Cambios en la eficiencia fotoquímica primaria del PS II en

Anuncio
!! " #
$
%&' () " "
!* ! + ! " #$
% & ' ( % '
! ,-./ !01
"% 2 3445
"
#!! 6#! &
0
"! &
2
/!" &
4
7& 8 &
B
889 3& :: &
D
F
3&7& ; + 2< ) !! + "" 00
3&3& !" + ! !! 02
3&5& ;! " ! "< " " </ "
! * 03
3&=& 8 " ">< " ! " #
0D
3&?& ( ! " " / @2/A + < !" " " > 0F
3&B& 11
3&C& :)% /! 11
3&D& :)% 12
5& 8 9 8::
&
14
5&7& " " ! 14
5&3& " " < ! 14
5&5& ! 2! 15
5&=& 8"< " ! " ! 15
5&?& !< " " 2"! 1F
5&B& !< " ! + !" 1F
5&C& >!< " / + !< " > 2N
5&D& . > ! 22
=& :
& &
=&7& #!1! " ! " #
2B
2B
=&3& " 2"! 2D
=&5& #/ ! 2F
=&=& " > 33
?& : &
42
((:E; &
4F
#!! 6#!
#!! 6#!
Sra. Susan Hess - Instituto De Química - Facultad De Ciencias
)*+ ,-($. / 0
!! " #
$2 ! %&' ()
" " !* ! + 1
)*+ ,-($. / "!
"!
A mis Padres, hermanos, hijo y familia.
)*+ ,-($. / 2
!! " #
$2 ! %&' ()
" " !* ! + 3
)*+ ,-($. / /!"
/!"
En forma muy especial quiero agradecer a mi profesora patrocinante Dra. Miren Alberdi Lag,
quien me permitió desarrollar este trabajo en el laboratorio que ella dirige y de quien siempre
recibí constante ayuda tanto teórica como práctica. Quien con su constante apoyo y dedicación
contribuyó al desarrollo de esta tesis como también a la formación de un potencial hombre de
ciencia. A las profesoras integrantes de mi comisión de tesis Dra. Susan Hess F. que con sus
consejos y enseñanzas aportó a este trabajo y con ello permitió que éste llegara a buen término y
Dra. Ilona Concha Grabinger por aceptar formar parte de esta comisión.
A Nancy Ulloa (Magíster en Ciencias, mención Botánica), quien formaba parte del grupo de
trabajo y de quien aprendí mucho, con respecto a la forma de trabajar en el laboratorio y abordar
los diferentes problemas.
También merecen un reconocimiento importante, los profesores Magdalena Romero del
Instituto de Botánica, Juan Carlos Paredes y Joel Pardo del Instituto de Química de esta
Universidad, de quienes recibí tanto críticas constructivas como voces de apoyo.
Este trabajo fue realizado en el laboratorio de Ecofisiología Vegetal del Instituto de
Botánica e Instituto de Química de la Universidad Austral de Chile y fue financiado por los
proyectos: DID-UACH S-20002-88 y FONDECYT No 1000610.
)*+ ,-($. / 4
!! " #
$2 ! %&' ()
" " !* ! + 5
)*+ ,-($. / 7& 8
7& 8
+ 6
7 +. 8 6 . 6 9
6
: ';. *
< -
#(
". $ ;$ 9 $= :. ! 8 9':. $= $ && 9!&&: 9#: 9>#: . 8 6.
;(
; 8 3?. !&& ;
(6 9;@: ; 9A!&&: !&& # >#. ;. '.
;7
( ># ' . <$8 # $
' < 9>: ; 9/:. < 9:.
-6. ; %6
8 ;6. < 8. ( 8 ; 6 8 $
#
(. 8 )*+ ,-($. / B
!! " #
$2 ! %&' ()
" " !* ! + ;$ ; + <$ -
. -8 $;;
;$ $ (
889
< $ < C< 6
< << < <; < < < < 6 $$
$ . $ < < C< <
6<< 96
: < << < 9': < << < && 9!&&: 9#: %
9>#: ';. C< < 6<< . C
< 6 9;@: ; 9A!&&: << < !&&
<
9#: %
9>#: C<
6
< < ; # < << < $<
C . $ < < ># < # <
<<$ ># < #
$=
< << '. <C
<< << < 9>: ; 9/:. C
<< < 9:. << -6< ; %6
;6<. < -6<
< $ < <; <
; < 6<< C< << < ; $
C< # ; $ ;$ ;
< <$
<< < < < <. < - < << # ;
D
)*+ ,-($. / 3& ::
3& ::
-. . ;
! $. 6 -. 9<$8: ; 8 6
; 7 9
E ,<. 0FF3:. ( <$ 8 G
1
9H. 0FDD: <$8 <$8 = 6
8 7
9C. 0FD3I " E !$J. 0FD5I H. 0FDDI K E ,. 0FF0I ,$ E
LJ. 0FF1I . 0FF3I . 0FF3I #
&&& . 0FF4I , .
0FF5: <$8 8 ( $ G G . 1
1
9< :. 8 8 .
$= 68 - 6; 9' E =MJ. 0FDBI ' .
0FDBI H. 0FDDI K. 0FDDI ! E H. 0FDF. 0FFNI . 0FF3I
. 0FF3: <$ $ ;8
. 8 8 && 9!&&:. 9H. 0FDD:
. = . 8 !&&. 8 = !&& %$
. ( ( 2N 9$. 0FFDI
)*+ ,-($. / F
!! " #
$2 ! %&' ()
" " !* ! + O. 1NN0: ' . '0 '1 21 J'. - 6 8 . . 5DN. 9<:. ) 9 ;
6 '0: # 9P : 9P : 9 0: =
#
8 6; - ;$. '0 ; $ +. <$ && 9O. 1NN0: +
0
8 8 6 9 G :.
1
Q
Q
6
; 5DN ) . 9' /; . 0FF1: $ 8 P
9>J= . 0FF5: $7 ; 7
. $
6
8 (
'0 ; 9O. 1NN0: 8 8 '0 9 8 8 !&&:. < <$8 9H. 0FDD:
#
( 6 -. 7 $ $= 8. . 8 <$8 * - 9< E >. 0FDFI
! E H. 0FDF. 0FFN$I . 0FF0I . 0FF4I '< .
0FF4I . 0FF4I . 0FF5I ,;6 E . 0FF5I " . 0FF5:
! $. . 8 $ $
<$8 7 9! E H. 0FDF.
0FFN. 0FFN$:
0N
)*+ ,-($. / 3& ::
! " #$ %! &'$ (#)% (#)* " )% )* &' +,(%%$ +,(!) +,(- ". / . 0 %%$ !) - &'$ 1
1 " 2
3
#'$ 4 " 0 5
'$ # "'$ 6 ")6' #7-8 " '$ / "9:(' .
"( .
' 3 ;;<
;;<
6 $ "<<;'= >
? 2&&$ "<<;'= >
$ "<<-'$
>
$ "!88'
3&7& ; + 2< ) !!
+ ""
8 ( $ 9
E =MJ. 0FDNI , . 0FF2: <$ $= . 8 ;
-
-(. 8 !&&. + 8 ;
8 ; 98 : 68 9' 0FDBI H.
0FDDI J. 0FF0I R E '$. 0FF2I , . 0FF2I /SJ .
0FF4: & 9!&: ; <$
9" E !$J. 0FD5I , . 0FF2I , .
0FF3:
<$8 $= < 7 *
+ < 6; ;
$= 9K. 0FDDI
K E !=M. 0FFNI ! E H. 0FFN$I . 0FF0I HJ . 0FF3I #
&&& . 0FF4$I ! . 0FF4I R-. 0FF5: $
9! E H. 0FFNI J E . 0FF1I H . 0FF4: #
< ;
< 6
<$8 + !&&. ; + 7 7 <$. (
!&& 8 8 9H. 0FDDI , .
0FF2I K . 0FF2I , . 0FF5:
68 <$8 ; 8 $. = 8 9': 8 68 - 9C. 0FD3I H. 0FDDI '%#
E #
. 0FF1: # $=
( $ -. 7
<$8 - 9C. 0FD3I " E !$J.
0FD5I ! E H. 0FDF. 0FFNI !<M E H. 0FFNI "< . 0FF2:
. + * 8 $- 9J . 0FF4:
)*+ ,-($. / 00
!! " #
$2 ! %&' ()
" " !* ! + 8 . + <$ !&& '0 21 J'. $ 9H.
0FDDI '%#
E #
. 0FF1I , . 0FF5I ><
E ". 0FF5: ; 8 < $ 8
6 ; 9C. 0FD3I H. 0FDDI ! E
H. 0FDFI !<M E H. 0FFNI L . 0FF1I "H . 0FF2I . 0FF3I )< . 0FF4I ,J E !. 0FF5I , E . 0FF5I H .
0FFBI O. 1NN0: ! $. 6 * 7 * +. < <$8 7
'0 9H. 0FDDI . 0FF3: <= <$8 8 ; 9< E /. 0FF3: $ $= . <$
7 . 8 TU #. 8 9/: 8 8 = % !&& 9H E H. 0FD0I L E >. 0FDBI
H; . 0FF3I ,
. 0FF5I -< . 0FF5:
! < . <$ $ . . ; $ 7. . 9! . 0FDF:
! H 90FDF. 0FFN: <= 9 : 6<$ <$8 9, . 0FF2I . 0FF3: # <$. 8 ;$ 9! E H. 0FDF. 0FFNI !<M E H. 0FFN:. $7 <
; 9 . 0FF0: ;. $=
. <$8 $= 9 :. . ; 9K E ,. 0FF0I , .
0FF2I K . 0FF2I , . 0FF5I !- . 0FF5:
<$8 ; = P 6
. $= #
$= 9K E ,. 0FF0I , . 0FF5I !;< . 0FFB: < 9K . 0FF2: ! $. $7 . 6<$
$= . (
. ; <$ - . $ ; <$8 ;$
> 8 ;. ; ( 6 $= . 7 8 ;
!&& $ 9, . 0FF2I '; E /<. 0FF5I
C
E !<. 0FDDI ;. 0FFB:
01
)*+ ,-($. / 3& ::
! $
8 . <
; <$ $= ; 8. (
!&& ;
9 ;7 6:. ;8 '0
8 = ( 8 9' . 0FDBI . 0FF0I '%#
E #
. 0FF1I
,$ E LJ. 0FF1I . 0FF3I . 0FF4I . 0FF4I #
. 0FF5I '%#
E #
. 0FF5I E <. 0FF5: $
$ 8 = % 8 @ . - + <$.
; . T
C%U 9, . 0FD3I !< . 0FDDI '%#
E
#
. 0FF1I ; L=J E ; ,. 0FF2I "6C . 0FF4I ,
. 0FF5I
, . 0FF5I V< E "<. 0FF5I J . 0FF5I . 0FFB: 68 . 8 < . ( -
<$ ; 7 $ 8 + 8 <$8
( ( 9 12:
3&3& !" + ! !!
# 8 . 8 8 7 <($ 6 9/. 0FDD:
8 $ 9T<U:
2
6
9 <:. ;
0
8 6 9 G : $ (
9< E =MJ. 0FFNI
1
0
#
. 0FFFI >. 0FFFI "R . 1NN0: ;
G 1
8 ; 6 9/G!: 86
F%
F
<
8 9, G :. 8 86
9G
: <
6 9,G : <
6
1 1
1
F
F
9G , : 7 ;. G, . 1
$. (
. ! $. F%
6 ; G
, G ;
1
1 1
8 + ; 8 8 9< . 1NNN:
! < -6. 6. 8 7 ; 6 - 9' . 0FDBI '%#
E #
. 0FF1I . 0FFD: 9 1 2: ; 6 9
6
:.
%6
8 8 - ;6
%6
. 86
;6 ; 86
6. )*+ ,-($. / 02
!! " #
$2 ! %&' ()
" " !* ! + 86
$. -6. $8 - 6
-8 ;8 $ 8
Q
W, X - $ 9 (
:.
$$ - 9 E O. 0FF1I
. 0FFDI > . 0FFDI >. 0FFFI "R . 1NN0I . 1NN1:
-6 T; $
U 9< : $
(
. 8 9' . 0FDB: - ( 6 6
8 9 8 - -6
6
: -6 ;6 ; 6 9 E
,<. 0FF3I . 0FFDI > . 0FFDI >. 0FFFI "R .
1NN0: 8 8 , B.4 - - 6.
6 #' %$ 9; . 0FF5I . 0FFDI "R . 1NN0:
6 ;
8 8
. $
9L
E R-. 0FF5I R-. 0FF5: 9 ; . = TU 6.
; -6 9Y
. 0FFF: " $ 8 9 14:
3&5& ;! " ! "< " " </ " !
*
$$
7 . 8 8 9
6
: %D
$ 8 9Z0N :. < . . $ 68 - 9HJ E ,<. 0F20: $ $ = % ( $$
$ . 68 7
8 && 95DN: & 9BNN: ;8 7 8 03
)*+ ,-($. / 3& ::
@ .A (
4
B $ "<<*'
)*+ ,-($. / 04
!! " #
$2 ! %&' ()
" " !* ! + @ .A 0 CD $ $ 0 B $ "<<-' @0 D0 0 : $ 0 0 ./ : # $ ;$ 9;: 6;
!&&. $ = !&&
9H E L 0FF0: %0F5? 9BB[H: $; !&& 96 \ 5FN : !& 96 \ B2N
: 9;
=. 1NN1: #
(. ; $8 $7 !&
. !&&
!& ; 8 9=MJ E
'. 0FDB:
< 8 ; $ 05
)*+ ,-($. / 3& ::
7 * +
7 < $ ( (6 !&& 9A!&&: 9' E =MJ. 0FDBI H.
0FDDI < . 0FDFI #
. 0FFNI , . 0FF3I E #.
0FF4I ! . 0FF4.!. 0FFBI # . 0FF5I <$
. 0FFFI
"6C E V<. 1NNNI /-- . 1NN0: 7 $ 8 < 8 !&& 8 ; . ; HJ < $
9HJ. 0F20:. ( -
8 ( !&& 9H E L. 0FD3I H. 0FDDI ! . 0FF4I <$
. 0FFFI "6C E V<. 1NNNI /-- . 1NN0: = 8 ; ; 9 3:' HJ. <= - . 8 $7 ( !
$. <= 6
. - . (
; $= 9: . !&& 6
8 P #
. ; . - $$
8 . 7
8 P . < ; (6 9
#
(6. :. P # #
-. 7 ;. 8 G 8
1
(6 9":.
8 G ; 9&
. 0FD3:.
1
< ; 9: 9HJ E ,<. 0F20: 8 ( ( ; (6 < ;8 . 8 !&& . T<U 9: T<U 9>: * <$8 ( 8 ;$ < !&&. 8 ;$ (6. ;@ 9&
. 0FD3I
H. 0FDDIH E L. 0FD3.0FF0I K E !=MM. 0FFNI /. 0FF4I /;< . 0FF4I Y<; . 0FF5. 0FFFI <$
. 0FFFI "6C E V<.
1NNN: . ;@
8 N.D2 . N.B N.D4 9H. 0FDDI
H E L. 0FD3. 0FF0I =MJ E '. 0FDBI "6C E V<. 1NNNI /--
. 1NN0: ] ;@ < 8 8 . 8 $ ;@ 9#
. 0FFN:
)*+ ,-($. / 0B
!! " #
$2 ! %&' ()
" " !* ! + . <$8 -
$ 1N 5N < . ;. ;@ 1N^ 5N^ 9K E ,. 0FF0: . ;@ 4N^ 9
N.D N.3: $= 93[: . ; N.B <$ ;@ - 8 ;
9! E H. 0FDF: $
<$
. (
;
$ 8 . 6 ;@ 9 . 0FF0:
!&&. 6 9$$ 8 8: 8 ; 68. 9' .
0FDBI ' E #
. 0FF1: $ + $ $;
8 ;@. * 8 $ 9
. 0FF3:
8 ;
7 $ ; << 8 ; 68 9
8: !&&.
8 #. 8 8 !&&. ( FN^ 8 . 68 !& $ ; ; 68
. !&& ; 7 ;
] * < HJ E
,< 90F20: $ 8 $ 8 9H E L.
0FD3:
3&=& 8 " ">< " ! "
#
'
; 8 6 68 ;8 8 !&& 0D
)*+ ,-($. / 3& ::
; 8 9,. . 0FF5: 9 4:
'$
;8 $ 8 7
T<U 9-8 7: 9
8 : 8 $ 8 $8 ; / < 7 ; 9 4: !&&. -
- $= - ; ;7 $8 (6 ;$. 8 (
8 9 : $7 ;.
_ ;_ 9_% _: 9 -:. $8 . 7
9< : 9< >: 9!<$ .0FD5:
3&?& ( ! " "
/ @2/A + < !" " " >
# $ .
< 9R< E L<. 0FF2: 6
8 !&& P . #
8 !
$. $ = P 6
. $
#
8 $ #
. P 6
#
T
U T<U . ;
; - 8
TU 9P: ( )*+ ,-($. / 0F
!! " #
$2 ! %&' ()
" " !* ! + , E& ( / , . / , $ "F' 0
"F
' F
"4'$ A . 0
"6' 9 . .
.G A
1N
)*+ ,-($. / 3& ::
(A . F6 ":$ H I' 9 9 . ( / $ / /$ I "!88!'
( 9$: ( 1D 1F
> ; . T<U 7 9:. $ > ( 8 . ;-
= 8. > , -6. < 6 - 9 E =MJ. 0FFNI "R . 1NNN0I . 1NN1: -6 * ! 8 90:
6
. -6. 6
$
7 9/$ . 0FF2: 91: 8 $
. . ; 8 = - $ - $ .
-. $
$
6
8 . 6 $ 9,;6. 0FFDI ,;6 E >. 0FFF: -6 ( 9< E H.
)*+ ,-($. / 10
!! " #
$2 ! %&' ()
" " !* ! + 0FF3I < . 0FFD:
(. 9H<: . *
; < -
#(
9#$
. 1NN1:
2N 3N^ 7 (6 N[. 8 02 0F[. ; 9
C
E !<.
0FDD: +. 9$:. ;. N %4[ $ $= . $7 $ . <$8 9C. 0FD3I " E !$J. 0FD5I !<M E
H. 0FFNI "< . 0FF2:
8 6<$
; = $ $
9 E =MJ. 0FDNI !J E <. 0FDBI <. 0FF4: 8 $= $ ;
<
-
; - 8 #( 9
C
E
!<.0FDDI ` . 0FFF: " $$( #$
91NN1:
. ( .
; $ !&&. + <$ .
( $ 8 6 #
. 8
; $ ( 3&B& ( 9 $= :
$= - ; (. $ . <8 $ 9 <$: !&&. * * ( $= = 8 . . -6. = 8 $= . ; + <$ 3&C& :)% /!
11
)*+ ,-($. / 3& ::
$ !&& . ( . ;$ $ $ 8 9
:. 3&D& :)% ( ; . ;$. ( $=; : ;
$ 6 ; ( !&&
$: $ $ <
: ' 8 9 . .:
: ' $ 6 9-6. 6. ;6:
)*+ ,-($. / 12
!! " #
$2 ! %&' ()
" " !* ! + 13
)*+ ,-($. / 5& 8 9 8::
5& 8 9 8::
5&7& " " !
! $=8 & /$ 9#(
": ;
$ Y & ( ];
# < ; -8 ( ( 9! !: 02a0.4[ 98 7 !<. 0FF3:. 54%BN^ <
;. 10@2 < -@
= 8 9': 6
0DN b
%0
%1 8 ( - 9%C< :.
9!;@. '; "#. ]!#:. ' 8 9%
&%0DF: ; - ( $
92 0 @: DN^ c
. . 8 ; 9< :
5&3& " " < !
)*+ ,-($. / 14
!! " #
$2 ! %&' ()
" " !* ! + ] 934: 02a0.4[ ( . 3a0.4[ 10 9 \ #:. 8 02a0.4[ 9 \ >#: ( ( '7 10
$ ( <$ ; . ( . <
. ( ; 5&5& ! 2!
$ <$ $= $
. ># # 9 5:. ; ( 3a0.4[ = 8 9'I 1NN. 5NN %1 %0
0NNN b : 9N. 5. 01. 0D 13 < 8:. (. '. 02a0.4[
8 ( . . <
. -8 7 -
- ( ; 8 $
$ 8 . ; 8 .
;
$ $= -( 7
= 8 9':. - 5&=& 8"< " ! " !
8 !&&. 8 -
T " !U 9"! 0.
,< & . / ]
: ( 7 8 9 4: 6 (
. <= $ .
. ; . - 9; $ $ 8;. $ $ 8 6
0N :. 2N . 9P : #
15
)*+ ,-($. / 5& 8 9 8::
6
9$: . 8 $ - $- $ 8. -8 ( -. -
6
- 7$ 9ZN.0
%1 %0
b : ;8 . <= . 8 !&& 7 9P : (
#
6
"
8 - %1 %0
9FNNN b : N.B $ (6 9:. !&& (6 ;$ 9;: < ; . ( ;@ ( 8. (6 !&&. $ 7 . <= - %1 %0
- 6
0DN b 9<= -
: ; (6 < 8 $ T
U 9: . ; - %1 %0
9FNNN b :. $ (6 <= - 9_: . - = = 2 $ <= - 9_:
- $ ( ; !&& 9A!&&:. T<U 9:.
T<U 9>: ; 9/:
)*+ ,-($. / 1B
!! " #
$2 ! %&' ()
" " !* ! + 2 . "' $ H.
"2 6
'$ , $ "
' 7;D*8J $ !G% G$
D! D
K-8 L
# )M$;N($ ! %M$;N( 2
. . 9 $ / $ . + ( ( ( 8
C "! 0.N4 9,<. / ]
: 8
9!<$ . 0FD5:
\ \ (6 ; \ ;$ \ d ;@ \ (6 . !&& ;
&
( (6 !&&. $ !&& $ 96
:
_ \ (6 ;_ \ ;$ ; $= 8 \ _ d _
\ 1D
)*+ ,-($. / 5& 8 9 8::
_ \ <= -
;_@_ \ ; !&&. !+ 68. $ !&&
A!&& \ ( ; !&& ; .
90FDF: 8
( 8 $ ( !&&
\ T<U T<U \
> \ T<U T<U \
/ \ ; \
5&?& !< " " 2"!
<
8 7
;7.
$7
9: 9!: .
!$ 91NN1: $8 . ;. ; . 8 0N 0N4[ 9
; -:. DN[ < 8 =
. 6
= 5&B& !< " ! + !" 6 . . 9< .: 9: -8 )*+ ,-($. / 1F
!! " #
$2 ! %&' ()
" " !* ! + << L$ 90FD2: ! <-8 N.04 1N . $ < 6 9 #'Y#> "! >?0: 1N ! $=8 $ ; 8 - 8
$$ 6 -8 8
9"J !%D4N: 555. 542 3BN . -
$
( - 8
5&C& >!< " / + !< "
>
7 9
6
: 6
$+ < N.04 =
9 +
: 7 <$ 6 - (
(
$ 7 $8 . ; 8
6
; (
8 -( <= 9C E /. 0FD4: =
6
. 7 8 %2N[
=
$
.
7 6
; 2 0NN^ ,. ;
( $ 68 2 . $
;8 . 8 =
8 8 6
'$
8. $ 6. -. . (
(. 6
;
7 ; -8 $+ <. $= - = = ; > . - 6
8 -8
1
9C E /. 0FD4: $
$
6 8 ($ 1.N 4NNN 6 2 $8 6 ( $ 2N
)*+ ,-($. / 5& 8 9 8::
-8 8 . ;8 8 6 0NN^ . ; $ . F 7 8 F 3N^ . . 86
. 7 6 . 7 8 6 < 9C E /. 0FD4: 8. 8 8 6 -8 7 8 . , ; < 8 6 . 9e01 :
; ($ 9 ; -8 % - 8 ]Y:. - - . %2N[. 8 9 $$=
> ;7 $ : - 6
1
8 * 5&C&7& !< + "!< " / " " > !
* " !/! " " !< @#A
< -
, , ; ,% ; 9 *: -
9. . : =
8; . 7 .
; ; ' . 9<
$ :
. 6
96: (
9J. 0FF1: ,% ; -
9
: 7 9%
; $ D
0D
:. = 8; 8; ' ,% ;. 6 ( ; 8; . . 79J. 0FF1: #$. ,% ,% ;. ; 98 (:. 8 - ; 8 . 8
$ ; 98 :. - (
; ; . ;
8 ; . ;
( * 8 9G'! : - 0D
0D
$
;. . $
# 7
,% ; . 0D
+ 0D
. ( . 9$8 :. T
U. )*+ ,-($. / 20
!! " #
$2 ! %&' ()
" " !* ! + 7 ; 7 8 9J. 0FF1:
(
. 8 8 9-6. 6 ;6:. -
, 9,C J
00NN #: ; <6 4 f 914N 6 3.5N . + 4 b: ;
0D
4 f 8 0D
; 4N b 96 : ; 9 8 #'Y#> "! N.1 b:. 8
. %0
= 1.4 . $$ ( .
$ 8 335 -
]Y%;$ $8 (
9 B:. 8
]Y%;$ $ <- 9]>&#" ]Y4NN: 8 .
$ 8 8 6 ( -8 +
$ (
$$(. . 33N%35N ] 8 . 8. 8 . 8 ; %%$ , N.0 " , D.N
9B1 D 2: % 95D 21: 9< E =MJ. 0FFNI # . 0FFNI
E O. 0FF0I ,J . 1NNNI . . 1NN0:
- ; %%$ , N.0 " , D.N. ( N 5 . 0N 0NN^ - ; % 3 ( *
- ; 8 %$
.
- ;. 4 . - ; % 5&C&3& "< " !" " " >
8 6 -8 8 8 $
6 (
-6. 6 ;6 9',& L E
;. ,g<. ': 0NN^ 68 143
%0 %0
%0 %0
34N . -6. 124 335 . 6 %0 %0
144 332 . ;6 (
$
$= 6 . = 9 D:
5&C&5& < " !" " " >
-8 ; $8 (
-6
%0
%0
N.NF. N.0D. N.1B. N.25 N.34 I 6 N.NF. N.0F. N.1D. N.2B N.3B I
%0
;6 N.11. N.33. N.55. N.DD 0.0N 9 F: $; 21
)*+ ,-($. / 5& 8 9 8::
, . "0 ' / "2' 0 "0$ 0
0' "3'$ $ 0 :#9(
'
# ( 8
5&D& . > !
+ 6 -
-. -
934 : ># # . ! - 6 7 )*+ ,-($. / 22
!! " #
$2 ! %&' ()
" " !* ! + $
- ( ! ! 2.N ; - ( ;- 9#>GY#: . . = 8
J $ ; (
0 0 :#9( ":O #& 88 2' $ #
0 9 ; P ( "!;8 0 )$78 $ Q ; L
' D
( ; P$ ;8 L9 / !$; 9 $ .
. $ ))7 I@D.$ .$ (: +:R (: (BR . 4D:( 8$ 6 : -$8
%
%
(: +:R (: (++( : 4
R @0 "$- '$ 20
%
%
! ;
"%$% '$ 50 ")$% '
23
)*+ ,-($. / 5& 8 9 8::
( . 0$ 0
0$ :#9( $ Q A
)*+ ,-($. / 24
!! " #
$2 ! %&' ()
" " !* ! + 25
)*+ ,-($. / =& :
=& :
=&7& #!1! " ! " #
!; 6. ; 9ZN.N4: ; 9:. (6 9: ;$ 9;: ># # 9
0N: ># %1 %0
6. 8 1NN 5NN b . 13 < %1 %0
%1 %0
0NNN 5NN b # 1NN 5NN b . 8
; 9ZN.N4: . # . ;8 $
. -8 ; 01 13 < ; #. %1 %0
%1 %0
1NN b 0NNN b $ ; ; ( # >#
(6 9;@: 9 00: 8 ; ># # 9hN.N4: ; $ N.D2%N.B0 ># N.D2%N.B4 # # ># ;@ )*+ ,-($. / 2B
!! " #
$2 ! %&' ()
" " !* ! + . 8 . ( . ;. >#
#
9:. % 8
!&& %. ># ' . -(
7 7. ; 9
00: ; ; ; # ># 9N 5 <: . - -
9ZN.N4:. 01 <. ; 9hN.N4: # '. 8
; ;@ 9 \ %N.DFI ZN.N4:
9>:. % 8 %. 8 ; $ (
# . 8 ># 9 00: (
; !&& 9A!&&:. ( $ ( $= # ># 9 01: $ A!&& $; ' -
# >#. A!&& 8
; ;@. ' ;
; 9/: ( # . 8 ># ; - 9 01:. $ =&3& " 2"!
%1 %0
<
># 1NN b . 8 8 ; 9ZN.N4:. ; $
5 01 <
9; ( : N < 9$ 0: # ' %1 %0
0NNN b . <
0D 01 <
;. ; 9ZN.N4: <
$
# '.
<
# . <$7
; 1NN
%1 %0
%1 %0
5NN b . 01 < 1NN 0NNN b 01
< <
# ># 9ZN.N4: 5.
%1 %0
01 13 <. 8 1NN b I 5 < %1 %0
%1 %0
5NN b I 5. 01. 0D 13 < 0NNN b - 9$ 0:
2D
)*+ ,-($. / =& :
=&5& #/ !
< # ' . < . ; 9ZN.N4: 8 0D < N. 01 13 < %1 %0
90NNN b : ># 6
< 9N 01 <: %1 %0
1NN b < . <$ ; 9ZN.N4: 01 < . 13
%1 %0
< 1NN 5NN b ; 9$ 1: > <$
; < ># # %1 %0
'. 68 1NN b 5%01 <. %1 %0
5NN b 13 < 9ZN.N4: 9$ 1:
># . . ; 9hN.N4: - . ; 01 < %1 %0
1NN b 9 02:
)*+ ,-($. / 2F
!! " #
$2 ! %&' ()
" " !* ! + ! #
# "F$ F
F' $ ! %M$;S( ""' )M$;S( "' D! D
K-8 L
D! D
A " / !88$ 788 888 L
'
3N
)*+ ,-($. / =& :
#
# "FGF
$ # B#' ""' "' A / !88$ 788 888 L
D! D
)*+ ,-($. / 30
!! " #
$2 ! %&' ()
" " !* ! + #
# "T#$ ,4H' ""' "' A / !88$ 788 888 L
D! D
( 7& " 2"! @GA " # " @A + " @A !& ! +- " " "! " /% @#H4I4?A ! "" " !I J ! - "! .
"! " /% ! " ! "" " 0&
@KA L ! " /% ! + "!" ""
& %! !" " " > ! "%" ! !* " M !!!
" 1"!&
31
)*+ ,-($. / =& :
"" " 0
63 67
@N A
@2A
1NN
N
5
01
0D
13
N
5
01
0D
13
N
5
01
0D
13
5NN
0NNN
" 2"!
@GA
>#
5F.D2aN.F2 B2.4NaN.4N $j
B2.10aN.5N #$j
B0.4NaN.4N #$
BN.4NaN.4N $j
5F.D2aN.F2 BN.4NaN.4N j
5D.B4aN.NN 5F.NNa1.NN BN.B0aN.B0 5F.D2aN.F2 B1.NNaN.NN $j
B3.NNaN.NN #$j
B3.4NaN.4N j
BN.4NaN.4N j
#
5D.F3a0.05 BN.NNa0.NN B0.NNaN.NN #
BN.4Na0.4N 5D.0DaN.54 5D.F3a0.05 5B.NNaN.NN 5B.4NaN.4N 5D.4NaN.4N 5D.4NaN.4N 5D.F3a0.05 $
5F.4NaN.4N $
5B.NNaN.NN B0.4NaN.4N 55.1Da0.05 # . 0NNN b
%1
%0. ; 9hN.N4: 01. 0D 13 <
;. ;
; ( $= 9 02:
' ; 9ZN.N4: ># #. $;
5 01 < - %1 %0
%1 %0
5NN b . 13 < <$ 5NN b $;. # ># ( = 8 -
< @< . 8 ;
9hN.N4: >#. 9$ 2: #
-8 ; ; 9ZN.N4: 5
%1 %0
0D <I 5 13 < 5NN b < @< . 8
8 $ ; 9ZN.N4: %1 %0
9# >#: 13 < 1NN b 01 < %1 %0
<$ (6 0NNN b 9$
2:
8 9< Q< .:@ ># ; 9ZN.N4: #. ' -
. 6(
0D < 0NNN
%1 %0
b 9$ 2: ># . ; . 68 -
<$
5 13 < 9ZN.N4: $. # %1 %0
; 1NN b N 01 01 13 < # N. 01 0D < )*+ ,-($. / 32
!! " #
$2 ! %&' ()
" " !* ! + (6 ; 9ZN.N4: $; 9N 5: $7 ;
$
01 13 < 0D <
=&=& " >
%1 %0
># - 95NN b :. ; -6 8. . 5 < 13 <. %1 %0
90NNN b :. $-8 %1 %0
01 < 8 9 03: # 1NN b 01 < 8 8 ; -6. . ,$ ;
9ZN.N4: -6 $
13 01 <. %1 %0
. ' 0NNN 5NN b ' <$. ;6 >#. . ;
. * < # ; ( -6 ># 9 03:
# ; -6. . $; # . 5 < 7. ; ( . 7
< 01 <.
< 13 < 9ZN.N4:. $;
$7 8 ;
9ZN.N4: -6 < 90D %1 %0
13 <: 1NN b . 8 ( 3& !< " ! @2 A + ! $ @2 $A ! " @A +
" @A ! " # & ! - "! . "!
" /% ! " ! "" " 0& @KA L
! " /% ! + "!" ""
& %! !" " " > ! "%" ! !* " M !!!
" 1"!&
33
)*+ ,-($. / =& :
"" " 0 63 67
@N A @2A
1NN
5NN
0NNN
N
5
01
0D
13
N
5
01
0D
13
N
5
01
0D
13
2 67
@/ / #
A
4.DNaN.D5 B.D5a0.01 $j
D.BNaN.03 $j
5.F4aN.4B $
B.35aN.0F $
4.DNaN.D5 4.FFaN.B4 4.F3aN.FB B.0Da0.03 D.20aN.00 j
4.DNaN.D5 5.BFa0.BB B.B2a0.01 5.FFa0.1F B.1BaN.3D 67
@/ / #
A
4.50aN.3B 4.B3aN.32 5.53aN.23 5.01aN.23 4.FBaN.3D 4.50aN.3B 3.1DaN.01 3.DBaN.24 4.42aN.3B 4.N5aN.5B 4.50aN.3B 5.2FaN.2N 3.B3aN.13 D.FFaN.F1 3.20aN.4N )*+ ,-($. / 2 $
67
@/ / #
A
1.13aN.23 2.01aN.30 $j
2.3FaN.N5 $j
1.D2aN.15 $
1.F5aN.00 $
1.13aN.23 1.42aN.1F $
1.2BaN.31 $
1.BDaN.31 $
2.2DaN.N4 $j
1.13aN.23 1.42aN.4F 1.DBaN.2D 1.BFaN.40 1.D0aN.0D j
67
@/ / #
A
1.1BaN.03 1.3NaN.01 1.D2aN.02 1.51aN.02 1.44aN.0B 1.1BaN.03 0.F2aN.NF 0.FBaN.03 1.NBaN.0F 0.F4aN.14 1.1BaN.03 1.44aN.0B $
0.F0aN.N5 2.B2aN.23 $
0.52aN.0D 34
!! " #
$2 ! %&' ()
" " !* ! + ( . / ""' "' #F 9 0
M ( 5& < ! ! $ 2 O2 $ + !< ! !" 2
P2 $O! ! " @A + " @A ! " # & !
+- " " "! " /% @#H4I4?A ! ""
" !I J ! - "! . "!
" /% ! " ! "" " 0& @KA L
! " /% ! + "!" ""
& %! !" " " > ! "%" ! !* " M !!!
" 1"!&
35
)*+ ,-($. / =& :
"" "
0
63 67
@N A @2A
2 O2 $
1NN
1.5NaN.N0 1.41aN.N3 1.3FaN.N1 1.35aN.N1 1.41aN.ND j
1.5NaN.N0 1.25aN.0N 1.42aN.N4 1.4DaN.N2 1.35aN.N0 1.5NaN.N0 1.53aN.00 1.5DaN.N4 j
1.40aN.N1 1.4FaN.N1 1.34aN.NF 1.2FaN.ND 1.23aN.N3 1.22aN.N5 1.23aN.N3 1.34aN.NF $
1.12aN.N3 $
1.3DaN.05 $
1.5BaN.N1 1.4FaN.N4 1.34aN.NF 1.41aN.N4 1.3BaN.N4 1.30aN.N2 1.52aN.N3 3.F1aN.NB j
4.10aN.N5 j
4.0DaN.02 j
3.DDaN.03 j
3.DFaN.N3 j
3.F1aN.NB j
3.F0aN.ND j
3.D3aN.0B j
3.B3aN.N1 j
3.FFaN.N3 j
3.F1aN.NB $j
4.N1aN.N2 j
3.F3aN.N4 $j
3.DDaN.01 $
3.5NaN.N3 $j
3.32aN.NB 3.5NaN.N5 $
3.BFaN.N2 #$
3.3DaN.N2 #$
3.34aN.NB #
3.32aN.NB 3.1NaN.11 $
2.DBaN.N3 $
2.DBaN.03 $
3.N4aN.10 $
3.32aN.NB 3.2DaN.ND 2.FDaN.N4 $
4.N4aN.0B 2.D2aN.NB $
5NN
0NNN
N
5
01
0D
13
N
5
01
0D
13
N
5
01
0D
13
2 P2 $ O!
$ -6 # . . ; ; ;6 9 \ %N.5I
ZN.N4: ># 8 ; ; 9 \ N.BI ZN.N4: ; 6. . # ># 9 03:
8 6 $ 8
%1 %0
># 1NN b . 6 8 913 <:
>#. ;6 8 8 %1 %0
5 < 1NN b < 0D <. 13
%1 %0
< # 5NN b . ># ;6 9ZN.N4: 01 < < 13 < 8. $; ; 8 8 . 8 01 0D <. ; 8 13 <. 8 8 $
0D
< # ;6 $
>#. ; 8 0D < -
13 < 5NN 0NNN b
%1
%0 ' <$ - ( . $;8 8 ;6 0D <. $; ; ( . 8 913 <: 8
># # 5 13 < # . $ . +
( $.
8 ; ;6 )*+ ,-($. / 3B
!! " #
$2 ! %&' ()
" " !* ! + -6
6 . -6 Q 6 Q ;6 9)Q#QY: ># ; 9hN.N4:. <$ . 8 . %1 %0
01. 0D 13 <. 1NN 0NNN b 0D 13 < 5NN
%1 %0
b 9$ 3: # %1 %0
; 9ZN.N4: 1NN b 13 < # . 6
# ; 0D <. ;
%1 %0
$ < 13 < # 0NNN b . $;8 01 <. ;
8 $ 0D 13 9$ 3:
' ; 6 ># # 8 N ' 5 < 8 - -8 ;6 6 Y@9)Q#QY: ># 8
- %1 %0
" 1NN b . 8 %1 %0
; . 0D < 9ZN.N4:. 5NN 0NNN b 8 ; 5 < 9ZN.N4: 9 04: # -8 8 8 . - . %1 %0
; 9ZN.N4: 01 < 1NN b I
%1 %0
5 < 5NN 0NNN b . (
; ( $= <$ -6 8 ;6 < ;
Y@9YQ#Q): # -
; %6
8 6 9)Q#:@9)Q#QY: 8 -6. 8 - ;6
%6
. ;6. 6
8 >#. (
; 9ZN.N4: 5 <. $ 01 13 <. %1 %0
%1 %0
5NN 0NNN b # 1NN b ;
6 ; 9ZN.N4: 01 13 <. 8 0D <. 9 04: $ (
;
; %6
8 $; # (6
. 5 < < 6 = ; $ Y@9YQ#Q): 9ZN.N4: # 1NN 5NN b
%1
%0 ; %6
8 ; N 0D <.
13 < 9 04: $ 6 %6
8 ># #
3D
)*+ ,-($. / =& :
9ZN.N4: - 7 <$8 >8
; %6
8 5 < (6
-6 ;6
( 0$ 0 0 ""' "' $ / !) 9 U "#V8$8;' $ = U Q "W' X B2 2 9 0
A M ( =& Q @,PPA " # " @A + " @A& )*+ ,-($. / 3F
!! " #
$2 ! %&' ()
" " !* ! + ! +- " " "! " /% @#H4I4?A ! "" " !I J ! - "! .
"! " /% ! " ! "" " 0&
@KA L ! " /% ! + "!" ""
& %! !" " " > ! "%" ! !* " M !!!
" 1"!&
"" " 0
63 67
@N A
@2A
1NN
N
5
01
0D
13
N
5
01
0D
13
N
5
01
0D
13
5NN
0NNN
4N
Q 67
@N/ / #
A
BN.4Fa0.B5 DN.50aN.2F $
0NN.44aN.B2 $
0ND.DNaN.4B $
0NF.N4a0.5D $
BN.4Fa0.B5 5D.B3aN.3F F0.15aN.3F $
00B.3FaN.B2 $
00D.N3aN.4B $j
BN.4Fa0.B5 F3.3Na0.04 $
0N3.B4a0.41 $
011.15aN.24 $j
00F.1BaN.4D $j
0NB.23a0.00 $j
DF.0Ba0.N4 $
0ND.31a0.N1 $
011.11aN.52 010.32a3.14 #
0NB.23a0.00 j
F2.BBaN.44 j
0N2.2Fa0.F0 0NF.F1a0.00 D2.15a2.B4 0NB.23a0.00 j
0N5.14a0.F1 002.20aN.DF F3.FFaN.00 $
BN.32a1.0F $
)*+ ,-($. / =& :
B D0 "5Y2'G"5Y2Y@' 0 0
R @G"5Y2Y@' ""' "' $ A !) )*+ ,-($. / 40
!! " #
$2 ! %&' ()
" " !* ! + 41
)*+ ,-($. / ?& :
?& :
$ $
$= <$ 7. . ;
$ 8 !&& #. $ $ 8 ; =$ !&& <$
8 !&& ; 6
(6 9;@:. (
(6 !&&. # ># ; -
. 8 ; 8 8 9eN.D2: 9=MJ
E '. 0FDBI V< . 0FF2I "6C E V<. 1NNN: 6
. 9eN.B0: 68 -. ( ># 901.3^ :. # 9B^ : '
; ;@ . 8 $ <$8
;$ ! ( ; N.D2. 7 <$
* 7. ! E H 90FDF:. ; ;@ $= N.B <$8. -
. <$ $- . < 8 ># - $8. ;@ * )*+ ,-($. / 42
!! " #
$2 ! %&' ()
" " !* ! + 9N.B0:. ( $
$-8 &&. ( ># # . . ;$ $
!&& - 9! E H. 0FDF. 0FFN. 0FFN$I , . 0FF2I . 0FF3:.
< <= 9 : 6 . 6<$ . 8 <$8 $
8 9; . 1NN0: $ 6<$ ; 9 : 8
9K . 0FF2:. = P 6
#
$= $= 9, . 0FF5: ' +. . 8 <$8 8 7 (6 0NNN
%1 %0
b . ># #. . . $
. <$
; * . . $ ; $ 7 #
(. ; -
; ] . = 8 P . < #
8 7 < 9H
E L. 0FD3: ;. 8 # ># = 8 -
. <$8 #. >#. $= 7 . . 90FF5:I "R . 91NN0:
6 8 ; ;. ># # . 6. .
< $7 <$ + 7. 8 ] ( ; + 8 9R E . 0FF3: . $
$= <$
! $. 8
; # >#. ( ; - . (6 9;@: ># # 8 ; ( ; !&& 9A!&&: 9 \
N.4B%N.F5:. $7 <$ -
. ; ;$. 43
)*+ ,-($. / ?& :
; 8 G 9"6C E V<. 1NNN:
1
> # >#. 8 ( 6 $$
. * $= !&& 9' . 0FDDI
'%#
. 0FF5I G. 1NN0I;
=. 1NN1I . 1NN1: '$
6 = 8 7 ; !&&. < 6. ;
;8 8 8 ( $ . $ 8 # $= $
$= ( . ; -6 6 8 ;6 9ZN.N4:. ; 6 9;
=. 1NN1: ,$ $ ; (6 . ; ( > ! $. ; -. ;$ $
># . > ( < ; -6 6 9'%#
E #
. 0FF5:. * 6 6 . 2. 9: ,< 9:. ;
;6 -6. 6 -. 8 ; - ;6 %6
. < >
. $
; $=. 6 -6 9> . 0FFDI >. 0FFF: <
-6 > ,. ,
> 9> . 0FF0: ! $. . ;
. (
9:. %6
;6 -6. < T<U 8 ; . T<U ;
6. 7
$ . 6 ( $
. > 9>
. 0FFB: 8 (
2.. 92. :. 9!:
-6 ;. < * >. > $= 2. %6
8 ;6 -
> 9> . 0FFD:
= 9V< . 0FF3: ;
; $ 8 - ;6 %6
T<U . 7 6 . 8 6 $;
. 8 -6 6
)*+ ,-($. / 44
!! " #
$2 ! %&' ()
" " !* ! + ; %6
8. 8 # - $= 9 03 04:. ; 98:. $
7 #* ;8 ;6 6 -6 $= < . = 9#
&&& . 0FF4$:. ; 8
; (
8 -6 9'%#
. 0FDF: ! . %6
8 ;6 -6 8 T6U -. 9 . 0FF4I #
&&& . 0FF4:. (6 %1 %0
-
90NNN b :. T6U 8. 8 $
$= - ; -6.
;- T6U - ; <$8 < 8 6 . ;
8 -6 8 $ 9$= : (
$ 9#(
: 9#$
. 1NN1: # ( $
7 $
$= . ;
. -
9` . 0FFFI ` . 1NNN: ;
< . %1 %0
91.5 b G : 1
0N? . 8
%1 %0
7 ; 9#/: 4NN b . ;
%1 %0
04NN b . h1N? #/ %1 %0
%1 %0
04NN b N.1 b G ;$
1
. * . < .
8 9H. 1NNNI #$
.
1NN1: $7 8 ;
- ; ; 9` . 0FFF: ! $. 8 7 ; $= .
. . $
!&& 9 : 7 6 ;
7. $ . $=
. . . $
< 6 %1 %0
90NNN b : 7 ;
45
)*+ ,-($. / ?& :
$=. $ ; 6 ;
-6 # $; > $;
. 6 9> . 0FFB: G 6 6 . - >#. 8 ; * . .
< ( ( 0 9
. 0FFF: ;
. ;-. . $ - 6 %4%86
( 0 6 ; 6
8 -6. ;- ; k% Y6 (
. 8 . ;6 6 =7 ;6 $7 %6
8 -6. - = 68 ( 0 8 $= ; %4%86
. (
;6. -. (
%6
8 ;6 ; (
9< 5N^ : ( ( 8 + < $
8 9 . 0FFD . 0FFF:
6 ;
98 86 6:. . . . 8 ;
7 9
8 G : 6
9'%#
E #
.
1
0FF1: ;. +( ( $. . * . 1N? 9; (:. $ 8
9` . 0FFFI #$
. 1NN1: ! 6 ; 1N? 93? # 02? >#:. $ $
- -
<$
; 8 G . 1
<$ ;
8 7. $ ; 6 ;
-8 ; ! $ (. <= 6<$ %6
8 6
8 9'%#
E #
. 0FF1: . <$ <$
8 86 9/G!:. 7 <$ $
6
;. 7 < TU 6
97- . $: 8 ! H 90FFN:. +.
)*+ ,-($. / 4B
!! " #
$2 ! %&' ()
" " !* ! + ; 68 -.
; 6
. < <= $
<$8
6 ;
H
68. 7
. < ; + 7 6 - 9"7%< E #. 1NNN: $8 -. + 8 ; 6 > 8 7 .
( $ 8 8 7 <
8 $ 6 8 $
. ;
- ;6 %6
. $ 8 8
4D
)*+ ,-($. / ((:E;
((:E;
Adams, W. W. III., Demmig-Adams, B., Barker, D. H., Kiley, S. 1996. Carotenoids and
photosystem II characteristics of upper and lower halves of leaves acclimated to high
light. Aust. J. Plant Physiol. 23:669-677.
Adams, W. W. III., Demmig-Adams, B., Verhoeven, A. S., Barker, D. H. 1995a.
‘Photoinhibition’ during winter stress: Involvement of sustained xanthophyll
cycle-dependent energy dissipation. Aust. J. Plant Physiol. 22:261-276.
Adams, W. W. III., Demmig-Adams, B., Winter, K., Schreiber, U. 1990. The ratio of
variable to maximum chlorophyll fluorescence from photosystem II, measured in
leaves at ambient temperature and at 77K as on indicator of the photon yield of
photosynthesis. Planta. 180:166-174.
Adams, W. W. III., Hoehn, A., Demmig-Adams, B. 1995b. Chilling temperatures and the
xanthophyll cycle. A comparsion of warm-grown and overwintering spinach. Aust. J.
Plant Physiol. 22:75-85.
Agati, G., Mazzinghi, P., diPaola, M. L., Fusi, F., Cecchi, G. 1996. The F685/F730
chlorophyll fluorescence ratio as indicator of chilling stress in plants. J. Plant Physiol.
148:384-390.
Alberdi, M., Bravo, L. A., Gutiérrez, A., Gidekel, M., Corcuera, L. J. 2002. Ecophysiology
of Antarctic vascular plants. Physiol. Plant. 115:479-486.
Almela, L., López-Roca, M., Candela, M. E., Alcázar, M. D. 1990. Separation and
determination of individual carotenoids in a Capsicum cultivar by normal-phase
)*+ ,-($. / 4F
!! " #
$2 ! %&' ()
" " !* ! + high-performance liquid chromatography. J. Chromatogr. 502:95-106.
Asada, K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens
and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol.
50:601-639.
Baker, N. R. 1991. A possible role for photosystem II in environmental perturbations of
photosynthesis. Physiol. Plant. 81:563-570.
Barber, J. 1998. Photosystem two. Biochim Biophys Acta. 1365:269-277.
Berry, J., Björkman, O. 1980. Photosynthetic response and adaptation to temperature in
higher plants. Annu. Rev. Plant Physiol. 31:491-543.
Bilger, W., Björkman, O. 1990. Role of the xanthophyll cycle in photoprotection
elucidated by measurements of light-induced absorbance changes, fluorescence and
photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 25:173-185.
Björkman, O., Demmig, B. 1987. Photon yield of O2 evolution and chlorophyll
fluorescence characteristics at 77K among vascular plants of diverse origins. Planta.
170:489-504.
Bouvier, F., d’Harlingues, A., Hugueney, P., Marin, E., Marion-Poll, A., Camara, B.
1996. Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and
regulation of #-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum).
J. Biol. Chem. 271:28861-28867.
Buchanan, B. B., Gruissem, W., Jones, R. L. 2000. Biochemistry & molecular biology of
plants. American Society of Plant Physiologists, Rockville, Maryland. 1158-1203.
Büchel, C., Wilhelm, C. 1993. In vivo analysis of slow chlorophyll fluorescence induction
kinetics in algae: progress, problems and perspectives. Photochem. Photobiol.
58:137-148.
Bugos, R. C., Hieber, A. D., Yamamoto, H. Y. 1998. Xanthophyll cycle enzymes are
members of the lipocalin family, the first identified from plants. J. Biol. Chem.
273:15321-15324.
Bungard, R. A., Ruban, A. V., Hibberd, J. M., Press, M. C., Horton, P., Scholes, J. D.
1999. Unusual carotenoid composition and a new type of xanthophyll cycle in plants.
Proc. Natl. Acad. Sci. USA. 96:1135-1139.
Bravo, L. A., Ulloa, N., Zúñiga, G. E., Casanova, A., Corcuera, L. J., Alberdi, M. 2001.
Cold resistance in Antarctic angiosperms. Physiol. Plant. 111:55-65.
Brestic, M., Cornic, G., Fryer, M. J., Baker, N. R. 1995. Does photorespiration protect
the photosynthetic apparatus in French bean leaves from photoinhibition during
drought stress? Planta. 196:450-457.
Brüggemann, W., Dauborn, B. 1993. Long-term chilling of young tomatoes plants under
low light. III. Leaf development as reflected by photosynthesis parameters. Plant
Physiol. 34:1252-1257.
Brüggemann, W., Linger, P. 1994. Long-term chilling of young tomato plants under low
light. IV. Differential responses of chlorophyll fluorescence quenching coefficients in
Lycopersicon species of different chilling sensitivity. Plant Cell Physiol. 35:585-591.
Casanova, M. A. 1997. Eficiencia fotoquímica del PSII en Deschampsia antarctica
(Desv.): una gramínea tolerante a la congelación. Tesis, Magíster, Fac. de Ciencias.
5N
)*+ ,-($. / ((:E;
Univ. Austral de Chile.
Critchley, C., Rusell, W. 1994. Photoinhibition of photosynthesis in vivo: the role of
protein turnover in photosystem II. Physiol. Plant. 92:188-196.
Dannehl, H., Herbik, A., Godde, D. 1995. Stress-induced degradation of the
photosynthetic apparatus is accompanied by changes in thylakoid protein-turnover
and phosphorylation. Physiol. Plant. 93:179-186.
Davey, M. C., Rothery, P. 1996. Seasonal variation in respiratory and photosynthetic
parameters in three mosses from the maritime Antarctic. Ann. Bot. 78:719-728.
De las Rivas, J., Andersson, B., Barber, J. 1992. Two sites of primary degradation of
the D1-protein induced by acceptor or donor side photo-inhibition in photosystem II
core complexes. FEBS Lett. 301:246-252.
Demming, B., Björmann, O. 1987. Comparison of the effect of excessive light on
chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher
plants. Planta. 171:171-184.
Demmig, B., Winter, K., Krüger, A., Czygan, F-C. 1987. Photoinhibition and zeaxanthin
formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of
excess light energy. Plant Physiol. 84:218-224.
Demmig, B., Winter, K., Krüger, A., Czygan, F-C. 1988. Zeaxanthin and the heat
dissipation of excess light energy in Nerium oleander exposed to a combination high
light and water stress. Plant Physiol. 87:17-24.
Demmig-Adams, B., Adams, W. W. III. 1992. Photoprotection and other responses of
plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:599-626.
Demmig-Adams, B., Adams, W. W. III. 1996. The role of xanthophyll cycle carotenoids
in the protection of photosynthesis. Trends Plant Sci. 1:21-26.
Demmig-Adams, B., Gilmore, A. M., Adams, W. W. III. 1996. In vivo functions of
carotenoids in plants. FASEB. 10:403-412.
Demmig-Adams, B., Winter, K., Krüger, A., Czygan, F-C. 1989. Zeaxanthin synthesis,
energy dissipation, and photoprotection of photosystem II at chilling temperatures.
Plant Physiol. 90:894-898.
Edwards, J. A., Smith, R. I. L. 1988. Photosynthesis and respiration of Colobanthus
quitensis and Deschampsia antarctica from the maritime Antarctic. Br. Antarct. Surv.
Bull. 81:43-63.
Elrad, D., Niyogi, K. K., Grossman, A. R. 2002. A major light-harvesting polypeptide of
photosystem II functions in thermal dissipation. Plant Cell. 14:1801-1816.
Fadzillah, N. M., Gill, V., Finch, R. P., Burdon, R. H. 1996. Chilling, oxidative stress and
antioxidant responses in shoot cultures of rice. Planta. 199:552-556.
Falk, S., Palmquist, K. 1992. Photosynthetic light utilization efficiency, photosystem-II
heterogeneity, and fluorescence quenching in Chlamydomonas-reinhardtii during the
induction of the CO2-concentrating mechanism. Plant Physiol. 100:685-691.
Flanigan, Y. S., Critchley, C. 1996. Light response of D1 turnover and photosystem II
efficiency in the seagrass Zostera capricorni. Planta. 198:319-323.
Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P. 1999. Chlorophyll fluorescence
as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J.
)*+ ,-($. / 50
!! " #
$2 ! %&' ()
" " !* ! + Exp. Bot. 50:1533-1540.
Fryer, M. J., Oxborough, K., Martin, B., Ort, D. R., Baker, N. R. 1995. Factors
associated with depression of photosynthetic quantum efficiency in maize at low
growth temperature. Plant Physiol. 108:761-767.
Genty, B., Briantais, J-M., Baker, N. R. 1989. The relationship between the quantum
yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.
Biochem. Biophys. Acta. 990:87-92.
Giardi, M. T., Cona, A., Geiken, B., Kucera, T., Masojidek, J., Matto, A. K. 1996.
Long-term drought stress induces structural and functional reorganization of
photosystem II. Planta. 199:118-125.
Gilmore, A. M. 1997. Mechanistic aspects of xanthophyll cycle-dependent
photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99:197-209.
Gilmere, A. M., Hazlett, T., Debrunner, P. G., Govindjee. 1996. Photosystem II
chlorophyll a fluorescence lifetimes are independent of the antenna size differences
between barley wild-type and chlorina mutants: Comparison of xanthophyll-cycle
dependent and photochemical quenching. Photosynth. Res. 48:171-187.
Gilmore, A. M., Yamamoto, H. Y. 1991. Resolution of lutein and zeaxanthin using a
non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic
column. J. Chromatogr. 543:137-145.
Gilmore, A. M., Yamamoto, H. Y. 1992. Dark induction of zeaxanthin-dependent
nonphotochemical fluorescence quenching mediated by ATP. Proc. Natl. Acad. Sci.
USA. 89:1899-1903.
Govindjee, 2002. A role for a light-harvesting antenna complex of photosystem II in
photoprotection. Plant Cell. 14:1663-1668.
Gray, G. R., Boese, S. R., Huner, N. P. A. 1994. A comparison of low temperature
growth vs low temperature shifts to induce resistance to photoinhibition in spinach
(Spinacia oleracea). Physiol. Plant. 90:560-566.
Greer, D. H., Ottander, C., Öquist, G. 1991. Photoinhibition and recovery of
photosynthesis in intact barley leaves at 5 and 20°C. Physiol. Plant. 81:203-210.
Groom, Q. J., Baker, N. R., Long, S. P. 1991. Photoinhibition of holly (Ilex aquifolium) in
the field during the winter. Physiol. Plant. 83:585-590.
Hakam, N., Simon, J. P. 1996. Effect of low temperatures on the activity of
oxygen-scavenging enzymes in two populations of the C-4 grass Echinochloa
crus-galli. Physiol. Plant. 97:209-216.
Haldimann, P. 1996. Effects of changes in growth temperature on photosynthesis and
carotenoid composition in Zea mays leaves. Physiol. Plant. 97:554-562.
Havaux, M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant
Sci. 3:147-151.
Havaux, M., Niyogi, K. K. 1999. The violaxanthin cycle protects plants from
photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA.
96:8762-8767.
Havaux, M., Tardy, F. 1996. Temperature-dependent adjustment of the thermal stability
of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta.
51
)*+ ,-($. / ((:E;
198:324-333.
Heber, U., Walker, D. 1992. Concerning a dual function of coupled cyclic electron
transport in leaves. Plant Physiol. 100:1621–1626.
Hippeli, S., Elstner, E. F. 1996. Mechanisms of oxygen activation during plant stress:
Biochemical effects of air pollutants. J. Plant Physiol. 148:249-257.
Hodges, D. M., Andrews, C. J., Johnson, D. A., Hamilton, R. I. 1996. Antioxidant
compound responses to chilling stress in differentially sensitive inbred maize lines.
Physiol. Plant. 98:685-692.
Horton, P., Ruban, A. V., Walters, R. G. 1994. Regulation of light harvesting in green
plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant
Physiol. 106:415-420.
Horton, P., Ruban, A. V., Walters, R. G. 1996. Regulation of light harvesting in green
plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:655-684.
Huck, C. W., Popp, M., Scherz, H., Bonn, G. K. 2000. Development and evaluation of a
new method for the determination of the carotenoid content in selected vegetables by
HPLC and HPLC-MS-MS. J. Chromatogr. Sci. 38:441-449.
Huner, N. P. A., Elfman, B., Krol, M., McIntosh, A. 1984. Growth and development at
cold-hardening temperatures: Chloroplast ultrastructure, pigment content and
composition. Can. J. Bot. 62:53-60.
Huner, N. P. A., Maxwell, D. P., Gray, G. R., Savitch, L. V., Krol, M., Ivanov, A. G., Falk,
S. 1996. Sensing environmental temperature changes through imbalances between
energy supply and energy consumption: Redox state of photosystem II. Physiol.
Plant. 98:358-364.
Huner, N. P. A., Öquist, G., Hurry, V. M., Krol, M., Falk, S., Griffith, M. 1993.
Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant
plants. Photosynth. Res. 37:19-39.
Hurry, V. M., Malmberg, G., Garderström, P., Öquist, G. 1994. Effects of short-term shift
to low temperature and of long-term cold hardening on photosynthesis and
ribulose-1,5-biphosphate carboxilase-oxygenase and sucrose phosphate synthase
activity in leaves of winter rye (Secale cereale L.). Plant Physiol. 106:983-990.
Ireland, C. R., Long, N. R., Baker, N. R. 1984. The relationship between carbon dioxide
fixation and chlorophyll a fluorescence during induction of photosynthesis in maize
leaves at different temperatures and carbon dioxide concentrations. Planta.
160:550-558.
Jahns, P., Miehe, B. 1996. Kinetic correlation of recovery from photoinhibition and
zeaxanthin epoxidation. Planta. 198:202-210.
Johnson, G. N., Young, A. J., Horton, P. 1994. Activation of non-photochemical
quenching in thylakoids and leaves. Planta 194:550-556.
Johnson, G. N., Young, A. J., Scholes, J. D., Horton, P. 1993. The dissipation of excess
excitation energy in British plant species. Plant Cell Environ. 16:673-679.
Kappen, L. 2000. Some aspects of the great success of lichens in the Antarctica.
Antarct. Sci. 12:314-324.
Karpinski, S., Karpinska, B., Wingsle, G., Hällgren, J-E. 1994. Molecular responses to
)*+ ,-($. / 52
!! " #
$2 ! %&' ()
" " !* ! + photooxidative stress in Pinus sylvestris. I. Differential expression of nuclear and
plastid genes in relation to recovery from winter stress. Physiol. Plant. 90:358-366.
Kautsky, H., Hisrch, A. 1931. Neue versuche zur kohlenstoffassimilation.
Naturwisenschaften. 19:964.
Klosson, J. R., Krause, G. H. 1981. Freezing injury in cold-acclimataded and
unhardened spinach leaves. II. Effects of freezing on chlorophyll fluorescence and
light scattering reactions. Planta. 151:347-352.
Kocsy, G., Owttrim, G., Brander, K., Brunold, C. 1997. Effect of chilling on the diurnal
rhythm of enzymes involved in protection against oxidative stress in a chilling-tolerant
and a chilling-sensitive maize genotype. Physiol. Plant. 99:249-254.
Koroleva, O. Y., Brüggemann, W., Krause, G. H. 1994. Photoinhibition, xanthophylls
cycle and in vivo chlorophyll fluorescence quenching of chilling-tolerant Oxyria digyna
and chilling-sensitive Zea mays. Physiol. Plant. 92:577-584.
Krause, G. H. 1988. Photoinhibition of photosynthesis. An evaluation of damaging and
protective mechanisms. Physiol. Plant. 74:566-574.
Krause, G. H., Virgo, A., Winter, K. 1995. High susceptibility to photoinhibition of young
leaves of tropical forest trees. Planta. 197:583-591.
Krause, G. H., Weis, E. 1984. Chlorophyll fluorescence as a tool in plant physiology II.
Interpretation of fluorescence signals. Photosynth. Res. 5:139-157.
Krause, G. H., Weis, E. 1991.Chlorophyll fluorescence and photosynthesis: the basics.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349.
Larcher, W. 1995. Physiological plant ecology. 3rd Ed. Springer, Berlin, Heidelberg,
New York. 57-166.
Larcher, W., Neuner, G. 1989. Cold-induced sudden reversible lowering of in vivo
chlorophyll fluorescence after saturating light pulses. A sensitive marker for chilling
susceptibility. Plant Physiol. 89:740-742.
Law, J. H., Rilling, H. C. 1985. Steriods and isoprenoids. Part B. Methods in enzimology
111:113-149.
Lichtenthaler, H., Wellburn, A. R. 1983. Determinations of total carotenoids and
chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Transaction.
603:591-592.
Long, S. P., Humphries, S. 1994. Photoinhibition of photosynthesis in nature. Annu.
Rev. Plant Physiol. Plant Mol. Biol. 45:633-662.
Long, S. P., Humphries, S., Falkowski, P. G. 1994. Photoinhibition of photosynthesis in
nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:633-662.
Lütz, C. 1996. Avoidance of photoinhibition and examples of photodestruction in high
alpine Eriophorum. J. Plant Physiol. 148:120-128.
Maury, P., Mojayad, F., Berger, M., Planchon, C. 1996. Photochemical response to
drought acclimation in two sunflower genotypes. Physiol. Plant. 98:57-66.
Maxwell, D. P., Falk, S., Huner, N. P. A. 1995. Photosystem-II excitation pressure and
development of resistance to photoinhibition. I. Light-harvesting complex-II
abundance and zeaxanthin content in Chlorella-vulgaris. Plant Physiol. 107:687-694.
53
)*+ ,-($. / ((:E;
Maxwell, K., Johnson, G. N. 2000. Chlorophyll fluorescence#a practical guide. J. Exp.
Bot. 51:659-668.
Mckersie, B. D., Chen, Y. R., Debeus, M., Bowley, S. R., Bowler, C., Inze, D., Dhalluin,
K., Botterman, J. 1993. Superoxide-dismutase enhances tolerance of freezing stress
in transgenic alfalfa (Medicago-sativa L.). Plant Physiol. 103:1155-1163.
Mishra, N. P., Mishra, R. K., Singhal, G. S. 1993. Changes in the activities of
anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at
different temperatures in the presence of protein synthesis inhibitors. Plant Physiol.
102:903-910.
Moll, B. A., Steinback, K. E. 1986. Chilling sensitivity in Oryza sativa: The role of protein
phosphorylation in protection against photoinhibition. Plant Physiol. 80:420-423.
Mori, H., Yamashita, Y., Akasaka, T., Yamamoto, Y. 1995. Further characterization of
the loss of antenna chlorophyll-binding protein CP43 from photosystem-II during
donor-side photoinhibition. BBA-Bioenergtics. 1228:37-42.
Müller, P., Li, X-P., Niyogi, K. K. 2001. Non-photochemical quenching. A response to
excess light energy. Plant Physiol. 125:1558-1566.
Munné-Bosch, S., Alegre, L. 2000. Changes in carotenoids, tocopherols and diterpenes
during drought and recovery, and the biological significance of chlorophyll loss in
Rosmarinus officinalis plants. Planta. 210:925-931.
Nakajima, Y., Yoshida, S., Inoue, Y., Ono, T. 1996. Occupation of the QB-binding
pocket by a photosystem II inhibitor triggers dark cleavage of the D1 protein
subjected to brief preillumination. J. Biol. Chem. 271:17383-17389.
Nishida, I., Murata, N. 1996. Chilling sensitivity in plants and cyanobacteria: the crucial
contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:
541-568.
Niyogi, K. K. 1999. Photoprotection revisited: Genetic and molecular approaches. Annu.
Rev. Plant Physiol. Plant Mol. Biol. 50:333-359.
Niyogi, K. K., Björkman, O., Grossman, A. R. 1997. The roles of specific xanthophylls in
photoprotection. Proc. Natl. Acad. Sci. USA. 94:14162-14167.
Niyogi, K. K., Grossman, A. R., Björkman, O. 1998. Arabidopsis mutants define a
central role for the xanthophyll cycle in the regulation of photosynthetic energy
conversion. Plant Cell. 10:1121-1134.
Noctor, G., Rees, D., Young, A., Horton, P. 1991. The relationship between zeaxantina,
energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH
gradient in isolated chloroplasts. Biochim. Biophys. Acta. 1057:320-330.
Ögren, E. 1988. Photoinhibition of photosynthesis in willow leaves under field
conditions. Planta. 175:229-236.
Ögren, E., Sjöström, M. 1990. Estimation of the effect of photoinhibition on the carbon
gain in leaves of a willow canopy. Planta. 181:560-567.
Öquist, G., Huner, N. P. A. 1991. Effects of cold acclimation on the susceptibility of
photosynthesis to photoinhibition in Scots pine and winter and spring cereals: a
fluorescence analyses. Funct. Ecol. 5:91-100.
Öquist, G., Hurry, V. M., Huner, N. P. A. 1993. Low temperature effects on
)*+ ,-($. / 54
!! " #
$2 ! %&' ()
" " !* ! + photosynthesis and correlation with freezing tolerance in spring and winter cultivars of
wheat and rye. Plant Physiol. 101:245-250.
Ort, D. R. 2001. When there is too much light. Plant Physiol. 125:29-32.
Packer, L. 1992. Carotenoids. Part A: Chemistry, separation, quantitation, and
antioxidation. Methods in enzimology 213:185-205.
Park, Y-I., Chow, W. S., Anderson, J. M. 1995. Light inactivation of functional
photosystem II in leaves of peas grown in moderate light depends on photon
exposure. Planta. 196:401-411.
Park, Y-I., Chow, W. S., Anderson, J. M., Hurry, V. M. 1996. Differential susceptibility of
photosystem II to light stress in light-acclimated pea leaves depends on the capacity
for photochemical and non-radiative dissipation of light. Plant Sci. 115:137-149.
Peterson, R. B., Aylor, D. E. 1995. Chlorophyll fluorescence induction in leaves of
Phaseolus-vulgaris infected with bean rust (Uromyces-appendiculatus). Plant Physiol.
108:163-171.
Pogson, B. J., Niyogi, K. K., Björkman, O., DellaPena, D. 1998. Altered xanthophyll
compositions adversely affect chlorophyll accumulation and nonphotochemical
quenching in Arabidopsis mutans. Proc. Natl. Acad. Sci. USA. 95:13324-13329.
Planchon, C., Sarrafi, A., Ecochard, R. 1989. Chlorophyll fluorescence transient as a
genetic-marker of productivity in barley. Euphytica. 42:269-273.
Polle, J. E. W., Niyogi, K. K., Melis, A. 2001. Absence of lutein, violaxanthin and
neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not
that of Photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell
Physiol. 42:482-491.
Powles, S. B. 1984. Photoinhibition of photosynthesis induced by visible light. Annu.
Rev. Plant Physiol. 35:15-44.
Raggi, V. 1995. CO2 Assimilation, respiration and chlorophyll fluorescence in peach
leaves infected by Taphrina deformans. Physiol. Plant. 93:540-544.
Rau, W. 1988. Functions of carotenoids other than in photosynthesis. In: Goodwin TW
(ed.) Plant Pigments, pp. 231-255 San Diego, CA: Academic Press Inc.
Raveh, E., Gersani, M., Nobel, P. S. 1995. CO2 Uptake and fluorescence responses for
a shade-tolerant cactus Hylocereus-undatus under current and doubled CO2
concentrations. Physiol. Plant. 93:505-511.
Rintamäki, E., Kettunen, R., Tyystjärvi, E., Aro, E-M. 1995. Light-dependent
phosphorylation of D1 reaction center protein of photosystem II: hypothesis for the
functional role in vivo. Physiol. Plant. 93: 191-195.
Rizza, F., Pagani, D., Stanca, A. M., Cattivelli, L. 2001. Use of chlorophyll fluorescence
to evaluate the cold acclimation and freezing tolerance of winter and oats. Plant
Breeding. 120:389-396.
Ruban, A. V., Young, A. J., Horton, P. 1993. Induction of nonphotochemical energy
dissipation and absorbance changes in leaves. Evidence for changes in the state of
the light-harvesting system of photosystem II in vivo. Plant Physiol. 102:741-750.
Sakai, A., Larcher, W. 1987. Frost survival of plants. Responses and adaptation to
freezing stress. Ed. Springer, Berlin, Heidelberg, New York. 59-93.
55
)*+ ,-($. / ((:E;
Savitch, L. V., Gray, G. R., Huner, N. P. A. 1997. Feedback-limited photosynthesis and
regulation of sucrose-starch accumulation during cold acclimation and
low-temperature stress in a spring and winter wheat. Planta. 201:18-26.
Schöner, S., Krause, G. H. 1990. Protective systems against active oxygen species in
spinach: response to cold acclimation in excess light. Planta. 180:383-389.
Schreiber, U., Schliwa, U., Bilger, W. 1986. Continuous recording of photochemical and
non-photochemical fluorescence quenching with a new type of modulation
fluorometer. Photosynth. Res. 10:51-62.
Sicher, R. C., Sundblad, L. G., Öquist, G. 1988. Effects of low-temperature acclimation
upon photosynthetic induction in barley primary leaves. Physiol. Plant. 73:206-210.
Smith, R. I. L. 1994. Vascular plants as bioindicators of regional warming in Antarctica.
Oecologia. 99:322-328.
Somersalo, S., Krause, G. H. 1989. Photoinhibition at chilling temperature.
Fluorescence characteristic of unhardened and cold acclimated spinach leaves.
Planta. 177:409-416.
Somersalo, S., Krause, G. H. 1990a. Reversible photoinhibition of unhardened and
cold-acclimated spinach leaves at chilling temperatures. Planta. 180:181-187.
Somersalo, S., Krause, G. H. 1990b. Photoinhibition at chilling temperatures and effects
of freezing stress on cold acclimated spinach leaves in the field. Physiol. Plant.
79:617-622.
Steffen, K. L., Arora, R., Palta, J. 1989. Relative sensitivity of photosynthesis and
respiration to freeze-thaw stress in herbaceous species. Plant Physiol. 89:1372-1379.
Steffen, K. L., Wheeler, R. M., Arora, R., Palta, J. P., Tibbitts, T. W. 1995. Balancing
photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue
during acclimation to different growth temperatures. Physiol. Plant. 94:51-56.
Steubing, L., Gogoy, R., Alberdi, M. 2001. Métodos de ecología vegetal. Ed.
Universitaria, Chile. 177-178.
Strasser, B. J. 1997. Donor side capacity of photosystem II probed by chlorophyll a
fluorescence transients. Photosynth. Res. 52:147-155.
Strasser, R. J., Srivastava, A., Govindjee. 1995. Polyphasic chlorophyll a fluorescence
transient in plants and cyanobacteria. Photochem. Photobiol. 61:32-42.
Szalai, G., Janda, T., Paldi, E., Szigeti, Z. 1996. Role of light in the development of
post-chilling symptoms in maize. J. Plant Physiol. 148:378-383.
Thayer, S. S., Björkman, O. 1990. Leaf xanthophyll content and composition in sun and
shade determined by HPLC. Photosynth. Res. 23:331-343.
Thiele, A., Krause, G. H. 1994. Xanthophyll cycle and thermal energy dissipation in
photosystem II: Relationship between zeaxanthin formation, energy-dependent
fluorescence quenching and photoinhibition. J. Plant Physiol. 144:324-332.
Thiele, A., Krause, G. H., Winter, K. 1998. In situ study of photoinhibition of
photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the
tropical forest. Aust. J. Plant Physiol. 25:189-195.
Ting, C. S., Owens, T. G., Wolfe, D. W. 1991. Seedling growth and chilling stress
)*+ ,-($. / 5B
!! " #
$2 ! %&' ()
" " !* ! + effects on photosynthesis in chilling-sensitive and chilling-tolerant cultivars of
Zea-mays. J. Plant Physiol. 137:559-564.
Ulloa, N. 2002. Eficiencia fotoquímica del PSII en Deschampsia antarctica (Desv.): una
gramínea tolerante a la congelación. Tesis, Magíster, Fac. de Ciencias. Univ. Austral
de Chile.
van Wijk, K. J., van Hasselt, P. R. 1993. Photoinhibition of photosystem II in vivo is
preceded by down-regulation through light-induced acidification of the lumen:
Consequences for the mechanism of photoinhibition in vivo. Planta. 189:359-368.
Venema, J. H., Posthumus, F., Vries, M., van Hasselt, P. R. 1999. Differential response
of domestic and wild Lycopersicon species to chilling under low light: growth,
carbohydrate content, photosynthesis and the xanthophyll cycle. Physiol. Plant.
105:81-88.
Verhoeven, A. S., Adams, W. W. III., Demmig-Adams, B. 1996. Close relationship
between the state of the xanthophyll cycle pigments and photosystem II efficiency
during recovery from winter stress. Physiol. Plant. 96:567-576.
Verhoeven, A. S., Adams, W. W. III., Demmig-Adams, B., Croce, R., Bassi, R. 1999.
Xanthophyll cycle pigment localization and dynamics during exposure to low
temperatures and light stress in Vinca major. Plant Physiol. 120:727-737.
Wang, W. Q., Chapman, D. J., Barber, J. 1992. Effect of cold treatments on the binding
stability of photosystem-II extrinsic proteins and an associated increase in
susceptibility to photoinhibition. Plant Physiol. 99:21-25.
Wildi, B., Lütz, C. 1996. Antioxidant composition of selected high alpine plant species
from different altitudes. Plant Cell Environ. 19:138-146.
Wise, R. R., Naylor, A. W. 1987. Chilling-enhanced photooxidation. Evidence for the
role of singlet oxygen and superoxide in the breakdown of pigments and endogenous
antioxidants. Plant Physiol. 83:278-282.
Xiong, F. S., Mueller, E. C., Day, T. A. 2000. Photosynthetic and respiratory acclimation
and growth response of Antarctic vascular plants to contrasting temperature regimes.
Am. J. Bot. 87:700-710.
Xiong, F. S., Ruhland, C. T., Day, T. A. 1999. Photosynthetic temperature response of
the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica.
Physiol. Plant. 106:272-286.
Yamamoto, Y. 2001. Quality control of photosystem II. Plant Cell Physiol.42:121-128.
Yamamoto, Y., Akasaka, T. 1995. Degradation of antenna chlorophyll-binding protein
CP43 during photoinhibition of photosystem II. Biochemistry. 34:9038–9045.
Yamamoto, Y., Ishikawa, Y., Nakatani, E., Yamada, M., Zhang, H., Wydrzynski, T.
1998. Role of an extrinsic 33 kilodalton protein of photosystem II in the turnover of the
reaction center-binding protein D1 during photoinhibition. Biochemistry.
37:1565-1574.
Zhang, L. X., Wang, J., Wen, J. Q., Liang, H. G., Du, L. F. 1995. Purification and partial
characterization of a protease associated with photosystem II particles. Physiol. Plant.
95:591-595.
5D
)*+ ,-($. / 
Descargar