor
OPC y están situadas a la derecha.
Se ha diseñado una condición de fin de la conexión remota desde Matlab. Esta entrada
permanece a cero durante todo el proceso hasta que el usuario decida finalizar la conexión,
entonces se debe poner a uno. Por otra parte, se ha introducido una salida del bloque que permite
el conocimiento de la latencia de la conexión. Esta variable indica el tiempo que le falta o le sobra
al programa para realizar las recepciones y los envíos de las variables compartidas en OPC.
Una de las salidas consiste en proporcionar todos los datos que han obtenido en los experimentos
realizados mediante una estructura de Matlab que puede ser manipulada externamente.
La composición de la estructura de datos es la siguiente:
Figura 54: Estructura de datos de Matlab
39
Figura 55: Ejemplo de Control de Nivel con Matlab
40
41
42
4 DESCRIPCIÓN DE LAS CONFIGURACIONES Y
CAMBIOS TOPOLÓGICOS REALIZADOS
4.1 Introducción
El objetivo principal de este proyecto es la mejora de la topología y del control de la planta multiprocesos.
En el tiempo que la planta lleva en uso, se han podido detectar diversos problemas de funcionamiento.
Algunos de ellos son la dificultad de controlar el nivel del depósito contenedor, sobretodo cuando se hace uso
de la parte térmica, la acumulación de aire en las tuberías y otros problemas que, a priori, son causados por la
complejidad del circuito hidráulico.
La solución propuesta es un cambio de la topología y una simplificación de dicho circuito.
Además de esto, hay algunos sensores de la planta que no funcionan correctamente, los cuales requieren
tratamiento o sustitución.
Por ultimo, se han implementado y programado ciertos ajustes de la planta como son la calibración electrónica
del sensor de nivel, el desagüe automático del sistema hidráulico y algunas medidas de seguridad.
4.2 Planta multiprocesos antes de las modificaciones
Antes de detallar los cambios aplicados a la planta, vamos a describir su estado original.
La planta multiprocesos contaba con cinco configuraciones con el objetivo de poder implementar diferentes
arquitecturas de control.
Las siguientes imagenes muestran la planta antes de ser modificada. La notación de los diagramas P&ID
podemos encontrarla en glosario de este documento.
Figura 56: Planta multiprocesos – Antiguo diseño
43
Figura 57: Diagrama P&ID – Planta multiprocesos – Antiguo diseño
44
A continuación pasamos a describir las diferentes configuraciones que se podían implementar con el antiguo
diseño.
4.2.1
Configuración 1
Está concebida para aplicar arquitecturas de control simples en lazo cerrado. Las variables a controlar en esta
configuración son la presión y el nivel, las cuales se pueden regular en función de la válvula regulable 1.
Figura 58: Diagrama P&ID – Configuración 1 (Antigua)
4.2.2
Configuración 2
Esta configuración añade, respecto a la primera, el conocimiento del caudal de entrada al depósito,
permitiendo la posibilidad de realizar controles en cascada utilizando, por ejemplo, el nivel en el primer
controlador para modificar el punto de equilibrio del caudal del segundo controlador.
Figura 59: Diagrama P&ID – Configuración 2 (Antigua)
45
4.2.3
Configuración 3
Esta configuración tiene los mismos sensores que la configuración anterior, sin embargo este caso cambia la
posición del caudalímetro, el cual ahora mide el caudal a la salida del depósito en lugar de a la entrada.
Figura 60: Diagrama P&ID – Configuración 3 (Antigua)
4.2.4
Configuración 4
Esta configuración se añade el uso de las resistencias, los intercambiadores y la planta de frío para poder
realizar control en temperatura.
Figura 61: Diagrama P&ID – Configuración 4 (Antigua)
46
4.2.5
Configuración 5
En esta configuración se cierra el circuito hidráulico de la planta, de manera que el agua que exista en el
depósito superior se suministra a la bomba directamente y ésta impulsa el agua para que vuelva a llegar al
mismo depósito. El caudal de entrada y de salida del depósito contenedor, salvo pérdidas hidráulicas, es el
mismo.
Figura 62: Diagrama P&ID – Configuración 5 (Antigua)
47
4.3 Planta multiprocesos después de las modificaciones
Dado que hay configuraciones que son muy poco utilizadas, se ha simplificado el diseño a solo tres
configuraciones distintas. En las siguientes imágenes y diagramas se muestra el estado actual de la planta.
Figura 63: Planta multiprocesos – Nuevo diseño
Figura 64: Diagrama P&ID – Planta multiprocesos – Configuraciones
48
Figura 65: Diagrama P&ID – Planta multiprocesos – Nuevo diseño
49
4.3.1
Configuración 1
Está concebida para aplicar arquitecturas de control simples en lazo cerrado. Es la única configuración de las
tres en la que el agua pasa por el rotámetro. Además es la más simple de todas, lo que la hace ideal para la
calibración del sensor de nivel. Las variables a controlar en esta configuración son la presión y el nivel, las
cuales se pueden regular en función de la válvula regulable 1.
Además se puede conocer del caudal de entrada al depósito, ya que el caudalímetro electromagnético se situa
antes de la entrada de éste.
Figura 66: Diagrama P&ID – Configuración 1 (Nueva)
50
4.3.2
Configuración 2
Esta configuración se añade el uso de las resistencias, los intercambiadores y la planta de frío para poder
realizar control en temperatura. Hay que mencionar que los sensores de temperatura no son fijos. Por tanto, las
posiciones TT1, TT2, TT3, TT8 y TT9 son intercambiables pudiendo utilizar un máximo de tres
En esta configuración se pueden implementar distintas formas de control, como control monovariable, control
en cascada o control multivariable hasta 5 variables a controlar y 5 variables manipulables.
Figura 67: Diagrama P&ID – Configuración 2 (Nueva)
51
4.3.3
Configuración 3
Al igual que en la antigua configuración 5, en esta configuración se cierra el circuito hidráulico de la planta, de
manera que el agua que exista en el depósito contenedor se suministra a la bomba directamente y ésta impulsa
el agua para que vuelva a llegar al mismo depósito. El caudal de entrada y de salida del depósito contenedor,
salvo pérdidas hidráulicas, es el mismo.
El objetivo de esta configuración es centrarse en el control de temperatura, pudiéndose aplicar distintos
algoritmos.
Para hacer uso de ella, debe ajustarse la válvula solenoide 5, que es una válvula manual con el mango color
negro, que aisla el depósito colector del circuito.
Figura 68: Válvula VS5 que debe accionarse a mano
Figura 69: Diagrama P&ID – Configuración 3 (Nueva)
52
4.3.4
Desagüe de la planta
Además de las configuraciones de trabajo, se ha añadido una cuarta configuración que permite el vaciado
automático de los tanques de agua.
En posteriores apartados, desarrollaremos su implementación, así como su programación.
Figura 70: Diagrama P&ID – Desagüe de la planta (Nueva)
53
4.4 Trabajos y modificaciones topológicas realizadas
Antes de realizar trabajos en la planta, debemos apagar el equipo por medio del interruptor principal, accionar
el interruptor de paro de emergencia, desconectar el suministro de aire comprimido, despresurizar todos los
depósitos, recipientes y tuberías mediante la apertura de válvulas de ventilación y cerrar ambos reguladores de
aire comprimido. Además es conveniente cerrar la valvula de acceso al rotámetro, la válvula manual
multivuelta y la que se encuentra sumergida en el depósito colector.
Todos los elementos del sistema suelen estar llenos de agua, por lo que conviene contar con trapos y fregona
cuando se hacen estas modificaciones. También es importante evitar que les entre agua a las válvulas
electrónicas, pues como veremos a continuación, pueden sufrir deterioro por humedad.
El sistema está compuesto por tuberías, codos, piezas en T, válvulas y elementos especiales prefabricados
como depósitos, cambiadores de calor, etc. Las tuberías de agua están hechas de tubos de PP-H de 25mm x
2,3mm.
La siguiente imagen nos ayuda a visualizar los cambios relizados en la planta:
Figura 71: Planta antes y después de las modificaciones
Como se puede observar, tanto el rotámetro como el caudalímetro, además de ciertas válvulas, han cambiado
de posición y orientación.
Además, la válvula que se situaba a la salida del depósito contenedor (VS4), ahora se utiliza para implementar
el desagüe de la planta, lo cual veremos con más profundidad en posteriores apartados.
Las placas de módulos se atornillan al marco en la posición adecuada. En el caso de placas de módulos
pesados se puede montar un ángulo de montaje a la altura del borde inferior de la placa como soporte auxiliar.
Sobre este ángulo se apoya entonces la placa del módulo para realizar el montaje. Además se deben montar de
tal manera que las conexiones de tuberías entre módulos estén alineadas verticalmente.
Para desatornillar los módulos es necesario usar una llave allen.
Debemos prestar atención a la dirección de flujo correcta en las válvulas y caudalímetros.
54
El acoplamiento de las tuberías de agua se realiza con ayuda de tubos de plástico de PP-H y racores de apriete
especialmente adaptados al tubo en forma de ángulo de 90° o en forma de T.
Figura 72: Racores de apriete
Los tubos son tronzados en ángulo recto con ayuda de las siguientes herramientas:
Figura 73: Herramientas utilizadas
La intersección se tiene que achaflanar con el desbarbador de la figura. Si ésto no se efectúa cuidadosamente,
la junta anular dentro del racor de apriete se puede dañar y perder su hermeticidad.
55
Los racores de apriete tienen una profundidad de inserción de 55...60mm. Por ello, el tubo tiene que ser
110...120mm más largo que la distancia entre los racores. Esto es importante porque, de no ser así, la presión
del agua hace que ésta se salga irremediablemente.
Figura 74: Medidas de los tubos y conexiones
Hay que introducir el tubo hasta el tope en el racor de apriete y apretar la tuerca de unión fuertemente a mano.
Al hacerlo, los tres filos del racor de apriete se clavan en el tubo y lo sujetan.
Figura 75: Tubos y racores de apriete
Ciertas uniones están desalineadas en el plano horizontal. Debido a la rigidez del PVC, es inadmisible la unión
de las bocas mediante tuberías y racores de apriete, pues el agua se sale inevitablemente. Para ello, se ha
recurrido a uniones flexibles con adaptadores para las roscas adecuadas.
Figura 76: Unión flexible
56
Todos los elementos roscados deben ser recubiertos de una fina capa de teflón para asegurar la estanqueidad.
También se han realizado uniones de tubos de PVC mediante pegamento especial para este material.
Figura 77: Uniones de PVC mediante pegamento
Una vez hechas las modificaciones hay que inspeccionar el montaje realizado antes de alimentar con corriente
y probar el sistema. Debemos comprobar que la colocación de las placas de módulos es correcta, revisar los
tornillos de sujeción, asegurarnos de la dirección de flujo correcta de las válvulas y caudalímetros.
Para circuitos de agua, también comprobar que el entubado de las tuberías de agua es correcto y afianzar los
tubos y racores de apriete.
Todos estos cambios contribuyen a simplificar y mejorar el diseño, así como el posterior control del sistema.
57
4.5 Sustitución de elementos defectuosos
Además de las modificaciones topológicas, cabe resaltar el mal funcionamiento del servo-motor de una de las
válvulas senoidales, así como del mecanismo de otra de estas válvulas.
Cuando una válvula se encuentra conectada y permanece en posición estática, debe aparecer un led verde en
parte lateral de dicha válvula. En nuestro caso, la válvula VS1 (el motor), no responde a las señales del
autómata, reflejando su avería con un led amarillo.
La válvula ha sido desmontada y desconectada para revisar su interior. Al no poder repararla, se ha decidido
sustituirla por otra de similares características.
Figura 78: Válvula senoidal averiada
Además, se ha detectado que el mecanismo de otra de las válvulas no funcionaba correctamente. A la hora de
desviar el agua, en lugar de ello, el flujo era dividido en dos partes iguales.
Tras una inspección, se detectó el asiento de la válvula era defectuoso, y no se cerraba debidamente al paso del
agua. Se ha procedido a sustituir este elemento.
Figura 79: Válvula defectuosa
58
59
60
5 CAMBIOS REALIZADOS EN EL SISTEMA DE
CONTROL
5.1 Introducción
Dado que la posición de las válvulas senoidales ha cambiado, también cambia su funcionamiento en cada
configuración.
Al eliminar configuraciones, tanto el programa que gobierna la planta desde el PLC como la pantalla de
explotación deben sufrir modificaciones.
Además, se han diseñado y programado tanto en el PLC como en la pantalla de explotación los modos de
ajuste de la planta, a saber, CALIBRACIÓN DEL SENSOR DE NIVEL y DESAGUAR LA PLANTA.
5.2 Cambios en Unity Pro (PLC) para las nuevas configuraciones
Lo primero que debemos cambiar es el bloque derivado FBD de Selección de Configuracion. Dicho bloque
controla el encendido y apagado de las válvulas senoidales en función del entero que recibe de la pantalla de
explotación.
Como ahora solo contamos con tres configuraciones y el sistema de desagüe, se ha eliminado una válvula,
quedándonos solo con VS1, VS2, VS4 y VS5.
Figura 80: Bloque de control de válvulas
61
Además, debemos entrar en la programación interna del bloque, pues las válvulas se han cambiado de sitio y
de función.
Las válvulas senoidales obedecen la siguiente lógica:
Figura 81: Lógica de control de válvulas
Figura 82: Flujos de agua en las diferentes configuraciones
62
5.3 Cambios en Vijeo Designer (Pantalla de explotación) para las nuevas
configuraciones
La pantalla de explotación también debe adecuarse a los cambios.
En el segundo panel (Panel_confirmar_configuracion), el apartado de No hay seleccionada configuración
alguna, antes podía tomar 6 formas (estados distintos), desde la configuración 1 a la 5, además de ninguna
seleccionada. Ahora debemos ajustarlo a sólo 4 estados (3 configuraciones + ninguna seleccionada).
Figura 83: Modificación de Panel 2
En la biblioteca de recursos, en la parte de Texto, debe eliminarse todos los textos de las configuraciones
eliminadas, quedando tal que asi:
Figura 84: Modificaciones en los paneles de texto
63
Hay que modificar el panel de selección de configuración, cambiando los botones verdes, los paneles
emergentes que abren y los estados posibles:
Figura 85: Modificación del panel de selección
Cuando se pulsan los botones de C1, C2 o C3, se abren unas ventanas emergentes con gráficos sobre la
configuración de la planta seleccionada.
Dichos graficos han sido modificados acorde a las actualizaciones:
Figura 86: Ventanas emergentes – Configuraciones 1, 2 y 3
64
5.4 Implementación de la calibración del sensor de nivel
El sensor de nivel tiene un tamaño de unos 45cm, el cual según GUNT es utilizable completamente como
rango de medición, pero según el fabricante el rango óptimo es de 1 a 33 cm empezando por la parte inferior
de éste.
Para obtener un valor exacto hay que esperar al menos un minuto a que el sensor se estabilice y entonces se
pueda obtener una muestra razonablemente buena.
En los primeros ensayos se comprobó su funcionamiento introduciendo un caudal constante de manera que el
nivel se mantenga (caudal de entrada igual al caudal de salida), siendo el resultado insatisfactorio. El valor
obtenido era claramente distinto al valor real.
Para solucionar este problema se implementó un bloque (Filtro_LT) para eliminar los ruidos que introduce el
sensor de nivel.
Figura 87: Sensor de nivel y filtro implementado
El problema del sensor es que los valores obtenidos son muy complicados de correlar con la medida real,
teniendo que realizar una calibración previa si se desea obtener datos reales en el momento de su uso.
Se debe comprobar si la indicación del nivel en el regulador concuerda con el nivel que indica la escala en el
recipiente. Si los valores en el regulador y en el recipiente difieren, se debe calibrar el sensor de nivel.
Debemos seguir estos dos pasos para obtener un funcionamiento adecuado del sensor:

Ajustar el rango de medida del sensor al rango de medida del autómata mediante potenciómetros

Calibración mediante la pantalla de explotación
65
5.4.1
Ajuste del rango de señal del sensor al rango de medida del autómata
En la cabeza del sensor podemos encontrar dos potenciómetros: punto cero (Zero) y margen (Span).
Se debe abrir la llave de descarga de agua para vaciar el recipiente de nivel casi por completo. Hay que esperar
hasta que sólo quede poca agua en el recipiente de nivel y el sensor apenas sea cubierto por el agua. Ahora
cerramos la llave de descarga de agua.
Esta es la línea cero del sensor de nivel. Ajustamos el potenciómetro Zero hasta que el indicador de nivel
indique 0%.
Cerramos la llave de descarga de agua y llenamos el recipiente de nivel con agua hasta alcanzar el nivel
deseado. En este punto, ajustamos el potenciómetro Span hasta que el indicador de nivel indique 100%.
Figura 88: Potenciómetros Span y Zero
5.4.2
Calibración mediante la pantalla de explotación
El sensor de nivel nos proporciona un dato de medida comprendido aproximadamente entre 800 y 9000
puntos. Se supone que una medida de 800 puntos corresponde a un nivel de 0cm y una medida de 9000 puntos
corresponde a 44cm.
Debido a que el sensor tiende a descalibrarse, estos valores no siempre son los adecuados para obtener una
buena medida.
El PLC es el encargado de escalar la medida que nos proporciona el sensor a una medida en cm. Para ello,
hace uso de un bloque de SCALING:
Figura 89: Bloque de escalado de la señal
66
Este bloque de función permite representar un valor numérico en otro rango de valores. El bloque realiza el
siguiente cálculo:
Figura 90: Cálculo del escalado
El parámetro PARA, en nuestro caso escaNIVEL, es una estructura de datos que contiene los valores de los
puntos extremos que trazan la recta:
Para poder modificar estos puntos, se ha implementado un algoritmo desde la pantalla de explotación para
obtener estos valores y calibrar el sensor adecuadamente.
En primer lugar, se ha habilitado un botón en el panel principal llamado AJUSTES DE LA PLANTA:
Figura 91: Panel principal con el botón de AJUSTES añadido
67
Al pulsar ese botón se nos proporcionan dos opciones:
Figura 92: Ajustes de la planta
Para calibrar el sensor deberemos pulsar el primer botón. La segunda opción (DESAGUAR LA PLANTA) se
explicará en el siguiente apartado.
Una vez pulsado el botón de calibración, la pantalla nos lleva al siguiente panel:
Figura 93: Configurando la planta para la calibración
En este panel debemos esperar a que la planta se configure, pues al haber pulsado el botón anterior, se le ha
enviado la orden a la planta de que debe ajustarse a la configuración 1, la cual nos permitirá actuar en modo
manual local sobre la válvula solenoide 1.
68
Cuando se han completado los 60s necesarios, la planta ya está configurada y se nos permite pulsar el botón
CALIBRAR, que despliega el siguiente panel explicativo:
Figura 94: Explicación de la calibración
Al pulsar Continuar, la pantalla nos lleva al siguiente panel:
Figura 95: Calibración
Una vez aquí, ya tenemos control sobre la valvula VR1 para llevar el nivel del agua al punto deseado. Una vez
en dicho punto, debemos insertar el valor que el sensor nos ofrece (In_min) y el nivel real al que está el agua
(Out_Min).
Repetimos la operación llevando el nivel a un punto superior con VR1, ingresamos los datos (In_Max y
Out_Max) y ya podemos finalizar pulsando FIN DE LA CALIBRACION.
Dicha pulsación nos lleva al modo pausa, desde el cual podemos continuar trabajando con la planta.
69
5.5 Implementación del desagüe de la planta
Debido a la necesidad de vaciar el tanque colector, se ha implementado un sistema para poder llevar a cabo
esta operación de un modo automatico, sencillo y rápido.
5.5.1
Montaje
Dado que altualmente la válvula VS4, situada bajo la válvula manual VA1, está en deshuso, hemos decidido
utilizarla para llevar a cabo este sistema.
Figura 96: Válvula utilizada
Se ha procedido a retirar dicha válvula y colocarla a la salida de la bomba, justo después de la válvula VM1. El
accionamiento de VS4 permite ahora desviar al agua hacia un sumidero para su eliminación.
En las siguientes imágenes puede apreciarse el montaje, así como el diagrama P&ID.
Figura 97: Diagrama P&ID – Desagüe de la planta
70
Debido a que el extremo derecho de la válvula senoidal (VS4) y el extremo izquierdo de la válvula regulable
(VR1) están a distinto nivel, ha resultado imposible realizar esta unión mediante PVC rígido.
En lugar de ello, se ha procedido a instalar un latigillo metálico flexible que permite una unión y un
hermetismo perfecto e imposible de conseguir mediante tubos de PVC y racores.
Figura 98: Union de la bomba con el desagüe y VR1
Como se puede observar, la válvula VS4 ahora conecta la bomba con, o bien VR1 mediante el latiguillo, o
bien una manguera que lleva hasta un sumidero.
Cabe señalar, que ante los buenos resultados que el latiguillo ofrece, se ha optado por este método para unir la
válvula VR1 con el caudalímetro electromagnético, pues estos dos elementos también se encuentran a distinta
altura.
Figura 99: Unión flexible entre VR1 y caudalímetro
71
Para mejorar el vaciado del tanque colector se ha tenido en cuenta lo siguiente:
La admisión se produce mediante una toma de agua situada a una altura de aproximadamente 15cm con
respecto al fondo del tanque. Debido a esta altura, el vaciado queda imcompleto.
Figura 100: Boca de admisión
Para que ello no ocurra, a la salida de la válvula sumergida, se ha acoplado con pegamento de PVC un codo y
un trozo de tubería, formando un giro de 90º que permite situar la boca de admisión en un punto muy cernano
al nivel del fondo.
Figura 101: Boca de admisión modificada
72
5.5.2
Programación
Al igual que en la calibración de nivel, para desaguar la planta se ha programado una opción dentro del
apartado de AJUSTES DE PLANTA, situado en el panel principal de la pantalla de explotación:
Figura 102: Panel principal y sección de ajustes de la planta
Una vez seleccionada la opción DESAGUAR LA PLANTA, automáticamente la planta se configura para que
las válvulas senoidales permitan la admisión del fluido de los depósitos y su impulsión a través de la bomba
hacia un sumidero externo.
Para ello debemos esperar unos 60s para que la planta se configure. Mientras tanto, se nos ofrece el siguiente
panel:
Figura 103: Panel espera para el desagüe
Una vez transcurrido el tiempo necesario, nos aparece la opción en forma de botón amarillo con el rótulo
DESAGUAR. Al pulsarlo, se activará la bomba y el agua de los tanques se eliminará por el sumidero.
Cuando se detecte que el desagüe ha finalizado (por inspección visual o sonora) se debe pulsar el botón de
DESAGÜE COMPLETADO. En ese momento, se parará la bomba y el sistema volverá al modo pausa a la
espera de nuevas instrucciones.
73
Figura 104: Panel que aparece durante el desagüe
Una vez implemetado el desagüe de la planta, se ha realizado una comprobación para analizar como afecta la
inclusión de la válvula, situada a la salida de la bomba, al caudal del sistema:
Apertura de VR1 Caudal sin la válvula Caudal con la válvula Variación de caudal
100%
690 L/h
610 L/h
11%
50%
530 L/h
490 L/h
8%
Tabla 5: Variación del caudal tras las modificaciones
74
75
76
6 CONCLUSIONES
Tras haber llevado a cabo este trabajo fin de grado, podemos establecer varias conclusiones alcanzadas
mediante el mismo.
La primera de ellas que debemos señalar es que la planta multiprocesos ha quedado operativa y lista para uso
en la docencia y/o investigación. Por lo que los objetivos planteados al comienzo de este proyecto han sido
alcanzados satisfactoriamente.
A nivel formativo, este trabajo ha servido para obtener amplios conocimientos sobre programación de PLC’s,
automatización de sistemas controlados, componentes industriales como reguladores, controladores,
actuadores e instrumentos de medición y adquisición de datos.
Además, todo ello me ha permitido conocer de primera mano el trabajo sobre instalaciones y conexiones de
sistemas hidráulicos y eléctricos, así como enfrentarnos directamente a la casuística de problemas que en un
entorno industrial pueden darse.
77
78
7 ACCIONES Y MEJORAS FUTURAS
Aunque la planta multiprocesos está lista para ser utilizada, aún debo incluir cambios que mejoren su
funcionamiento.
Estas mejoras han sido planteadas en el marco de mi trabajo fin de grado, pero debido a la falta de tiempo, esta
memoria no contempla dichos cambios en profundidad. Esto no quiere decir que no vaya a realizar dichas
modificaciones a posteriori.
Entre las mejoras aún pendientes, podemos encontrar:

Actualmente, se está utilizando un router para poder conectar todos los dispositivos empleados en la
planta. Partimos de la teoría de que dicho router ralentiza las comunicaciones, lo cual obliga a
disminuir la frecuencia de muestreo.
La eliminación de dicho reouter, y la consiguiente conexion de los sistemas mediante el protocolo de
comunicaciones Modbus, podría mejorar con mucha probabilidad la velocidad de la planta.

Para mejorar la medida del nivel de agua, se ha pensado en añadir un sensor de presión con precisión
suficiente como para medir milibares, lo cual permitiría mejorar el control al obtener un resultado más
preciso.
El sensor ha sido solicitado a una empresa suministradora, pero debido a la falta de tiempo aún no se
ha recibido.
Figura 105: Sensor de presión futuramente instalado
79
80
8 REFERENCIAS
[1] José Enrique Alonso, «DESARROLLO E IMPLEMENTACIÓN DEL SISTEMA DE CONTROL DE LA
PLANTA MULTIPROCESOS», Proyecto de Fin de Carrera, 2013.
[2] Dr. Detlef Abraham, «Sistema Didáctico Modular para la Automatización de Procesos», Manual de
Instrucciones, 2012.
[3] Agencia ADEPA, «Guía de Estudios de Modos de Marcha y Parada (GEMMA) ».
[4] Instituto Schneider Electric de Formación, «Manual de formación Vijeo Desginer», Manual de formación,
2010.
[5] Schneider Electric, «Ayuda de Unity Pro», 2011.
81
82
9 GLOSARIO
PLC
Programmable Logic Controller
OPC
OLE for Process Control
OLE
Object Linking and Embedding
HMI
Human Machine Interface
P&ID
Piping and Instrumentation Diagram
GEMMA
Guía de estudio de modos de marchas y paradas
LD
Ladder Diagram (Lenguaje de contactos)
SFC
Lenguaje de ejecución secuencial
ST
Lenguaje de texto estructurado
FBD
Lenguaje de bloques de funciones
FT
Caudalímetro
PT
Sensor de presión
LT
Sensor de nivel
TT1
Sensor de temperatura
TT2
Sensor de temperatura
TT3
Sensor de temperatura
TT4
Sonda CAREL de temperatura
TT5
Sonda CAREL de temperatura
TT6
Sonda CAREL de temperatura
TT7
Sonda CAREL de temperatura
TT8
Sensor de temperatura
TT9
Sensor de temperatura
VM1
Válvula manual de la bomba
VM2
Válvula manual de evacuación de agua
VM3
Válvula de entrada al rotámetro
VM4
Válvula de cierre del depósito contenedor al ambiente
83
VS1
Válvula solenoide de configuración
VS2
Válvula solenoide de configuración
VS3
Válvula solenoide de configuración
VS4
Válvula solenoide de configuración
VS5:
Válvula solenoide de configuración
VR1
Válvula electro-neumática regulable
VR2
Válvula eléctrica regulable
VR3
Válvula eléctrica regulable
R1
Resistencia de 2 kW
R2
Resistencia de 4 kW
84
85
86
10 ANEXOS
10.1 Anexo A: Variables
10.1.1 Introducción
A continuación se adjuntan todas las variables que intervienen el control de planta en sus distintas
configuraciones.
Hay dos tipos principales de variables:

Internas de cada sistema: Por variables internas se entiende las variables propias de cada sistema o
dispositivo que intervienen en el funcionamiento de la planta. En este caso, las empleadas para el
PLC y la pantalla Magelis.

Externas: Por variables externas hay que entender las variables que se comparten entre los dos
dispositivos de los cuales se hace uso en el proyecto y el estándar de comunicaciones OPC.
10.1.2 Variables Internas
10.1.2.1 Creación
La estructura de las variables internas de ambos sistemas sigue la siguiente nomenclatura:
𝐼 + 𝑁º + _ + 𝑛𝑜𝑚𝑏𝑟𝑒
Donde:



I: significa interna.
Nº: Número de la variable, no tiene un orden lógico.
Nombre: Nombre intuitivo de la variable.
Hay que señalar que las variables internas se guardan en cada dispositivo de manera separada aunque tengan la
misma estructura.
A continuación se expone un ejemplo para cada dispositivo:


PLC: I05_auxVR1
Pantalla: I05_c_ini_PID_01_var_man
Para el caso de las entradas y salidas de las tarjetas de adquisición del autómata se ha realizado un tipo de
nomenclatura distinta, como se observa a continuación:
𝐸/𝑆 + 𝐷/𝐴 + 𝑁º + _ + 𝑁𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
Dónde:




E/S: Tipo de pin de la tarjeta de adquisición de datos: Entrada (E), Salida (S).
D/A: Tipo de datos del pin de la tarjeta de adquisición de datos: Digital (D), Analógico (A).
Nº: Número de entrada o salida.
Nombre: Denominación del uso de la variable.
87
10.1.2.2 Variables de Salida Digital
Nombre
Dirección de
memoria
SD0
Tipo
E/S –D/A
Descripción
EBOOL
SALIDA DIGITAL
Módulo 1 canal 16
SD01_VS1
%Q0.1.16
EBOOL
SALIDA DIGITAL
Válvula solenoide 1
SD02_VS2
%Q0.1.17
EBOOL
SALIDA DIGITAL
Válvula solenoide 2
SD03_VS3
%Q0.1.18
EBOOL
SALIDA DIGITAL
Válvula solenoide 3
SD04_VS4
%Q0.1.19
EBOOL
SALIDA DIGITAL
Válvula solenoide 4
SD05_VS5
%Q0.1.20
EBOOL
SALIDA DIGITAL
Válvula solenoide 5
SD06_R1
%Q0.1.21
EBOOL
SALIDA DIGITAL
Resistencia 1 (pwm)
SD07_R2
%Q0.1.22
EBOOL
SALIDA DIGITAL
Resistencia 2 (pwm)
SD08_BOMBA
%Q0.1.23
EBOOL
SALIDA DIGITAL
Bomba
Tabla 6: Variables de salida digital de las tarjetas de adquisición
10.1.2.3 Variables de Entrada Digital
Nombre
Dirección
de
memoria
Tipo
E/S –D/A
Descripción
ED01_EMER
%I0.1.0
EBOOL ENTRADA DIGITAL
Seta de emergencia (1 Sin pulsar)
ED02_S1
%I0.1.1
EBOOL ENTRADA DIGITAL
Contacto 1 del Selector de Panel (para la
posición de las PT100 )
ED03_S2
%I0.1.2
EBOOL ENTRADA DIGITAL
Contacto 2 del Selector de Panel (para la
posición de las PT100 )
ED04_ALIM
%I0.1.3
EBOOL ENTRADA DIGITAL Señal de alimentación 24V del cuadro
ED05_FUSIBLE
%I0.1.4
EBOOL ENTRADA DIGITAL
Señal que indica si el fusible rearmable ha
saltado
ED06_CONFIR_R2 %I0.1.5
EBOOL ENTRADA DIGITAL Confirmación de actuación de R2
ED07
%I0.1.6
EBOOL ENTRADA DIGITAL
ED08
%I0.1.7
EBOOL ENTRADA DIGITAL Módulo 1 canal 7
Módulo 1 canal 6
Tabla 7: Variables de entrada digital de las tarjetas de adquisición
88
10.1.2.4 Variables de Salida Analógica
Nombre
Tipo
E/S –D/A
Descripción
%QW0.4.4
INT
SALIDA ANALÓGICA
Válvula de regulación. Módulo 3 canal 4
SA02_REF_VR2 %QW0.3.4
INT
SALIDA ANALÓGICA
Referencia posicición de la valvula VR2
SA03_REF_VR3 %QW0.3.5
INT
SALIDA ANALÓGICA
Referencia posicición de la valvula VR3
SA04_4_5
INT
SALIDA ANALÓGICA
Módulo 3 canal 5
SA01_VR1
Dirección de
memoria
%QW0.4.5
Tabla 8: Variables de salida analógica de las tarjetas de adquisición
10.1.2.5 Variables de Entrada Analógica
Nombre
Dirección
de
memoria
Tipo
E/S –D/A
Descripción
EA01_FT
%IW0.2.0
INT
ENTRADA ANALÓGICA
Caudal FT
EA02_TT1
%IW0.2.1
INT
ENTRADA ANALÓGICA
PT1OO TT1
EA03_TT2
%IW0.2.2
INT
ENTRADA ANALÓGICA
PT1OO TT2
EA04_TT3
%IW0.2.3
INT
ENTRADA ANALÓGICA
PT1OO TT3
EA05_LT
%IW0.3.0
INT
ENTRADA ANALÓGICA
Nivel
EA06_PT
%IW0.3.1
INT
ENTRADA ANALÓGICA
Presión del tanque
EA07_POS_VR2
%IW0.3.2
INT
ENTRADA ANALÓGICA
Posición de la válvula VR2
EA08_POS_VR3
%IW0.3.3
INT
ENTRADA ANALÓGICA
Poscición de la válvula VR3
EA09_TT4
%IW0.4.0
INT
ENTRADA ANALÓGICA
TT4
EA10_TT5
%IW0.4.1
INT
ENTRADA ANALÓGICA
TT5
EA11_TT6
%IW0.4.2
INT
ENTRADA ANALÓGICA
TT6
EA12_TT7
%IW0.4.3
INT
ENTRADA ANALÓGICA
TT7
Tabla 9: Variables de entrada analógica de las tarjetas de adquisición
89
10.1.2.6 Internas del PLC
Nombre
Tipo
Descripción
I01_A_CONGELAR
EBOOL Condición de franqueo de estado en la red de Petri principal
I02_A_SELECCION_DE_CONTROL
EBOOL
Condición de franqueo de sección de transición en la red de
Petri principal
I03_accion_PID_final_01
REAL
Acción de control obtenida del PID 01 (0-100)
I04_accion_PID_final_02
REAL
Acción de control obtenida del PID 02 (0-100)
I05_auxVR1
REAL
Auxiliar de escalado entre 0.0 y 10000.0
I06_auxVR2
REAL
Auxiliar de escalado entre 0.0 y 10000.0
I07_auxVR3
REAL
Auxiliar de escalado entre 0.0 y 10000.0
I08_caudal_aux
REAL
Variable auxiliar de caudal sin escalar
I09_COND_AUTO_LOCAL
I11_LT_aux_03
EBOOL
REAL
Condición de franqueo de estado en la red de Petri de
asignación de control
Variable auxiliar para la lectura de nivel
Condición de franqueo de estado en la red de Petri de
asignación de control
I12_COND_FIN_CONTROL
EBOOL
I13_INTERRUPTOR
EBOOL Interruptor general
I14_LT_aux
REAL
Auxiliar de escalado de nivel
I15_FT
REAL
Caudal escalado entre 0 y 100
I16_Control_BOMBA
EBOOL Variable de SEGURIDAD para el control de la bomba
I17_SEG_VR1
BOOL
Variable de seguridad para la válvula VR1
I18_Seleccion_config_confirmada
BOOL
Variable auxiliar de confirmación de selección de
configuración
I19_set_point_graf_aux
REAL
Valor auxiliar para pintar el punto de equilibrio en las gráficas
I20_setpoint_01
REAL
Valor del punto de equilibrio a la entrada SP del PID 01
I21_setpoint_01_aux
REAL
Variable auxiliar para el punto de equilibrio en el control en
cascada
I22_setpoint_02
REAL
Valor del punto de equilibrio a la entrada SP del PID 02
I23_Td_aux_01
TIME
Variable auxiliar para la asignación del término derivativo en
el PID 01
I24_Td_aux_02
TIME
Variable auxiliar para la asignación del término derivativo en
el PID 02
I25_Ti_aux_01
TIME
Variable auxiliar para la asignación del término integral en el
PID 01
90
I27_Ti_aux_02
TIME
Variable auxiliar para la asignación del término integral en el
PID 02
I33_NIVEL
REAL
NIVEL escalado (en cm)
I34_POS_VR2
REAL
Posición leída de la electroválvula VR2 escalada 0-100%
I35_POS_VR2_aux
REAL
Auxiliar de escalado de VR2
I36_POS_VR3
REAL
Posición leída de la electroválvula VR3 escalada 0-100%
I37_POS_VR3_aux
REAL
Auxiliar de escalado de VR3
I38_PT
REAL
PRESIÓN escalada en bar
I39_PT_aux
REAL
Auxiliar de escalado de PRESIÓN
I40_setpointRes0_100_R1
REAL
Setpoint de la resistencia 1 entre 0 y 100
I41_setpointRes0_100_R2
REAL
Setpoint de la resistencia 2 entre 0 y 100
I42_TT1
REAL
Temperatura escalada TT1
I43_TT1_aux
REAL
Auxiliar de escalado de TT1
I44_TT2
REAL
Temperatura escalada TT2
I45_TT2_aux
REAL
Auxiliar de escalado de TT2
I46_TT3
REAL
Temperatura escalada TT3
I47_TT3_aux
REAL
Auxiliar de escalado de TT3
I48_TT4
REAL
Temperatura escalada TT4
I49_TT4_aux
REAL
Auxiliar de escalado de TT4
I50_TT5
REAL
Temperatura escalada TT5
I51_TT5_aux
REAL
Auxiliar de escalado de TT5
I52_TT6
REAL
Temperatura escalada TT6
I53_TT6_aux
REAL
Auxiliar de escalado de TT6
I54_TT7
REAL
Temperatura escalada TT7
I55_TT7_aux
REAL
Auxiliar de escalado de TT7
I56_TT8
REAL
Variable interna del PLC que guarda el valor real de la
medida de la temperatura 8
I57_TT8_auX
REAL
Variable auxiliar para la medida de la temperatura 8
I58_TT9
REAL
Variable interna del PLC que guarda el valor real de la
medida de la temperatura 9
I59_TT9_aux
REAL
Variable auxiliar para la medida de la temperatura 9
I62_var_ac_aux_01
REAL
Variable auxiliar para la entrada de PV del PID 01
I63_var_ac_aux_02
REAL
Variable auxiliar para la entrada de PV del PID 01
I64_VR1
REAL
Referencia de la válvula neumática 1 entre 0.0_100.0
91
I65_VR2
REAL
Referencia de la electroválvula 2 entre 0.0_100.0
I66_VR3
REAL
Referencia de la electroválvula 3 entre 0.0_100.0
I67_VS1
EBOOL Valor interno de la variable VS1
I68_VS2
EBOOL Valor interno de la variable VS2
I69_VS3
EBOOL Valor interno de la variable VS3
I70_VS4
EBOOL Valor interno de la variable VS4
I71_VS5
EBOOL Valor interno de la variable VS5
I72_COND_FALLO_GRAVE
EBOOL Condición fallo grave
I73_COND_FALLO_LEVE
EBOOL Condición fallo leve
I74_COND_FIN_PUESTA_REP
EBOOL Condición de fin de puesta en reposo
I75_COND_MANUAL_LOCAL
EBOOL Condición de paso a manual
I76_COND_RECON_FALLO
EBOOL Condición de fin de diagnóstico de fallo
I77_COND_REMOTO_OPC
EBOOL Variable interna de asignación del control remoto
I78_COND_REPOSO
EBOOL Condición de paso de congelación a puesta en reposo
Tabla 10: Variables internas del PLC
Adicionalmente se añaden los parámetros empleados para ciertos bloques.
Las condiciones iniciales que aparecen son las de las variables de estos parámetros que necesitan ser
inicializadas:
Nombre
Tipo de
parámetro
Descripción
parametros_PIDFF_01
Para_PIDFF
Parámetros de configuración del PID
01
Parámetros internos
rev_dir:=0
bump:=0
ovs_att:=0.0
mix_par:=0
en_rcpy:=0
aw_type:=1
dband:=0.0
gain_kp:=0.0
ff_inf:=0.0
ff_sup:=1.0
out_min:=0.0
out_max:=100.0
92
outrate:=99999999.0
pv_dev:=1
outbias:=50.0
otff_inf:=0.0
otff_sup:=1.0
kd:=0.03
pv_inf:=-10.0
pv_sup:=900000.0
out_inf:=0.0
out_sup:=100.0
parametros_PIDFF_02
Para_PIDFF
Parámetros de configuración del PID
02
out_inf:=0.0
out_sup:=100.0
mix_par:=0
en_rcpy:=0
kd:=0.03
dband:=0.0
gain_kp:=0.0
ovs_att:=0.0
outbias:=0.0
out_max:=100.0
out_min:=0.0
outrate:=99999999.0
rev_dir:=0
ParaPWM
Para_PWM1
Parámetros del PWM de las
resistencias
in_max:=100.0
t_min:=t#100ms
t_period:=t#4s
esca100_10000
Para_SCALING
Parámetro escalado de 0.0 100.0 a
0.0 y 10000.0
in_min:=0.0
in_max:=100.0
out_min:=0.0
out_max:=10000.0
clip:=1
esca10000_100
Para_SCALING Parámetro escalado de 0.0 y 10000.0
in_min:=0.0
a 0.0 100.0
93
in_max:=10000.0
out_min:=0.0
out_max:=100.0
escaCAREL
Para_SCALING
Parámetro para termómetros CAREL
escalado de 0.0 y 10000.0 a -30...90
in_min:=0.0
in_max:=10000.0
out_min:=-30.0
out_max:=90.0
escaCAUDAL
Para_SCALING
Parámetro escalado de CAUDAL
in_min:=0.0
in_max:=4070.0
out_min:=0.0
out_max:=610.0
escaNIVEL
Para_SCALING
Parámetro escalado de NIVEL
in_min:=8460.0
in_max:=10000.0
out_min:=1.0
out_max:=33.0
clip:=1
escaPRESION
Para_SCALING
Parámetro escalado de PRESION
in_min:=0.0
in_max:=10000.0
out_min:=0.0
out_max:=100.0
para_desnormalizado_01 Para_SCALING
Parámetro para realizar el escalado
inverso de la variable A CONTROLAR
seleccionada para el PID 01
in_min:=0.0
in_max:=100.0
clip:=1
para_desnormalizado_02 Para_SCALING
Parámetro para realizar el escalado
inverso de la variable A CONTROLAR
seleccionada para el PID 02
in_min:=0.0
in_max:=100.0
out_min:=0.0
out_max:=100.0
clip:=0
paramVC01_graf
Para_SCALING
Escalado de los datos para la variable
A CONTROLAR del PID 01 utilizada en
las gráficas de la pantallita
out_max:=100.0
out_min:=0.0
94
paramVC02_graf
Para_SCALING
Escalado de los datos para la variable
A CONTROLAR del PID 02 utilizada en
las gráficas de la pantallita
out_min:=0.0
out_max:=100.0
paramVM01_graf
Para_SCALING
Escalado de los datos para la variable
MANIPULABLE del PID 01 utilizada en
las gráficas de la pantallita
in_min:=0.0
in_max:=100.0
out_min:=0.0
out_max:=100.0
clip:=0
paramVM02_graf
Para_SCALING
Escalado de los datos para la variable
MANIPULABLE del PID 02 utilizada en
las gráficas de la pantallita
in_min:=0.0
in_max:=100.0
out_min:=0.0
out_max:=100.0
clip:=0
Tabla 11: Parámetros utilizados en los bloques de la programación del autómata
10.1.2.7 Internas de la pantalla de explotación
Nombre
Tipo
Descripción
I01_Aux_lamp_fin_control
BOOL
Variable auxiliar de generación de animación
I02_c_ini_PID_01_var_ac
BOOL
Variable de confirmación de la selección de la
variable A CONTROLAR para el PID 01
I03_c_ini_PID_02_var_ac
BOOL
Variable de confirmación de la selección de la
variable A CONTROLAR para el PID 02
I04_c_ini_PID_02_var_man
BOOL
Variable de confirmación de la selección de la
variable MANIPULABLE para el PID 02
I05_c_ini_PID_01_var_man
BOOL
Variable de confirmación de la selección de la
variable MANIPULABLE para el PID 01
I06_CONFIRMAR_CONTROLADOR
BOOL
Variable auxiliar para confirmar los parámetros
de los PIDs
I07_Control_cascada
BOOL
Variable que indicar la activación control en
cascada
I08_FIN_CONTROL
BOOL
Variable de activación de la acción de FIN de
CONTROL para la finalización del uso de la planta
95
C.I.
I09Kp_aux_01
REAL
variable auxiliar de la ganancia del PID 01
0
I10_Kp_aux_02
REAL
variable auxiliar de la ganancia del PID 02
0
I11_MANUAL_LOCAL
BOOL
Variable de activación del modo manual local
I12_Remoto_OPC
BOOL
Variable auxiliar para activar el modo remoto vía
OPC
I13_SD_VS1
BOOL
Variable interna para la activación de los
esquemas de las configuraciones
I14_SD_VS2
BOOL
Variable interna para la activación de los
esquemas de las configuraciones
I15_SD_VS3
BOOL
Variable interna para la activación de los
esquemas de las configuraciones
I16_SD_VS4
BOOL
Variable interna para la activación de los
esquemas de las configuraciones
I17_SD_VS5
BOOL
Variable interna para la activación de los
esquemas de las configuraciones
I18_selecc_var_ac_01
DINT
Variable auxiliar para la selección de la variable A
CONTROLAR para el PID 01
0
I19_selecc_var_ac_02
DINT
Variable auxiliar para la selección de la variable A
CONTROLAR para el PID 02
0
I20_selecc_var_man_01
DINT
Variable auxiliar para la selección de la variable
MANIPULABLE para el PID 01
0
I21_selecc_var_man_02
DINT
Variable auxiliar para la selección de la variable
MANIPULABLE para el PID 02
0
I22_SELECCION_CONFIG_Aux
DINT
Variable auxiliar para la selección de la
configuración seleccionada de la planta
0
I23_Td_aux_01
REAL
Variable auxiliar para definir el tiempo
DERIVATIVO para el PID 01
0
I24_Td_aux_02
REAL
Variable auxiliar para definir el tiempo
DERIVATIVO para el PID 02
0
I25_Ti_aux_01
REAL
Variable auxiliar para definir el tiempo INTEGRAL
para el PID 01
0
I26_Ti_aux_02
REAL
Variable auxiliar para definir el tiempo INTEGRAL
para el PID 02
0
I27_seta_emer_aux
BOOL
Variable auxiliar. En caso de activación de la seta
de emergencia evita que aparezca la ventana
emergente de fallo de alimentación
I28_Confirmacion_fin_ext
BOOL
Variable de confirmación de la llega de
finalización externa del control
Tabla 12: Variables internas de la pantalla de explotación
96
Existe una variable con características especiales:

_CurPanelID
Es una variable del sistema y como tal tiene la característica de poder asignar una variable en la que escriba su
valor (VJW150_r_panel_actual) y se le puede asignar una variable de la que lea su valor
(VJW154_w_panel_a_colocar).
97
10.1.3 Variables externas
Las variables externas refieren a las variables que se comparten entre ambos dispositivos o las variables que se
emplean en el estándar de comunicaciones.
Estas variables se almacenan exclusivamente en el PLC y son el resto de elementos los encargados de
modificarlas. El autómata también puede modificar las variables si así lo requiere.
Aunque las variables externas sean compartidas desde el PLC, hay que definirlas en el sistema origen y en el
de fin. Se ha tomado como referencia que todas las variables se definen desde el punto de vista (o supuesto
punto) del autómata, o sea que una variable externa tiene el mismo nombre en ambos sistemas pero hay que
tener en cuenta que se ha definido suponiendo que es el PLC el dueño de dicha variable.
La estructura seguida para la nomenclatura de las variables se puede explicar con el siguiente ejemplo
práctico:
𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑎 + 𝑇𝑖𝑝𝑜 + 𝐷𝑖𝑟𝑒𝑐𝑖ó𝑛 + _𝑟𝑤_ + 𝑛𝑜𝑚𝑏𝑟𝑒
dónde:


Programa: programa para el que está dirigida la variable (OPC, VJ).
Tipo (de variable): Se define el tipo solo para el caso de compartir variables con la pantalla.
Pueden ser: Word (W), enteros (int) o booleanos (nada).
Dirección (de memoria): Número de la posición que ocupa la variable en la memoria del
autómata.
_rw_: lectura (_r_), escritura (_w_) o ambas (_rw_).
Nombre: Nombre intuitivo de la variable.



A continuación se exponen un par de ejemplos de las variables:


Compartida con la pantalla (VJ): VJW2_w_T2, VJ0_w_ED_EMER.
Compartida con OPC: OPC01_r_VR1.
10.1.3.1 Variables compartidas PLC-Pantalla
Nombre
Dirección
de
memoria
Tipo
Descripción
VJ0_w_ED_EMER
%M0
EBOOL
Variable de intercambio con
Vijeo Designer escritura de
activación del pulsador de
emergencia
VJ1_w_ED_S1
%M1
EBOOL
variable de intercambio de Vijeo
Designer ED_S1
VJ10_w_SD_VS3
%M10
EBOOL
variable de intercambio de Vijeo
Designer SD_VS3
VJ11_w_SD_VS4
%M11
EBOOL
Variable de intercambio de
SD_VS4
VJ12_w_SD_VS5
%M12
EBOOL
Variable de intercambio de
SD_VS5
98
C. I.
VJ13_w_SD_R1
%M13
EBOOL
Variable de intercambio de
SD_R1
VJ14_w_SD_R2
%M14
EBOOL
Variable de intercambio de
SD_R2
VJ15_w_SD_BOMBA
%M15
EBOOL
Variable de intercambio de
SD_BOMBA
VJ16_w_G_A1_REPOSO
%M16
EBOOL
Variable de intercambio de Vijeo
Designer G_REPOSO
VJ17_w_G_F2_2_INICIO
%M17
EBOOL
Variable de intercambio de
G_INICIO
VJ18_w_G_F1_CONTROL
%M18
EBOOL
Variable de intercambio de
G_CONTROL
VJ19_w_G_MANUAL_LOCAL
%M19
EBOOL
Variable de intercambio de
G_MANUAL_LOCAL
VJ2_w_ED_S2
%M2
EBOOL
Variable de intercambio con
Vijeo Designer escritura de
activación de S2
VJ20_w_G_D1_EMERGENCIA
%M20
EBOOL
Variable de intercambio de
G_EMERGENCIA
VJ21_w_G_D2_FALLO_GRAVE
%M21
EBOOL
Variable de intercambio de
G_FALLO_GRAVE
VJ22_w_G_D3_FALLO_LEVE
%M22
EBOOL
Variable de intercambio de
G_FALLO_LEVE
VJ23_w_G_A2_PUESTA_REPOSO
%M23
EBOOL
Variable de intercambio de
G_PUESTA_REPOSO
VJ24_w_G_A3_CONGELAR
%M24
EBOOL
Variable de intercambio de
G_CONGELAR
VJ25_r_EP_INTERRUPTOR
%M25
EBOOL
Variable de intercambio de
activación del botón inicial de la
pantalla
VJ26_r_EP_REC_FALLO
%M26
EBOOL
Variable de intercambio de origen pantalla- REC_FALLO
VJ27_r_EP_MANUAL_LOCAL
%M27
EBOOL
Variable de intercambio de paso
a control MANUAL
VJ28_r_EP_A_REPOSO
%M28
EBOOL
Variable de intercambio de origen pantalla- condición de
paso A_REPOSO
VJ3_w_ED_ALIM
%M3
EBOOL
Variable de intercambio con
escritura de activación de la
alimentación
VJ37_r_Confirm_config_selec
%M37
EBOOL
Variable de intercambio de
Confirmación de la
99
CONFIGURACIÓN seleccionada
VJ38_r_REMOTO_OPC
%M38
EBOOL
Variable de intercambio de paso
a control REMOTO vía OPC
VJ39_r_AUTOMATICO_LOCAL
%M39
EBOOL
Variable de intercambio de paso
a control MANUAL
VJ4_w_ED_FUSIBLE
%M4
EBOOL
Variable de intercambio con
escritura de activación del fusible
EBOOL
Variable de intercambio de
lectura de finalización del
conexión para el control
VJ40_r_FIN_CONTROL
%M40
VJ41_w_G_REMOTO_OPC
%M41
EBOOL
Variable de intercambio de
escritura del estado REMOTO
OPC
VJ42_w_G_AUTOMATICO_LOCAL
%M42
EBOOL
variable de intercambio de
G_AUTOMATICO_LOCAL
VJ43_w_OPC_COND_FIN
%M43
EBOOL
variable de escritura del PLC para
compartir con: Fin del control
externo vía OPC
VJ44_w_WD_FAIL
%M44
EBOOL
Variable de intercambio de aviso
de FALLO en la vigilancia de la
conexión remota
VJ45_w_WD_OK
%M45
EBOOL
Variable de intercambio de aviso
de conexión remota CORRECTA
VJ47_r_a_congelar
%M47
EBOOL
Variable de intercambio de, paso
del PLC a modo congelar
VJ48_r_reset_fallo_leve
%M48
EBOOL
Variable de intercambio con
Vijeo Designer para eliminar el
fallo leve producido
VJ49_r_volver_selecc_control
%M49
EBOOL
Variable de intercambio con
Vijeo Designer para ir a modo
selección de control otra vez
VJ5_w_ED_CONFIR_R2
%M5
EBOOL
Variable de intercambio con
escritura de activación del a
confirmación de la 2ª resistencia
VJ50_w_FIN_CONTROL_EXT
%M50
EBOOL
Variable de intercambio de Vijeo
Designer aviso de finalización de
control REMOTO
EBOOL
Variable de intercambio de Vijeo
Designer lectura de la acción
directa o inversa: 0": acción
directa (x(-1)) del controlador
PID, "1": acción inversa (x(1)) del
VJ51_r_acc_PID_01
%M51
100
0
controlador PID"
VJ53_r_aw_type_01
VJ55_r_pv_dev_01
VJ56_r_bump_01
%M53
%M55
%M56
-1
EBOOL
Variable de intercambio de Vijeo
Designer lectura de activación
Anti Wind Up del PID01
-1
EBOOL
Variable de intercambio de Vijeo
Designer lectura de activación
uso de PV o de diferencia PV-SP
en el control DERIVATIVO del PID
01
0
EBOOL
Variable de intercambio de Vijeo
Designer lectura del tipo de
conmutación manual-automático
del PID 01: 1: Brusca, 0: suave
-1
VJ58_r_TR_S_01
%M58
EBOOL
Variable de intercambio de Vijeo
Designer lectura de la acción de
inicialización del control del PID
01
VJ59_r_reinicio_PLC
%M59
EBOOL
Variable de intercambio de Vijeo
Designer del reinicio del PLC
EBOOL
Variable de intercambio con
Vijeo Designer escritura de
activación de la entrada digital 6
0
VJ6_w_ED6
%M6
VJ61_r_escalado_VI_VN
%M61
EBOOL
Variable de intercambio de Vijeo
Designer de selección del tipo de
variable utilizado: 1: VI, 0: VN
%M62
EBOOL
Variable de intercambio de Vijeo
Designer de lectura de la
activación de la acción de control
-1
VJ62_r_TR_S_02
0
VJ64_r_bump_02
%M64
EBOOL
Variable de intercambio de Vijeo
Designer lectura de la acción de
inicialización del control del PID
02
%M65
EBOOL
Variable de intercambio de Vijeo
Designer lectura de activación
Anti Wind Up del PID02
-1
VJ65_r_aw_type_02
0
EBOOL
Variable de intercambio de Vijeo
Designer lectura acción directa o
inversa: 0": acción directa (x(-1))
del controlador PID, "1": acción
inversa (x(1)) del controlador
PID"
VJ66_r_acc_PID_02
%M66
101
VJ67_r_pv_dev_02
%M67
EBOOL
Variable de intercambio de Vijeo
Designer lectura de activación
uso de PV o de diferencia PV-SP
en el control DERIVATIVO del PID
02
VJ68_r_cascada
%M68
EBOOL
Variable de intercambio de Vijeo
Designer lectura de activación
del control en cascada
-1
VJ7_w_ED7
%M7
EBOOL
Variable de intercambio con
Vijeo Designer escritura de
activación de la entrada digital 7
VJ71_r_PID02_en
%M71
EBOOL
Variable de intercambio de Vijeo
Designer lectura del PID 02
VJ72_rw_fallo_GRAVE
%M72
EBOOL
Variable de intercambio de Vijeo
Designer lectura o aviso de fallo
GRAVE
VJ8_w_SD_VS1
%M8
EBOOL
variable de intercambio de Vijeo
Designer SD_VS1
VJ9_w_SD_VS2
%M9
EBOOL
variable de intercambio de Vijeo
Designer SD_VS2
VJint101_r_EP_REF_VR1
%MW101
INT
Variable de intercambio de Vijeo
Designer REF_VR1
VJint102_r_EP_REF_VR2
%MW102
INT
Variable de intercambio de Vijeo
Designer REF_VR2
VJint103_r_EP_REF_VR3
%MW103
INT
Variable de intercambio de Vijeo
Designer REF_VR3
%MW104
INT
Variable de intercambio de Vijeo
Designer lectura de la
configuración de la planta
seleccionada
VJW0_w_T1
%MW0
REAL
Variable de intercambio de Vijeo
Designer Temp T1 en ºC
VJW10_w_T6
%MW10
REAL
Variable de intercambio de Vijeo
Designer Temp T6 en ºC
(0.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo del punto de equilibrio
para el PID 02
(0.0)
(100.0)
VJint104_r_SELECCION_CONFIG
VJW106_r_pv_inf_02
%MW106
VJW108_r_otff_inf_02
%MW108
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo de acción Feed Forward
posible para el PID 02
VJW110_r_pv_sup_02
%MW110
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
102
0
máximo del punto de equilibrio
para el PID 02
VJW112_r_otff_sup_02
VJW114_r_outrate_02
%MW112
%MW114
(1.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
máximo de acción Feed Forward
posible para el PID 02
(999.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
cambio de la acción de control
mínimo para el PID 02
(0.0)
VJW118_r_ff_inf_02
%MW118
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo de perturbación Feed
Forward posible para el PID 02
VJW12_w_T7
%MW12
REAL
Variable de intercambio de Vijeo
Designer Temp T7 en ºC
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
máximo de perturbación Feed
Forward posible para el PID 02
TIME
Variable de intercambio con
Vijeo Designer escritura del
tiempo de preparación
transcurrido de la configuración
de la planta
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
del punto de equilibrio para la
acción de control del PID 01
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor normalizado de la variable
A CONTROLAR del PID 01 para la
GRÁFICA
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor normalizado del PUNTO DE
EQUILIBRIO del PID 01 para la
GRÁFICA
VJW120_r_ff_sup_02
VJW122_w_segundos
VJW128_r_outbias_02
VJW134_w_salida_y_01_graf
VJW136_w_setpoint_01_graf
%MW120
%MW122
%MW128
%MW134
%MW136
VJW138_w_VM_01_graf
%MW138
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor de la variable
MANIPULABLE del PID 01 para la
GRÁFICA
VJW14_w_PT
%MW14
REAL
Variable de intercambio de Vijeo
Designer Presión en bar
103
(1.0)
VJW140_w_salida_y_02_graf
VJW142_w_setpoint_02_graf
VJW144_w_VM_02_graf
VJW146_w_setpoint_01_graf_num
VJW148_w_setpoint_02_graf_num
VJW150_r_panel_actual
%MW140
%MW142
%MW144
%MW146
%MW148
%MW150
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor normalizado de la variable
A CONTROLAR del PID 02 para la
GRÁFICA
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor normalizado del PUNTO DE
EQUILIBRIO del PID 02 para la
GRÁFICA
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor de la variable
MANIPULABLE del PID 01 para la
GRÁFICA
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor del PUNTO DE EQUILIBRIO
del PID 01 para la display
numérico de las GRÁFICAS
REAL
Variable de intercambio con
Vijeo Designer escritura para el
valor del PUNTO DE EQUILIBRIO
del PID 02 para la display
numérico de las GRÁFICAS
DINT
Variable de intercambio con
Vijeo Designer lectura del valor
del panel actual de la pantalla de
explotación
VJW152_r_variable_almacena_seg
%MW152
DINT
Variable de intercambio con
Vijeo Designer lectura de los
segundos que lleva en el panel
actual
VJW154_w_panel_a_colocar
%MW154
DINT
Variable de intercambio con
Vijeo Designer escritura del
último panel activo conocido
VJW16_w_LT
%MW16
REAL
Variable de intercambio de Vijeo
Designer Nivel en cm
VJW18_w_FT
%MW18
REAL
Variable de intercambio de Vijeo
Designer caudal en l/s
VJW2_w_T2
%MW2
REAL
Variable de intercambio de Vijeo
Designer Temp T2 en ºC
VJW20_w_VR1
%MW20
REAL
Variable de intercambio de Vijeo
Designer VR1 SERVOVALVULA
VJW22_w_VR2
%MW22
REAL
Variable de intercambio de Vijeo
Designer VR2 SERVOVALVULA
104
-1
-1
VJW24_w_VR3
VJW26_r_Kp_01
%MW24
%MW26
REAL
Variable de intercambio de Vijeo
Designer VR3 SERVOVALVULA
REAL
Variable de intercambio con
Vijeo Designer: Ganancia del
controlador
(1000.0)
(1000.0)
VJW28_r_Ti_01
%MW28
REAL
Variable de intercambio con
Vijeo Designer: Tiempo integral
del controlador
VJW30_r_Td_01
%MW30
REAL
Variable de intercambio con
Vijeo Designer: Tiempo
derivativo del controlador
VJW32_r_selec_va_ac_01
VJW34_r_Selecc_var_man_01
VJW36_r_SET_POINT_01
%MW32
%MW34
%MW36
INT
Variable de intercambio con
Vijeo Designer lectura de la
variable A CONTROLAR para el
PID 01
INT
Variable de intercambio con
Vijeo Designer lectura de la
variable MANIPULABLE
seleccionada para el PID 01
(10.0)
(50.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del punto
de equilibrio (SP) seleccionada
para el PID 01
(0.0)
VJW38_r_pv_inf_01
%MW38
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo del punto de equilibrio
para el PID 01
VJW4_w_T3
%MW4
REAL
Variable de intercambio de Vijeo
Designer Temp T3 en ºC
(100.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
máximo del punto de equilibrio
para el PID 01
(100.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo de la acción de control
posible para el PID 01
(0.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
máximo de la acción de control
posible para el PID 01
(50.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
del punto de equilibrio para la
acción de control del PID 01
VJW40_r_pv_sup_01
VJW42_r_out_sup_max_01
VJW44_r_out_inf_min_01
VJW50_r_outbias_01
%MW40
%MW42
%MW44
%MW50
105
VJW52_r_out_sup_max_02
VJW54_r_out_inf_min_02
VJW56_r_outrate_01
%MW52
%MW54
%MW56
(100.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo de la acción de control
posible para el PID 02
(0.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
máximo de la acción de control
posible para el PID 02
(999.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
cambio de la acción de control
mínimo para el PID 01
(0.0)
VJW58_r_ff_inf_01
%MW58
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo de perturbación Feed
Forward posible para el PID 01
VJW6_w_T4
%MW6
REAL
Variable de intercambio de Vijeo
Designer Temp T4 en ºC
(0.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
máximo de perturbación Feed
Forward posible para el PID 01
(0.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
mínimo de acción Feed Forward
posible para el PID 01
(1.0)
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
máximo de acción Feed Forward
posible para el PID 01
VJW60_r_ff_sup_01
VJW62_r_otff_inf_01
VJW64_r_otff_sup_01
%MW60
%MW62
%MW64
VJW68_w_valor_salida_PID_01
%MW68
REAL
Variable de intercambio con
Vijeo Designer escritura del valor
de salida de la acción del PID 01
según el tipo de escalado
seleccionado
VJW70_r_tiempo_watchdog
%MW70
REAL
Variable para modificar el tiempo
de watchdog
VJW72_r_setpoint_R1
%MW72
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
de la resistencia R1
VJW74_r_setpoint_R2
%MW74
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
de la resistencia R2
REAL
Variable de intercambio con
Vijeo Designer escritura del valor
actual de la variable A
VJW76_w_SALIDA_Y_01
%MW76
106
(10.0)
CONTROLAR del PID 01, según el
tipo de variable seleccionado
VJW8_w_T5
VJW80_r_perturbacion_FF_01
VJW82_r_SET_POINT_02
VJW84_r_perturbacion_FF_02
VJW86_w_SALIDA_Y_02
VJW88_r_selec_va_ac_02
VJW90_r_Selecc_var_man_02
VJW92_w_valor_salida_PID_02
VJW94_r_Kp_02
%MW8
%MW80
%MW82
%MW84
%MW86
%MW88
%MW90
%MW92
%MW94
REAL
Variable de intercambio de Vijeo
Designer Temp T5 en ºC
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
de la perturbación introducida
para el PID 01
REAL
Variable de intercambio con
Vijeo Designer lectura del punto
de equilibrio (SP) seleccionada
para el PID 02
REAL
Variable de intercambio con
Vijeo Designer lectura del valor
de la perturbación introducida
para el PID 02
REAL
Variable de intercambio con
Vijeo Designer escritura del valor
actual de la variable A
CONTROLAR del PID 02, según el
tipo de variable seleccionado
INT
Variable de intercambio con
Vijeo Designer lectura de la
variable A CONTROLAR
seleccionada para el PID 02
INT
Variable de intercambio con
Vijeo Designer lectura de la
variable MANIPULABLE
seleccionada para el PID 02
(50.0)
REAL
Variable de intercambio con
Vijeo Designer escritura del valor
de salida de la acción del PID 02
según el tipo de escalado
seleccionado
(10.0)
REAL
Variable de intercambio con
Vijeo Designer: Ganancia del
controlador
(1000.0)
(1000.0)
VJW96_r_Td_02
%MW96
REAL
Variable de intercambio con
Vijeo Designer: Tiempo
derivativo del controlador
VJW98_r_Ti_02
%MW98
REAL
Variable de intercambio con
Vijeo Designer: Tiempo integral
del controlador
VJint_CALIBRACION_in_min
%MW156
INT
Variable de intercambio con
Vijeo Designer:Calibración del
sensor de nivel
107
VJint_CALIBRACION_in_max
%MW158
INT
Variable de intercambio con
Vijeo Designer:Calibración del
sensor de nivel
VJint_CALIBRACION_out_min
%MW160
INT
Variable de intercambio con
Vijeo Designer:Calibración del
sensor de nivel
VJint_CALIBRACION_out_max
%MW162
INT
Variable de intercambio con
Vijeo Designer: Calibración del
sensor de nivel
REAL
Variable de intercambio con
Vijeo Designer: Calibración del
sensor de nivel
VJW_CALIBRACION_sensor_filtrado
%MF164
Tabla 13: Variables compartidas PLC-Pantalla
10.1.3.2 Variables compartidas con OPC
Estas variables físicamente se encuentra en el P.L.C. pero el servidor de O.P.C. permite su utilización como
variables compartidas entre el P.L.C. y el programa-cliente que se conecte a O.P.C.
Nombre
Tipo
Descripción
OPC01_r_VR1
REAL
Variable de intercambio PLC-OPC. Lectura de la variable VR1
OPC02_r_REF_VR2
REAL
Variable de intercambio PLC-OPC. Lectura de la variable VR2
OPC03_r_REF_VR3
REAL
Variable de intercambio PLC-OPC. Lectura de la variable VR3
OPC04_r_R1
REAL
Variable de intercambio PLC-OPC. Lectura de la variable
Resistencia 1
OPC05_r_R2
REAL
Variable de intercambio PLC-OPC. Lectura de la variable
Resistencia 2
OPC06_r_BOMBA
EBOOL
Variable de intercambio PLC-OPC. Lectura de la variable de
activación de la bomba
OPC07_r_COND_FIN
EBOOL
Variable de intercambio PLC-OPC. Lectura de la variable de
finalización de la conexión remota
OPC08_r_SINEWAVE_WD
EBOOL
Variable de intercambio PLC-OPC. Lectura de la variable de
comprobación de la conexión (WatchDog)
OPC09_r_4_5
EBOOL
Variable de intercambio PLC-OPC. Lectura de la variable 4_5
(sin uso actual)
OPC10_w_LT
REAL
Variable de intercambio PLC-OPC. Escritura del valor de NIVEL
en la variable
OPC11_w_PT
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
PRESIÓN en la variable
108
OPC12_w_FT
REAL
Variable de intercambio PLC-OPC. Escritura del valor de Caudal
en la variable
OPC13_w_TT1
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Temperatura 1 en la variable
OPC14_w_TT2
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Temperatura 2 en la variable
OPC15_w_TT3
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Temperatura 3 en la variable
OPC16_w_TT4
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Temperatura 4 en la variable
OPC17_w_TT5
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Temperatura 5 en la variable
OPC18_w_TT6
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Temperatura 6 en la variable
OPC19_w_TT7
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Temperatura 7 en la variable
OPC20_w_POS_VR2
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Posición de VR2 en la variable
OPC21_w_POS_VR3
REAL
Variable de intercambio PLC-OPC. Escritura del valor de
Posición de VR3 en la variable
OPC22_w_ALIM
REAL
Variable de intercambio PLC-OPC. Escritura del estado de la
alimentación del cuadro de 24V en la variable
OPC23_w_CONFIR_R2
REAL
Variable de intercambio PLC-OPC. Escritura de la
realimentación del estado de la Resistencia 2 en la variable
OPC24_w_ED6
REAL
Variable de intercambio PLC-OPC. Escritura (sin uso actual)
OPC25_w_ED7
REAL
Variable de intercambio PLC-OPC. Escritura (sin uso actual)
OPC26_w_EMER
REAL
Variable de intercambio PLC-OPC. Escritura del estado de la
seta de emergencia en la variable
OPC27_w_FUSIBLE
REAL
Variable de intercambio PLC-OPC. Escritura del estado del
fusible de rearme en la variable
OPC28_w_S1
REAL
Variable de intercambio PLC-OPC. Escritura (sin uso actual)
OPC29_w_S2
REAL
Variable de intercambio PLC-OPC. Escritura (sin uso actual)
OPC30_w_SINE_WAVE_SENT EBOOL
Variable de intercambio PLC-OPC. Escritura del estado en la
variable
OPC31_r_R1_0
REAL
Variable de intercambio PLC-OPC. Lectura de la variable
Resistencia 1 (sin uso actualmente)
VJ38_r_REMOTO_OPC
EBOOL
Variable de intercambio de Vijeo Designer paso a control
REMOTO vía OPC
VJ41_w_G_REMOTO_OPC
EBOOL
Variable de intercambio de Vijeo Designer escritura del estado
REMOTO OPC
109
VJ43_w_OPC_COND_FIN
EBOOL
variable de escritura del PLC para compartir con Vijeo Designer:
Fin del control externo vía OPC
Tabla 14: Variables compartidas de OPC
110
10.2 Anexo B: Planos de las Configuraciones y Diagramas P&ID
10.2.1 Planta Multiprocesos
Figura 106: Diagrama P&ID – Planta Multiprocesos
111
10.2.2 Configuración 1
Figura 107: Diagrama P&ID - Configuración 1
112
10.2.3 Configuración 2
Figura 108: Diagrama P&ID - Configuración 2
113
10.2.4 Configuración 3
Figura 109: Diagrama P&ID - Configuración 3
114
10.2.5 Desagüe
Figura 110: Diagrama P&ID – Desagüe de la planta
115
10.3 Anexo C: Tarjetas de entradas y salidas del PLC
Los módulos de adquisición de datos empleados son los siguientes:
Módulo
Características
o
Módulo con 4 canales analógicos de entrada y 2 canales de salida analógicos configurados
de 4 a 20 mA y 10V
o
Entradas:
AMM0600
o
Nivel

Presión

Posición de VR2

Posición de VR3

Referencia de VR2

Referencia de VR3
Salidas:
o
Módulo con 4 canales de entrada analógicas y 2 canales de salida analógicas configurados
de 4 a 20 mA y 10V
o
Entradas:
AMM0600
o

Carel Temperatura 4

Carel Temperatura 5

Carel Temperatura 6

Carel Temperatura 7

Referencia de VR1

(Salida no utilizada)
Salidas:
o
Módulo de 4 entradas analógicas rápidas de rango múltiple de 4 a 20 mA y 10V.
o
Entradas:
AMI0410
DDM16025


Lectura de caudal

Temperatura 1

Temperatura 2

Temperatura 3
o
Módulo de 8 entradas y 8 salidas, ambas digitales.
o
Entradas

Seta de emergencia

Alimentación

Fusible

Confirmación de activación de la segunda resistencia

4 entradas no utilizadas.
116
o
Salidas

Activación válvula solenoide 1

Activación válvula solenoide 2

Activación válvula solenoide 3

Activación válvula solenoide 4

Activación válvula solenoide 5

Activación resistencia 1

Activación resistencia 2

Activación bomba
Tabla 15: Módulos del PLC
Figura 111: Tarjetas del PLC
Se utiliza un módulo de procesador y de comunicaciones, modelo BMX P34 2020, el cual tiene un puerto USB
y dos de Ethernet. Principalmente se utiliza un solo puerto para comunicarse con el resto de dispositivos
gracias al router instalado. Adicionalmente, tiene una ranura para tarjeta de memoria tipo SD.
En la siguiente tabla se detallan algunas propiedades del procesador del autómata:
117
Características
Número máximo de
Entradas/salidas binarias del
bastidor
Entradas/salidas analógicas
del bastidor
Canales expertos
Canales Ethernet
Bus de campo AS-i
Comunicación simultánea EF
Cantidad máxima
USB
de módulos
Puerto de enlace Modbus
serie incorporado
Puerto maestro CANopen
incorporado
Puerto Ethernet incorporado
Reloj de tiempo real que puede guardarse
Capacidad de memoria de los datos de aplicación que puede guardarse
Tarea MAST
Estructura de la aplicación
Tarea FAST
Procesamiento de eventos
RAM interna
100% booleano
Velocidad de ejecución del
código de aplicación
65% booleano + 35% digital
Funciones
Tiempo de ejecución
Una instrucción booleana básica
Una instrucción digital básica
Una instrucción de coma flotante
Tabla 16: Características del Procesador BMX P34 2020
118
Disponible
1.024
256
36
3
4
16
1
1
1
Sí
256 Kb
1
1
64
8,1 Kins/ms
(1)
6,4 Kins/ms
(1)
0,12 μs
0,17 μs
1,16 μs
10.4 Anexo D: Guía de usuario de la Planta Multiprocesos
Este texto se ha desarrollado con el fin de permitir a futuros alumnos e investigadores un conocimiento
completo y un uso funcional de la planta multiprocesos.
En la guía se detallan los componentes físicos de la planta, el sistema de control que la gobierna, los diversos
paneles de la pantalla de explotación y las configuraciones que la planta puede adoptar. En resumen, todo lo
necesario para poder hacer un uso debido y funcional de la planta.
La guía ha sido redactada mediante la síntesis de [1] y las actualizaciones e implementaciones llevadas a cabo
en el marco de este trabajo fin de grado.
119
Descargar