Teoría - Canek

Anuncio
CAP ÍTULO
3
La integral
3.8 La antiderivada y la integral indefinida
El teorema Fundamental del Cálculo constituye una herramienta muy poderosa en el cálculo de las integrales, pues nos permitirá considerar casos cada vez más complejos, que iremos abordando más adelante.
Recordemos el TFC I:
Z
a
b
b
F 0 .x/ dx D F .x/ D F .b/
F .a/;
a
siempre que F 0 .x/ sea continua en Œa; b.
De esta manera, cualquier fórmula de derivación se puede convertir en una fórmula de integración.
p
x
D f .x/ y ası́:
Por ejemplo, si F .x/ D x 2 C 1, entonces F 0 .x/ D p
2
x C1
b p
Z b
p
p
x
2
p
dx D x C 1 D b 2 C 1
a2 C 1;
x2 C 1
a
a
x
aclarando que la función f .x/ D p
es continua en R.
2
x C1
Cuando F .x/ es una primitiva o antiderivada de f .x/, se menciona una antiderivada porque en realidad
hay una infinidad de funciones que son antiderivadas de la función f .x/, por ejemplo :
G.x/ D
p
x 2 C 1 C 2 & H.x/ D
p
x2 C 1
5 son también antiderivadas de f .x/ D p
x
x2 C 1
:
Ya hemos visto que dos antiderivadas de una misma función difieren en una constante. Esta situación nos
lleva a la siguiente definición:
canek.azc.uam.mx: 20/ 5/ 2015/ 546
1
2
Cálculo integral
Definición. El conjunto infinito de primitivas f F .x/ C C g de la función f .x/, se denomina la integral
indefinida de f .x/ y se denota por:
Z
f .x/ dx D F .x/ C C:
Esta integral indefinida no es una función, sino una familia infinita de funciones, de modo que dos de ellas
difieren entre sı́ sólo por una constante. Dicho de otra forma, la notación introducida equivale a:
Z
f .x/ dx D F .x/ C C
()
F 0 .x/ D f .x/:
Con esta notación podemos transformar cualquier fórmula de derivación en una fórmula de integral indefinida. Veamos algunos ejemplos:
Ejemplo 3.8.1 Transformar las siguientes fórmulas de derivadas en fórmulas de integrales indefinidas:
1.
d r
x D r xr
dx
2.
d 2
.x C 1/
dx
3.
d
.x C 1/.x 2 C 2/ D .x 2 C 2/ C 2x.x C 1/:
dx
1.
Z
r xr
2.
Z
.x 2
3.
Z
1
1
.r ¤ 0/I
D
2x
I
.x 2 C 1/2
H
1
dx D x r C C I
2x
1
dx D 2
C CI
2
C 1/
x C1
Œ.x 2 C 2/ C 2x.x C 1/ dx D .x C 1/.x 2 C 2/ C C:
Ejemplo 3.8.2 Convertir las siguientes integrales indefinidas en fórmulas de derivación:
1.
Z
2.
Z
3.
Z
.3x 2 C 2x
1/ dx D x 3 C x 2
x C CI
p
3x 2
p
dx D x 3 C 5 C C I
3
2 x C5
p
x2
3x C 2.2x
3/ dx D
2 2
.x
3
3
3x C 2/ 2 C C:
H
d
x 3 C x 2 x C C D 3x 2 C 2x 1I
dx
1
d p 3
1
3x 2
2.
x C 5 C C D .x 3 C 5/ 2 3x 2 D p
I
dx
2
2 x3 C 5
3
1
d
2 2
23 2
3.
.x
3x C 2/ 2 C C D
.x
3x C 2/ 2 .2x
dx 3
32
1.
3/ D
p
x2
3x C 2 .2x
3/:
2
3.8 La antiderivada y la integral indefinida
3.8.1
3
Relación entre la integral definida y la indefinida
Es preciso determinar la relación que hay entre la integral definida e indefinida, para evitar posibles confusiones.
Z
b
Para empezar, recordamos al lector que una integral definida
f .x/ dx tiene lı́mites o extremos de ina
tegración y da como resultado un número o una expresión que no contiene a la variable de integración
x. Frecuentemente a esta variable se le llama variable muda ya que se puede sustituir con otra literal sin
cambiar el resultado. Ası́ por ejemplo
5
Z 5
Z 5
Z 5
2x dx D x 2 D 52 12 D 24 y también
2t dt D
2w dw D 24:
1
1
1
1
Esto es, sea cual sea la literal utilizada en el integrando, el resultado es el mismo número real.
Z b
Z b
Z b
f .x/ dx D
f .t/ dt D
f .u/ du:
a
a
Como ya se mencionó, la integral indefinida
antiderivadas de f .x/.
Z
Si
f .x/ dx D F .x/ C C )
)
b
Z
a
a
f .x/ dx representa a la familia infinita de funciones que son
por el TFC I
b
f .x/ dx D ŒF .x/ C C  D
a
DŒF .b/ C C 
F
Z
ŒF .a/ C C  D F .b/
Resumiendo: para calcular la integral definida
b
F .a/ D F .x/ :
a
Z
b
f .x/ dx podemos calcular la integral indefinida
Z b
y luego considerar los extremos a, b para determinar
f .x/ dx. Esto es:
a
Z
f .x/ dx
a
Z
a
b
f .x/ dx D
Z
Por ejemplo:
Z
1
5
2x dx D
Z
b
f .x/ dx :
a
5
5
2
2x dx D .x C C / D .52 C C /
1
1
.12 C C / D 24:
En la práctica no es necesario usar la constante C , llamada constante de integración, para calcular la integral
definida.
Ejemplo 3.8.3 Utilizar los ejemplos 3.8.1 y 3.8.2 para evaluar las siguientes integrales definidas:
1.
Z 10
2.
Z 5
1
2
2x
dx.
.x 2 C 1/2
Œ.x 2 C 2/ C 2x.x C 1/ dx.
3.
4.
3
Z p
4
1
Z 1p
0
3x 2
p
dx.
2 x3 C 5
x2
3x C 2.2x
3/ dx:
H
1. Por el ejemplo 3.8.1 (2.) tenemos:
Z 10
2x
1 10
1
dx
D
D 2
2
2
2
.x C 1/
x C1 1
10 C 1
1
12
1
1
D
C1
101
1
2 101
D
D
2
202
99
:
202
3
4
Cálculo integral
2. Por el ejemplo 3.8.1 (3.) vemos:
5
Z
5
Œ.x C 2/ C 2x.x C 1/ dx D .x C 1/.x C 2/ D .6/.27/
2
2
2
.3/.6/ D 144:
2
3. Del ejemplo 3.8.2 (2.) obtenemos:
Z
p
3
1
4
p
3x 2
3
p
dx D x C 5 3
2 x C5
p
3
4
1
D
q p
3
. 4/3 C 5
p
. 1/3 C 5 D
p
9
p
4 D 1:
p
3x 2
Observe que el integrando p
es una función continua en Œ 1; 3 4.
3
2 x C5
4. Por último del ejemplo 3.8.2 (3.) concluimos que
Z
0
1
p
x2
Observe que f .x/ D
3x C 2.2x
p
x2
2
3/ dx D .x 2
3
2
D .12
3
2 3
D 02
3
3x C
3
2/ 2
31C
1
D
0
2 2
.0
3
p
4 2
:
3
3
2/ 2
2 3
22 D
3
3
3 0 C 2/ 2 D
3/ es una función continua en Œ0; 1.
3x C 2.2x
3.8.2
Propiedades básicas de la integral indefinida
Z
La integral indefinida f .x/ dx comparte con su derivada f .x/ algunas propiedades importantes, que
enumeramos a continuación:
1. Aditividad. Si las integrales
Z
Z
f .x/ dx &
Z
g.x/ dx se conocen, entonces:
.f .x/ ˙ g.x// dx D
Z
f .x/ dx ˙
Z
g.x/ dx:
(3.1)
Esta propiedad desde luego se puede extender a cualquier suma finita de funciones.
2. Homogeneidad. Si k es cualquier constante, entonces:
Z
Z
kf .x/ dx D k f .x/ dx:
(3.2)
3. Integral indefinida de funciones potencia. Para cualquier exponente r ¤ 1:
Z
x r dx D
Ejemplo 3.8.4 Calcular las siguientes integrales indefinidas:
Z 1
4
2
1.
5x
3x C p
dx.
2 x
2.
4
Z
3x 5
7x 3
x2
dx.
x r C1
C C:
r C1
(3.3)
3.8 La antiderivada y la integral indefinida
3.
Z
1
5
1
.2x C 3x 2 /x 3 dx.
H Las tres primeras integrales se calculan aplicando las propiedades 1., 2., 3. de la integral indefinida y
algunas operaciones algebraicas. Es importante recalcar que, en la medida de lo posible, ante problemas
como estos resulta conveniente simplificar (algebraicamente) las funciones antes de integrar.
Z Z
Z
Z
1
1
1
1.
4
2
5x
3x C p
dx D 5 x 4 dx 3 x 2 dx C
x 2 dx D
2 x
2
1
x3
1 x2
C
CC D
3
2
1
2
p
5
3
Dx
x C x C C:
Z
Z 5
Z 3
2.
3x 5 7x 3
x
x
dx D 3
dx 7
dx D
x2
x2
x2
Z
Z
x2
x4
D 3 x 3 dx 7 x dx D 3
7
C C:
4
2
Z
Z
1
1
1
1
1
3.
.2x C 3x 2 /x 3 dx D .2x x 3 C 3x 2 x 3 / dx D
Z
Z 4
Z 5
4
1 1
D .2x 3 C 3x 2 C 3 / dx D 2 x 3 dx C 3 x 6 dx D
D5
x5
5
7
3
5
x3
x6
6 7
18 5
D2
C3
C C D x 3 C x 6 C C:
7
5
7
5
3
6
Z
En sı́ntesis, hemos visto en esta sección que la integral indefinida f .x/ dx es una notación adecuada para
representar a la familia de todas las antiderivadas de f .x/, que difieren entre sı́ por una constante aditiva,
y que toda fórmula de derivación se puede convertir en una fórmula de integral indefinida, junto con sus
propiedades elementales.
Ejercicios 1.8.1 La integral indefinida 1. Soluciones en la página 11
Calcular las siguientes integrales indefinidas:
Z
1. .3x 2 4x C 5/ dx ;
7.
Z
.2x 3 C 5/2 dx ;
8.
Z
dx ;
Z 2.
Z
.3x
3.
Z
.3x 2
4x C 5/.2x 3 / dx ;
9.
4.
Z
.3x 2
p
4x C 5/.6 x/ dx ;
10.
.2x 3 C 5/2 .2x 2 / dx ;
5.
Z
p
.3 x
Z
11.
Z
.3x 2
6.
Z
12.
Z 2
p
3 x
4x
4
C 5/ dx ;
p
p
3
4 x 3 C 5/.4 x 2 / dx ;
p
4 x3 C 5
p
dx ;
3
4 x2
1
1
1
x2
3
dx ;
2/6x dx ;
1
x
3
x
2
dx .
Calcular las siguientes integrales definidas:
5
6
Cálculo integral
1.
Z
2.
Z
1
.3x 2
4x C 5/.2x 3 / dx ;
.3x 2
p
4x C 5/.6 x/ dx ;
1
1
0
3.
Z
4
3x 2
1
1.8.3
Z
1
4.
8
5.
Z
p
.3 x
0
p
3 x
1
4x C 5
p
dx ;
6 x
p
p
3
4 x 3 C 5/.4 x 2/ dx ;
p
4 x3 C 5
p
dx .
3
4 x2
Integrales de funciones trascendentes
Las derivadas de funciones trascendentes nos permiten calcular otro tipo de integrales.
1. Logaritmo natural: sabemos que ln j x j es una función definida para x ¤ 0 continua y con derivada
d
1
ln j x j D ;
dx
x
por lo que
Z
1
dx D ln j x j C C:
x
Ejemplo 1.8.5 Calcule las siguientes integrales:
a.
Z
b.
Z
10
2
T
1
1
dx.
x
1
dx.
x
c.
Z
d.
Z
2
3
1
1
1
dx.
x
1
dx.
x
H
10
1
10
a.
dx D ln x D ln 10 ln 2 D ln
D ln 5.
x
2
2
2
T
Z T
1
b.
dx D ln x D ln T ln
1 D ln T .
1 x
1
3 !
Z 2
Z 3
1
1
c.
dx D
dx D
ln x D .ln 3 ln 2/ D ln 2
3 x
2 x
2
Z
10
ln 3.
y
yD
3
1
x
2
x
2
3
Otra forma de calcular esta integral es
Z
6
2
3
1
dx D ln j x j x
2
3
D ln j 2 j
ln j 3 j D ln 2
ln 3:
3.8 La antiderivada y la integral indefinida
d.
Z
1
7
1
1
dx D No existe, pues no es continua en Œ 1; 1.
x
x
1
2. Exponencial natural: la función e x es la única que goza de la propiedad de ser su propia derivada,
d x
e D ex :
dx
por consiguiente su integral indefinida es
Z
e x D e x C C:
Además e x es continua y diferenciable para todo x, por lo que esta fórmula de integración se aplica
sin restricciones. Por la regla de la Cadena para cualquier constante a se tiene
d e ax
d ax
e D a e ax ; o
D e ax I
dx
dx a
por lo que
Z
e ax dx D
e ax
C C:
a
Ejemplo 1.8.6 Calcule las integrales
a.
Z
5
e x dx.
c.
1
b.
Z
10
Z
5
Z
4
e
3x
dx.
2
3e 2x dx.
0
H
a.
1
b.
Z
5
e x dx D e x D e 5
1
10
3e
2x
0
c.
Z
e 1.
4
e
2
3x
20
e0
3
e 2x 10
e
dx D 3 D3
D .e 20 1/.
2 0
2
2
2
3x 4
12
6
e
e
1
De
dx D
D .e 6 e 12 /.
3
3
3
3
2
3. Logaritmos y exponenciales de otras bases: si a > 0 & a ¤ 1, tenemos las fórmulas de derivación
d
1
.loga x/ D
I
dx
x ln a
de las cuales resultan las integrales indefinidas:
Z
1
dx D loga x C C I
x ln a
d x
.a / D ax ln aI
dx
Z
ax ln a dx D ax C C:
Ejemplo 1.8.7 Calcule las integrales
7
8
Cálculo integral
a.
Z
7
Z
7
2
1
dx.
x ln 3
b.
Z
4
2x ln 2 dx.
1
H
a.
2
b.
Z
4
1
1
dx D log3 x
x ln 3
4
x
x 2 ln 2 dx D 2 7
D log3 7
log3 2.
2
1
D 24
2
1
31
1
D
.
2
2
D 16
4. Funciones trigonométricas: estas funciones son continuas y diferenciables en sus respectivos dominios, con derivadas:
d
sen x D cos x
dx
d
cos x D
dx
sen x
d
tan x D sec2 x
dx
d
cot x D
dx
csc 2 x
d
sec x D sec x tan x
dx
d
csc x D
dx
csc x cot x
Convirtiendo esas derivadas en integrales indefinidas, obtenemos:
Z
Z
Z
cos x dx D sen x C C
Z
sen x dx D
cos x C C
sec 2 x dx D tan x C C
Z
csc2 x dx D
cot x C C
sec x tan x dx D sec x C C
Z
csc x cot x dx D
csc x C C
Al calcular integrales definidas de funciones trigonométricas se debe tener buen cuidado de hacerlo
sobre intervalos en donde la función del integrando sea continua.
Ejemplo 1.8.8 Evaluar las integrales
Z a.
cos x dx.
b.
Z
c.
Z
a.
Z
2
4
3 sec2 x dx.
0
2
2
csc x cot x dx: en x D 0.
H
8
2
cos x dx D sen x D sen 2
sen
D0
2
. 1/ D 1.
3.8 La antiderivada y la integral indefinida
b.
Z
4
0
c.
Z
9
4
3 sec x dx D 3 tan x D 3 tan 4
2
0
2
2
3 tan.0/ D 3.
csc x cot x dx no existe, pues csc x cot x tiene una discontinuidad 1 en x D 0.
5. Funciones trigonométricas inversas: su dominio, rango (imagen) y derivada son
Función
Dominio
Rango
Derivada
arcsen x
Œ 1; 1
h i
;
2 2
d
1
arcsen x D p
dx
1 x2
arccos x
Œ 1; 1
Œ0; 
1
d
arccos x D p
dx
1 x2
arctan x
Œ 1; 1
h i
;
2 2
d
1
arctan x D
dx
1 C x2
arccot x
Œ 1; 1
Œ0; 
1
d
arccot x D
dx
1 C x2
arcsec x
. 1; 1 [ Œ1; 1/
h
i
[
;
2
2
d
1
p
arcsec x D
dx
jxj x 2
1
arccsc x
. 1; 1 [ Œ1; 1/
h i
; 0 [ 0;
2
2
d
1
p
arccsc x D
dx
jxj x 2
1
0;
Las funciones que más se emplean son las que tienen derivada positiva, por lo que solo incluimos las
integrales indefinidas de ellas:
Z
Z
dx
p
D arcsen x C C I
1 x2
Z
dx
D arctan x C C I
2
x C1
dx
p
jxj x 2
1
D arcsec x C C:
Observación: la primera integral solo puede hacerse sobre intervalos contenidos en Œ 1; 1 y la última
sobre intervalos dentro de . 1; 1 o bien Œ1; 1/:
Ejercicios 1.8.2 La integral indefinida 2. Soluciones en la página 11
Calcular las siguientes integrales indefinidas:
9
10
Cálculo integral
1.
2.
3.
4.
3x 2
Z
Z
4x C 5
dx ;
2x 3
.3 sen Z
4 cos C 5sec2 / d ;
.3 tan 4 sec C 5/ cos d ;
2 cot 5 csc sen Z
4 sen d ;
5 tan 5.
Z
6.
Z 7.
Z Z
1
Z
e
p
6 sec cos 3
10e
2
u2
1
u
3 cos p
u u2
4
1 C u2
8
u
1
d ;
du ;
du .
Calcular las siguientes integrales definidas:
1.
4
Z
.3 sen 4 cos C 5sec2 / d ;
5.
.3 tan 4 sec C 5/ cos d ;
6.
0
2.
3.
4.
3
Z
6
Z 3
5 csc sen 4 sen 5 tan 6 sec cos 3 cos 6
Z
0
10
2 cot 4
d ;
d ;
0
2e
3x 2
1
u
3
1 C u2
p
1
2x C 4
dx ;
x
p
2 x2 1
p
7.
dx ;
x x2 1
1
Z 1
t2 C 3
t
2e
8.
dt .
t2 C 1
0
Z
p
2
3
4
u2
du ;
3.8 La antiderivada y la integral indefinida
11
Ejercicios 1.8.1 La integral indefinida 1. Preguntas, página 5
Calcular las siguientes integrales indefinidas:
1. x 3
2.
3.
4.
5.
6.
2x 2 C 5x C C .
4
3x 1 C x 2 C 5x C C .
3
5 4 8 5
x
x C x6 C C .
2
5
48 5
36 7
x 2 C x 2 C C.
20x 3=2
5
7
5
72 13 96 19
12x 3 C x 6
x 6 C C.
13
19
15 1
9 5
6 11
x3 C x6
x 6 C C.
4
10
11
4 7
x C C.
7
54 5 27 7
8x C 12x 3
x C x C C.
5
7
1
1
3
C C x C C.
5x 5 x 3
x
50 3 20 6 8 9
x C x C x C C.
3
3
9
9
6x 2 C x 4 C C .
2
1
1
3
1
C 2
C C.
4x 4 x 3
2x
x
7. 25x C 5x 4 C
8.
9.
10.
11.
12.
Evaluar las siguientes integrales definidas:
1.
16
.
5
2.
544
.
35
214
.
45
3 084
4.
.
247
5. 16:1978.
3.
Ejercicios 1.8.2 La integral indefinida 2. Preguntas, página 9
Calcular las siguientes integrales indefinidas:
3
2
5
ln x C
C C.
2
x 4x 2
2. 3 cos 4 sen C 5 tan C C .
3. 4 3 cos C 5 sen C C .
4. 4 C 5 cot 2 csc C C .
1.
5.
3 C 5 sec 6. 3 arcsen u
6 tan C C .
2 arcsec u C C .
7.
4 arctan u C 10eu
1. 3:0503.
5.
5:2028.
2. 0:8338.
6. 10:147.
3.
6:1773.
7. 1:6631.
4.
6:2851.
8. 0:86577.
8 ln u C C .
Evaluar las siguientes integrales definidas:
11
Descargar