las caracteristicas genéticas de los trastornos psiquiátricos de la niñez

Anuncio
LAS CARACTERISTICAS GENÉTICAS DE LOS TRASTORNOS PSIQUIÁTRICOS DE LA NIÑEZ
Josep Tomàs Vilaltella El estudio de la genética pediátrica de los niños está en medio de una profunda transformación.
Después de más de una década de progreso continuo los investigadores están en el mismo borde
de identificar y caracterizar las vulnerabilidades genéticas involucradas en los trastornos mentales
de aparición temprana. Los enfoques utilizados por los genetistas moleculares y de población para
identificar las anormalidades causantes de la enfermedad, evolucionan rápidamente
proporcionando herramientas poderosas para el descubrimiento genético. Simultáneamente, los
avances en la neurociencia comienzan a revelar el mecanismo básico genético y celular
involucrado en el desarrollo cerebral. Juntas, éstas áreas de descubrimiento científico ponen los
fundamentos para una comprensión más profunda de los factores biológicos y de entorno que
contribuyen a las enfermedades mentales.
¿POR QUÉ SE HABLA DE COMPLEJIDAD GENÉTICA EN LOS TRASTORNOS PSIQUIÁTRICOS DE LOS NIÑOS? Durante las dos décadas pasadas, la identificación de los genes relacionados con la enfermedad
se ha convertido en algo común. Esta ola de descubrimientos está basada fundamentalmente en
análisis de conexiones multigeneracionales y pertenecientes en su mayor parte a trastornos de
genes únicos, especialmente aquellos que exhiben muestras mendelianas de herencia tales como
transmisión autosómica dominante, recesivas o ligadas al sexo. Ha sido sólo durante los últimos
10 años que las características genéticas de los trastornos complejos tales como cáncer de mama,
enfermedades neurodegenerativas, hipertensión, han comenzado a ser descubiertas.
Estos más recientes éxitos, ayudan a clarificar aquellos factores que contribuyen a las muestras
no mendelianas de transmisión. Estas incluyen herencias poligénicas u oligogénicas, penetración
incompleta, expresión variable fenotípica, heterogenicidad genética, incerteza diagnóstica y la
posibilidad del involucramiento de mecanismos moleculares nuevos.
¿Qué entendemos por Herencia poligénica y oligogénica? La Herencia poligénica se refiere a la participación de genes múltiples que juntos contribuyen a la
expresión de un trastorno. Si sólo participan unos pocos genes, el modo de transmisión se llama
oligogénico. Los trastornos que son el resultado de una transmisión multigenética entre
generaciones, son difíciles de separar utilizando métodos de mapeo genético tradicional. Múltiples
genes pueden actuar tanto en forma aditiva como sinérgica y un gen que tiene un efecto en un
contexto genético, puede perder este efecto del todo en la presencia de otro gen.
¿Qué entendemos por Penetración incompleta, expresión variable, y fenocopia? Son fenómenos en los cuales la relación entre genotipo y fenotipo es muy oscura. Penetración
incompleta se refiere a la circunstancia en la cual una mutación particular resulta en la expresión
de un trastorno en un individuo pero no en otro. Expresión variable se refiere a la presencia de
presentaciones clínicas diversas en individuos con idéntica diatesis genética. El término
fenocopias se refiere a individuos que demuestran un trastorno particular aun cuando no posean
una anormalidad genética esperada relacionada a esa condición.
¿Qué entendemos por Heterogeneidad genética e incerteza en el diagnóstico? Se refiere a más de una mutación genética conduciendo a una presentación clínica común.
La incerteza en el diagnóstico, tiene también un impacto particularmente significativo sobre la
investigación psiquiátrica infantil. Además, las dificultades diagnósticas pueden estar exacerbadas,
por presentaciones clínicas que evolucionan mientras o durante el desarrollo del niño.
¿Qué significa la expansión repetida triplete e impronta genómica? Mecanismos moleculares nuevos que influencian la expresión del gen se han identificado en la
década pasada. Dos de los descubrimientos más prominentes en este aspecto son la expansión
repetida triplete y la impronta genómica. Ambos son identificados como resultado de la
investigación en los síndromes de retraso mental . Las expansiones repetidas triplete son
responsables de los fenómenos conocidos como “anticipación“ que describen la severidad
aumentada que ocurre en algunos trastornos sobre las generaciones siguientes. Impronta se
refiere al fenómeno mediante el cual algunos genes se expresan si están localizados en el
cromosoma transmitido de un padre y no del gen complementario transmitido por el cromosoma
del otro padre. Los trastornos que resultan de anormalidades en este mecanismo no siguen las
expectaciones mendelianas.
¿SE PUEDE HACER UNA DISECCIÓN GENÉTICA DE LOS TRASTORNOS COMPLEJOS? Se encuentra que los factores genéticos que contribuyen a muchas de las enfermedades
psiquiátricas comunes son aparentemente variaciones funcionales “normales“ de genes con una
combinación particular de alelos que confiere susceptibilidad a un trastorno. Los enfoques
metodológicos capaces de identificar los genes de susceptibilidad múltiple harán una importante
contribución a los esfuerzos de identificación del gen en psiquiatría infantil y adolescente .
Las aplicaciones de estas metodologías todavía dependen del mismo tipo de estudios que han
sido el pilar del análisis de la genética humana durante décadas. El primer paso para identificar los
genes relevantes es el estudio cuidadoso de la familia, los gemelos y la adopción. Los
investigadores a menudo evalúan la contribución de los genes en un trastorno mirando el
incremento en riesgo en los miembros de una familia comparado con el riesgo encontrado en la
población general. Estos cálculos ofrecen estimaciones poderosas de heritabilidad, sin embargo
no distinguen entre factores genéticos y ambientales que pueden ser de significado etiológico y ser
responsables de la agregación de un trastorno dentro de las familias.
Una vez que los datos genético-epidemiológicos han demostrado que los factores genéticos van
probablemente a jugar un papel en la patogénesis de un trastorno, hay diferentes medios para
identificar el gen especifico involucrado. Estos incluyen enfoques estadísticos o genética de
poblaciones, tales como el análisis de conexión paramétrico (o tradicional), o alternativamente
análisis de conexiones no paramétricos y estudios de asociación. Además los métodos basados
en laboratorio incluyen la citogenética molecular y la base de datos genética.
¿CUÁLES SON LOS AVANCES EN MÉTODOS ESTADÍSTICOS? ¿En qué consisten los Análisis de Conexión? Los análisis de conexión evalúan la probabilidad de que un fenotipo de interés y un marcador
particular de DNA o una serie de marcadores sean transmitidos juntos a través de múltiples
generaciones. Si un trastorno está “conectado” a una región particular del DNA, sugiere una alta
probabilidad de que un locus muy cercano a este marcador contribuya a la expresión del fenotipo.
Los análisis de conexión tradicionales comienzan con la especificación de una serie de
parámetros, incluyendo el modo de transmisión del trastorno y el grado de penetración. Las
posibilidades de obtener el patrón de transmisión observado dando el modelo propuesto se
compara entonces con las posibilidades de ver el mismo en la ausencia de conexión. Los
resultados se expresan a menudo como un logaritmo de las posibilidades llamado puntuación
LOD.
Los enfoques “no paramétricos” no requieren la especificación de un modelo genético como un
prerequesito. Actualmente, entre los más comúnmente utilizados en psiquiatría infanto-juvenil es el
diseño “par de hermanos afectados”. En este enfoque se estudian los hermanos gemelos que
comparten un fenotipo dado para determinar si también comparten marcadores genéticos
particulares con mayor frecuencia de lo que podría esperarse por casualidad.
Este tipo de enfoque no requiere que se especifique cuántos genes están involucrados, cómo se
transmite un gen dado, o si es una variante normal. Si un alelo ó mutación particular contribuye a
un fenotipo, debería ser compartido más comúnmente entre individuos afectados y los
marcadores adyacentes deberían también ser compartidos. Además, si hay más de un gen
involucrado, los hermanos afectados compartirán marcadores en diferentes regiones más a
menudo de lo que sería de esperar.
¿En qué consisten los Estudios de Asociación? Los estudios de asociación evalúan las frecuencias genéticas dentro de poblaciones, en contraste
con los estudios de conexión que examinan la transmisión dentro de las familias. Una forma
polimórfica particular de un gen está asociada con el trastorno si, en combinación con un fenotipo,
tiene lugar a ritmo significativamente más alto que el encontrado entre los controles de la
población.
Se ha encontrado que los estudios de asociación son particularmente vulnerables a los resultados
falsos positivos. Una fuente importante de error es un fenómeno conocido como estratificación o
estructura de población. Esto resulta de variaciones en la frecuencia de ciertos marcadores
genéticos en grupos étnicos diferentes. Si uno compara individuos con un particular fenotipo con
controles, y los dos grupos no son étnicamente similares, entonces un marcador que sea
encontrado más frecuentemente en el grupo afectado aparecerá erróneamente como estando
asociado con el fenotipo identificado.
Se han desarrollado enfoques recientes que proporcionan medios mejorados para tratar con el
problema de la estructura de población. Estos se aprovechan de los llamados controles internos y
son conocidos como tests de asociación basados en la familia. En tales estudios, un individuo
afectado es genotipado junto con sus padres. Los alelos transmitidos al individuo afectado forman
el “caso”. Hay dos alelos (uno de la madre y otro del padre) que no han sido transmitidos y éstos
son usados como controles.
Una alternativa o método más poderoso de análisis combina las estrategias de conexión y
asociación. Los TDT ( Test de desequilibrio de transmisión) evalúan tríos en una familia que
consisten en dos padres y un hijo afectado solamente. Cada miembro de este trío es genotipado
respecto a un gen específico o a una región de interés cromosómica. Al menos un padre debe ser
heterocigoto, es decir, uno de los padres debe llevar solamente una copia de la forma del alelo o
alelos que se examinan. La familia se clasifica entonces según cual de los alelos paternos se
transmite al niño afectado. Un gran número de tríos se evalúan para determinar si un alelo
particular se transmite a un niño afectado más a menudo de lo que sería de esperar. Esta
combinación de examen de transmisión familiar y de las frecuencias de alelos en una población,
es estadísticamente robusta y “de modelo libre”. También permite a los investigadores sacar
provecho de familias con solamente un niño afectado en vez de necesitar familias con dos
hermanos afectados.
El estudio del desequilibrio en poblaciones aisladas, es otro enfoque estadístico prometedor.
Poblaciones que están geográfica o culturalmente aisladas, generalmente son formadas en su
origen por una pequeña cantidad de individuos. En este caso, las personas afectadas es probable
que compartan el alelo idéntico o la mutación involucrada en el fenotipo en cuestión, el llamado
“efecto fundador”. En poblaciones de más edad en las cuales el número de sucesos totales de
cruce a través de múltiples generaciones es alto, solo un área pequeña alrededor del locus
identificado continuará siendo compartida por los individuos afectados. Si los individuos afectados
tienen un antecesor común, estas regiones compartidas son “idénticas por descendencia” (IBD) y
facilitarán la localización precisa de un gen de interés. Este tipo de análisis es particularmente útil
para trastornos raros de un solo gen.
¿En qué consiste el Análisis de Rasgos Cuantitativos de los Locus? El análisis de rasgos cuantitativos de los locus (QTL) es un método por el que los rasgos continuos
pueden ser mapeados genéticamente a unas localizaciones múltiples discretas cromosomales.
Cuando las diferencias en rasgos o comportamientos específicos se determinan por genes,
generaciones sucesivas pueden ser criadas para mostrar cantidades incrementadas de un rasgo
dado. Últimamente estos experimentos de reproducción resultan en la presencia de dos
poblaciones: una que muestra un alto grado del rasgo y otra que expresa un grado bajo de la
misma característica. Estos dos grupos son entonces cruzados en el laboratorio. El resultado es
una generación que varía ampliamente con respecto a un rasgo específico y por los marcadores
genéticos que lleva. Los investigadores pueden entonces marcar fenotipos y correlacionar sus
resultados genotipeando un gran numero de marcadores.
El análisis de variantes humanas de QTL puede ser una ayuda al estudiar los desórdenes
psiquiátricos en los cuales sea posible un fenotipeado cuantitativo. En este enfoque, los hermanos
se evalúan para un rasgo cuantitativo particular y son genotipeados. Los investigadores pueden
entonces buscar correlaciones entre marcadores genéticos específicos, y altas (o bajas)
diferencias fenotípicas cuantitativas a través del par de hermanos.
¿DE QUE SIRVE EL TRAZADO DEL MAPA GENÉTICO EN EL LABORATORIO? La citogenética molecular, involucra el uso de pruebas moleculares para estudiar cromosomas.
Tales técnicas se pueden usar en la búsqueda de genes, identificando pacientes raros que tienen
síntomas o síndromes psiquiátricos resultantes de variaciones cromosomales y buscando el gen o
genes que han sido perturbados. Es una presunción central que tales anormalidades son muy
improbables que causen un porcentaje apreciable de psicopatología infantil. Más bien, el trazado
de mapas de genes involucrados en estas variaciones se persigue o, para identificar locus que
puedan haber mutado en individuos afectados pero citogeneticamente normales, o para identificar
sendas genéticas que puedan iluminar rutas más comunes hacia la enfermedad mental infantil.
Durante la pasada década, el estudio de cromosomas ha sido propulsado al campo molecular por
el desarrollo de la hibridación fluorescente in situ (FISH), una técnica que usa muestras marcadas
fluorescentemente para determinar la localización y extensión de las variaciones o borrados en los
cromosomas.
El enfoque en pacientes raros o peculiares con anormalidades genéticas representa un contraste
importante respecto a los métodos estadísticos que agrupan gran numero de pacientes
usualmente por diagnóstico y entonces buscan encontrar una diátesis común genética. Con
respecto a la paidopsiquiatría, la combinación de estrategias de conexión y de citogenética
molecular mantiene una particular promesa.
Un segundo y profundo avance en la ciencia de laboratorio durante la ultima década ha sido el
crecimiento exponencial en la información genómica. Ahora ya se dispone del diseño del genoma
humano completo.
Debería ser posible pronto expandir la aplicación de, por ejemplo, estrategias TDT mas allá de las
fronteras del estudio de genes candidatos, para visualizar grandes secciones del genoma.
El enorme flujo de información genética, es útil solamente en cuanto que los científicos tienen la
habilidad de manipular grandes cantidades de datos. A este respecto la proliferación de
ordenadores personales poderosos y a bajo precio y el surgir de Internet han hecho una
contribución tan importante a la genética psiquiátrica como cualquier avance de un laboratorio
dado.
¿CUÁL ES EL PROGRESO EN EL ESTUDIO DE SÍNDROMES SELECCIONADOS? La evolución de técnicas estadísticas y genéticas moleculares en la ultima década llevan a un
fondo creciente de resultados de investigación importantes. Por ejemplo, en el caso del autismo, la
consecución de estudios de conexión a larga escala internacional, así como las investigaciones en
una forma peculiar de Trastorno Profundo del Desarrollo (PDD) han dado resultados
prometedores. Con respecto al ADHD, la réplica de los estudios de asociación de genes
candidatos, proporcionan la primera evidencia sólida para genes específicos que predisponen a
los niños a este trastorno común. Los investigadores que buscan comprender las complejidades
de las discapacidades de lectura, usan nuevos métodos de clasificación del sujeto que
demuestran el poder del enfoque dimensional en contraste al enfoque por categorías para el
diagnóstico. Mientras que los resultados de investigaciones a veces conflictivas de cada trastorno,
pueden presentar una cadena confusa de posibles genes candidatos y regiones de interés
genómicas, el cuadro compuesto es de progreso continuado hacia la identificación de
contribuciones genéticas a los trastornos psiquiátricos infantiles.
¿Qué sabemos del Autismo? El autismo, prototipo de PPD, tiene una prevalencia estimada de aprox. 1/1000 a 1/2.500. Los
casos familiares son relativamente infrecuentes, hecho que contribuye a la primera impresión de
que el trastorno no tiene una base genética. Sin embargo, algunos estudios en las últimas 2
décadas confirman una contribución genética substancial. El riesgo de recurrencia entre hermanos
de un afectado es del orden del 5% aprox. Aunque es menos del 25% de riesgo de recurrencia
que uno esperaría en un trastorno autosómico recesivo, representa un riesgo de 100 a 200 veces
superior para miembros de la familia, y por consiguiente, sugiere un alto grado de herencia.
Estudios de hermanos gemelos apoyan también el papel crítico de los genes en este trastorno.
Algunos autores sugieren que el modelo más probable de herencia para el autismo, involucra la
interacción de más de 15 genes, cada uno aportando un riesgo relativamente pequeño.
Una de las áreas de enfoque mas intrigantes, es sobre una región en el brazo largo del
cromosoma 15, que parece representar el segmento mas común de genoma involucrado en
variaciones citogenéticas en sujetos autísticos .
Otros dos resultados prometedores surgen de estudios citogenéticos de pacientes con autismo. En
un caso, se encontró una translocación X:8 en un individuo con rasgos autísticos, así como un
trastorno conocido como exóstosis múltiple. Más recientemente, un par de gemelos autísticos
concordantes presentaban una translocación que involucraba a los cromosomas 7 y 20 aunque el
locus del 7 no parecía corresponder a la región identificada en el análisis internacional de parejas
de hermanos. Se encontró un gen nuevo para cruzar el punto de ruptura del cromosoma 7q11.2.
Los autores clonaron este gen, el gen 1 relacionado con el autismo (ARG1) y han encontrado que
es o está altamente expresado en el cerebro de adultos y fetos. La identificación de un gen
especifico perturbado por una variación cromosómica en gemelos con autismo, es ciertamente un
resultado prometedor.
Quizás el resultado reciente más excitante involucra el Síndrome de Rett, un trastorno típicamente
esporádico confinado a chicas. Este síndrome esta caracterizado por una pérdida significativa de
desarrollo incluyendo lenguaje, características físicas y resultados neurológicos. Tiene una
frecuencia estimada de 1-15 / 20.000. En los últimos años el trastorno ha sido identificado en
varias familias. Esto permitió el mapeo de genes y condujo a la determinación de que el Síndrome
de Rett es un trastorno dominante ligado al cromosoma X con letalidad en hombres.
Recientemente, un gen causal del Síndrome de Rett ha sido identificado. El MECP2, un gen
involucrado en regular la expresión de otros genes, se encontró que estaba funcionalmente
alterado en 5 de 21 pacientes esporádicos. Es probable que esta fracción se incremente cuando
sea completada una visualización exhaustiva de mutación de MECP2 y regiones de control
circundante.
¿Qué sabemos del Trastorno por déficit de atención con Hiperactividad (ADHD)? Se sugiere una base genética para el ADHD tanto por estudios familiares como de gemelos. Un
enfoque ha sido estudiar la neurotransmisión de dopamina ya que se sugiere su participación en la
patogénesis del ADHD. Por ejemplo, se sabe que la dopamina juega un papel central en la
actividad motriz humana y en los comportamientos buscadores de recompensa. Además, las
medicaciones estimulantes utilizadas para tratar el ADHD tienen como uno de sus efectos
farmacológicos, la alteración de la neurotransmisión dopaminérgica.
En 1996, se informó que el gen receptor D4 de la dopamina DRD4, estaba asociado con el rasgo
de personalidad de buscar novedad. Estos resultados llevaron a los investigadores a examinar
varios alelos de este gen con respecto a ADHD, utilizando estrategias de asociación. La relación
entre DRD4 y ADHD es todavía un asunto de mucho debate. Además, las asociaciones iniciales
entre DRD4 y la búsqueda de novedades han sido cuestionadas por investigaciones posteriores.
El gen transportador de dopamina (DAT1), ha sido también objeto de varios estudios respecto al
ADHD. Dos grupos independientes encuentran una asociación entre un alelo de DAT1 y el
fenotipo ADHD. Mientras múltiples investigaciones apuntan a un rol particular de los alelos del
DAT1 en el ADHD, todavía sus relaciones tienen que ser clarificadas. En un estudio se encuentran
algunos niños que tienen una o dos de las copias para el alto riesgo de polimorfismo, que no
expresan la enfermedad. Sin embargo, muchos niños que no tienen alelos de alto riesgo
demuestran el fenotipo de hiperactividad. Estos encuentros se pueden explicar en un trastorno
complejo genético en el cual la penetrancia parcial, la heterogenicidad genética y las fenocopias
deberían estar presentes. Los hallazgos respecto a ambos, DRD4 y DAT1 sugieren que las
variantes funcionales de los genes involucrados en la neurotransmisión de dopamina, confieren un
riesgo familiar para el ADHD. Los datos sugieren que esta contribución debe ser relativamente
pequeña.
¿Qué sabemos del Trastorno de la Tourette? El Trastorno de la Tourette es un trastorno complejo neuropsiquiátrico que a lo largo de los últimos
15 años, ha sido sujeto de investigación en genética intensiva. Entre muchas razones para este
interés, está el hecho que se pensó que el Trastorno de la Tourette era un trastorno raro y
genéticamente homogéneo heredado en forma autosómica dominante, y así particularmente
adecuado para los enfoques de conexión tradicional. Trabajos más recientes han comenzado a
poner en cuestión estas asunciones.
Dos décadas de investigación continúan confirmando un papel importante de los genes en la
etiología del Trastorno de la Tourette. El riesgo para hermanos de un individuo afectado es de 10 a
100 veces más grande que para la población en general. Además, la concordancia entre gemelos
MZ está entre un 55% y un 100%, dependiendo de los métodos de valoración utilizados. El
porcentaje de concordancia entre gemelos DZ es aprox. de un 20%.
Desgraciadamente, los resultados acumulativos de estudios de conexión durante la última década
han sido decepcionantes. Asumiendo herencia dominante, del 80 al 90% del genoma ha sido
excluido hasta la fecha. O el gen para el Trastorno de la Tourette está “escondiéndose” en el resto
del 10% del genoma, o una ó más de las asunciones centrales acerca del trastorno es incorrecta.
Esta segunda alternativa aparece ahora como la más probable. Ha quedado claro que la diátesis
genética para el Trastorno de la Tourette puede ser más variable que lo que se pensó
originalmente. El síndrome clásico de tics motores y vocales se ve a menudo. La incerteza del
diagnóstico y el alto porcentaje de fenotipos puede haber confundido los análisis anteriores.
Estudios más recientes sugieren que el trastorno no está tan claro como se pensó inicialmente.
Además, varios análisis de segregación han sugerido que el modelo de transmisión del trastorno
más probable puede no ser autosómico dominante, sino más bien un gen de efecto mayor en
conjunción con genes múltiples de efectos menores. Esto podría explicar en parte la dificultad que
tienen los investigadores en aislar un gen del Trastorno de la Tourette usando análisis de conexión
paramétricos.
Recientemente ha concluido un estudio a larga escala, en diferentes lugares, colaborativo y de
amplio genoma, para los genes de susceptibilidad del Trastorno de la Tourette. Los resultados de
este estudio de pares de hermanos afectados, sugirieron una conexión con un locus del
cromosoma 4q y muy cerca del umbral para un locus en 8p.
Estudios citogenéticos han sugerido un posible locus adicional del Trastorno de la Tourette. Se
han involucrado los cromosomas 7 y 18. Hasta la fecha, sin embargo, no ha sido citado ningún
gen como candidato en el cromosoma 7 ó 18 y un análisis paramétrico de estas regiones no ha
revelado ninguna evidencia a favor de la conexión.
¿Qué sabemos de los Trastornos del Desarrollo? Se ha progresado más en identificar los factores genéticos específicos involucrados en los
trastornos del desarrollo que en cualquier otra área de la psiquiatría infantil y adolescente. Se han
identificado muchos genes y regiones candidatas para los síndromes de retraso mental durante la
ultima década. Se han identificado expansiones repetidas de tripletes e impronta genómica a
través de investigaciones en el Síndrome Frágil X, PWS y Síndrome de Algelman.
¿Qué importancia tienen las Repeticiones de Tripletes y la Mutación Dinámica en los síndromes psiquiátricos? El gen frágil X, FMR-1, contiene múltiples repeticiones de 3 nucleótidos en la región del promotor
que quedan inmediatamente adyacentes al lugar de iniciación para la trascripción. De cinco a 50
de los residuos repetidos Citosina-guanina-guanina (CGG) ocurren en individuos normales. En
familias con frágil X sin embargo, se han identificado dos clases de mutaciones. Una
“premutación” existe cuando aprox. están presentes entre 50 y 500 repeticiones de tripletes.
Individuos con esta premutación no muestran una expresión completa del síndrome, sinó que
actúan como “portadores” con una probabilidad variable de pasar a la próxima generación una
“mutación completa”. La mutación completa que contiene más de 500 y hasta 3.000 repeticiones
de tripletes, está asociada con el retraso mental en más del 95% de los varones y casi la mitad de
las hembras que lo poseen.
Cuando hay menos de 50 tripletes, se transmiten sin variación de padres a hijos. En contraste, las
premutaciones y mutaciones completas son relativamente inestables y pueden expandirse de una
generación a otra. Este proceso de expansión ha llevado al concepto de una “mutación dinámica”.
La probabilidad y extensión de la expansión, depende del sexo del padre que lo transmite. Por
ejemplo, la premutación se pasa de padre a hija usualmente sin un incremento significativo en el
nº de repeticiones. Sin embargo en mujeres, las premutaciones pueden expandirse
dramáticamente al pasarse a la próxima generación. El riesgo de que esto resulte en una mutación
completa aumenta proporcionalmente con el tamaño de las repeticiones existentes de tripletes.
Las mutaciones dinámicas explican fenómenos como el descubrimiento de que las hijas que
tienen un gen frágil X tienen más probabilidades de tener un hijo afectado que las probabilidades
de sus propias madres.
Se han encontrado otras enfermedades que van asociadas con el mismo tipo de mutación
dinámica. Estas incluyen; Corea de Huntington, Distrofia Miotónica y Ataxia Espinocerebral Tipo 1.
Estas enfermedades demuestran también el fenómeno de “anticipación”, en el cual un trastorno se
expresa más severamente en generaciones sucesivas. La base molecular para este incremento en
la severidad se comprende bien ahora. Resulta de la mutación dinámica en sí, con un nº creciente
de repeticiones de tripletes con muchas probabilidades de expandirse para la próxima generación
y la expansión más grande conduce a fenotipos más severos.
¿EN QUÉ CONSISTE LA IMPRONTA GENÉTICA? El PWS y el Síndrome de Angelman, a pesar de sus significativas diferencias clínicas, comparten
una asociación genética importante. Ambos trastornos provienen de anomalías en lo que parece
ser la región idéntica de la rama larga del cromosoma 15 en el locus 15q11-q13.
Se ha encontrado que entre el 60 y el 80% de individuos con PWS tienen una delección
microscópica o submicroscópica que se encuentra siempre en el cromosoma paternal. Se ha
encontrado que casi todas las restantes personas con PWS tienen dos copias del cromosoma
maternal y ninguna contribución paternal, lo que se llama disomia uniparental. Finalmente casos
raros de PWS familiar se han asociado con mutaciones muy pequeñas en esta región, que lleva a
la pérdida de expresión de genes múltiples del cromosoma paternal.
En contraste, las delecciones en el Síndrome de Angelman se han encontrado sobre la región
materna del cromosoma 15, y casos de disomia uniparental paterna también se han encontrado.
Finalmente, translocaciones raras o mutaciones puntuales de un gen UBE3A dentro de esta
misma región, se han visto que conducen al fenotipo clínico.
Estos descubrimientos ponen de relieve un nuevo mecanismo de herencia en el cual un
cromosoma desarrolla una “memoria” de su padre de origen. En contraste a la noción mendeliana
de que cada cromosoma en un par contribuye igualmente a la expresión de genes, se ha
comprobado durante la última década que en humanos y otros mamíferos, la expresión del gen
puede estar dictada por los padres de origen del cromosoma por un proceso conocido como
impronta.
¿Qué sabemos de la Dislexia? La herencia de los problemas de lectura se ha establecido perfectamente. Se ha visto que los
porcentajes de concordancia MZ son altos, 83% frente al 23% entre gemelos DZ. Varios estudios
sugieren locus específicos en los cromosomas 6 y 15 que pueden estar involucrados en conferir el
fenotipo de dislexia.
Unos autores han detectado conexiones significativas entre una medida neuropsicológica
conocida como percepción fonológica y un locus en el cromosoma 6p. Un segundo claro “sub”
fenotipo, lectura de palabras solas, muestra conexión al cromosoma 15.
Otros demuestran una conexión significativa en el cromosoma 6p aunque no encuentran una
relación exclusiva entre la percepción fonológica y estos locus.
Estos resultados permanecen particularmente notables a causa del descubrimiento de conexiones
significativas para subcomponentes del trastorno a pesar de la falta aparente de conexión para el
fenotipo compuesto. Estos descubrimientos sugieren que el uso de diagnósticos categóricos
pueda no ser tan significativo biológicamente como los enfoques que se apoyan en variables
continuas neuropsicológicas.
¿QUÉ RELACIÓN HAY ENTRE LA IDENTIFICACIÓN DEL GEN Y LA PRÁCTICA DE PSIQUIATRÍA INFANTIL? Conforme se van identificando genes que contribuyen a los trastornos psiquiátricos, hay
numerosas posibilidades de traducir esos descubrimientos en intervenciones clínicas relevantes.
Tal enfoque sería probablemente más relevante para el gen solitario que para los trastornos
complejos.
Un resultado mucho más probable a corto plazo que la terapia genética será la clarificación
acompañante de factores no genéticos que influencian en el desarrollo de un trastorno en
particular.
Puede ser que para algunos trastornos infantiles psiquiátricos, se encuentre que los antecedentes
genéticos del individuo y las experiencias medioambientales tempranas sean mucho más
sobresalientes que el efecto de cualquier gen solitario. En este caso, es probable que el interés en
temas “genéticos” disminuya y que los modelos de patogénesis enfaticen la importancia de los
otros muchos factores que influencian el cerebro y el comportamiento. Por ello, dado que será más
fácil en un futuro previsible cambiar el medioambiente y el comportamiento antes que cambiar los
genes, la habilidad para permitir a los investigadores extraer determinantes medioambientales
puede muy bien ser la contribución clínica más significativa que los genetistas harán durante la
próxima década.
Otro camino importante para los avances terapéuticos involucra el desarrollo de tratamientos
farmacológicos nuevos y más efectivos. Ya se han individualizado receptores que se piensa son
mediáticos para enfermedades psiquiátricas. Esto ha contribuido a la aparición de un gran número
de agentes psicofarmacológicos nuevos.
Descargar