EJEMPLOS Ejemplo 7.1

Anuncio
EJEMPLOS
Ejemplo 7.1 La presión de vapor de la acetona puede obtenerse a través
de
ln p = 16.7321 -
2975.95
T - 34.5228
en donde p está en mm de Hg y T en K. Se sabe que existe una mezcla de
líquido y vapor de acetona en equilibrio a 100 mm de Hg. Calcule la
temperatura de equilibrio.
Ejemplo 7.2 Considérese el diagrama P-T para agua de la figura 7.1.
Supóngase que un sistema que contiene únicamente agua está en equilibrio a
1.- 300 K y 1.3 kPa
2.- 300 K y 13 kPa.
3.- 350 K y 41.69 kPa.
Identifique las fases presentes.
Ejemplo 7.3 Se almacena una mezcla equimolar de benceno y tolueno a
1000 mm de Hg (133.22 kPa). ¿Cuál es la máxima temperatura a la que podría
existir esta mezcla exclusivamente como líquido? ¿Cuál es la mínima
temperatura a la podría existir esta mezcla exclusivamente como gas?
La curva de presión de vapor para los componentes puros puede
aproximarse mediante la ecuación de Antoine:
Benceno:
ln p  mm de Hg 
= 16.1753 -
2948.78
T - 44.5633
Tolueno:
ln p  mm de Hg 
= 16.2665 -
3242.38
T - 47.1806
en las que T está en K. Supóngase que la ley de Raoult es suficientemente
precisa para este sistema.
Ejemplo 7.4 Calcule las composiciones de las fases de la mezcla
descrita en el ejemplo 7.3, si la mezcla está a 378.15 K y 133.22 kPa.
Ejemplo 7.5 Repita los cálculos del ejemplo 7.4 , utilizando la ecuación
de flash isotérmico.
Ejemplo 7.6
(a) Evalúe la entalpía de 1 kg de agua líquida saturada a 80 ºC y calcule
la presión de saturación.
(b) Evalúe la entalpía de 10 kg de vapor saturado a 1.0 bar y calcule su
volumen específico.
(c) Evalúe la energía interna de 1 kg de vapor saturado a un volumen
específico de 2.20 m3/kg.
(d) Evalúe la entalpía de 100 kg de vapor a 20 bar y 500 ºC, y calcule los
grados de sobrecalentamiento.
(e) Calcule la entalpía específica del agua líquida en el punto triple.
Ejemplo 7.7 Calcule la entalpía y volumen específicos para vapor a 5 bar
y 320 ºC.
Ejemplo 7.8 Determine la presión, volumen específico, entalpía y energía
interna de un vapor húmedo a 320 ºC, cuya calidad es 0.4.
Ejemplo 7.9 Un recipiente a presión, cuyo volumen es de 0.3 m3,
contiene 10 kg de agua a una presión de 60 bar. Calcule la temperatura,
calidad y entalpía específica del vapor.
Ejemplo 7.10 Un kilogramo de vapor a una presión de 1 bar, que está
contenido en un cilindro de área transversal de 1.69 m 2, soporta libremente a
una cubierta móvil hermética, de un determinado peso (fig. 7.10). Se calienta
externamente al cilindro, para elevar la temperatura del vapor de 100 ºC hasta
300 ºC. Suponiendo que no hay pérdidas de calor hacia los alrededores,
calcule la cantidad de calor que requiere el proceso.
Ejemplo 7.11 Un kilogramo de vapor a 100 ºC y 1 bar está contenido en
un recipiente a presión. Calcule la cantidad de calor necesaria para elevar la
temperatura del vapor hasta 300 ºC, y su presión final.
Figura 7.10 Ejemplo del cilindro de vapor
Ejemplo 7.12 Calcule el calor necesario para elevar la temperatura de 1
kg de vapor a 885 bar, de 500 ºC a 816 ºC, sabiendo que la entalpía específica
en esta última temperatura es de 1130 kJ/kg, relativa a vapor saturado a
1.01325 bar (1 atm).
Ejemplo 7.13 A una tobera horizontal entra vapor a 200 ºC y 7 bar con
una velocidad constante de 60 m/s. El vapor sale a una velocidad de 600 m/s y
presión reducida a 1.4 bar. Calcule la temperatura y calidad del vapor de salida.
Ejemplo 7.14 En el sistema que se muestra en la figura 7.14, una
corriente de vapor saturado a 145 psia, con una velocidad global de 100 pies/s,
se pasa a través de un sobrecalentador, que transfiere calor a la corriente a
razón de 300 Btu/lbm. A continuación, se expande el vapor sobrecalentado a
través de una turbina a contrapresión, para desarrollar 50 hp de trabajo de
flecha, y finalmente sale por un difusor a 15 psia y una velocidad de 1 pie/s. El
cambio de elevación entre la entrada y la salida del sistema es de 200 pies.
Calcule la temperatura de descarga y la calidad del vapor, suponiendo que la
caída de presión debido a la fricción es despreciable. El flujo de entrada de
vapor es de 300 lb/h.
Figura 7.14 Ejemplo de la turbina de vapor
Ejemplo 7.15 Se utiliza vapor de agua para precalentar 300 kg/h de agua
de proceso a 5 bar, desde 50 ºC hasta 150 ºC, usando el intercambiabor de
calor de doble tubo que se ilustra en la figura 7.15. Se dispone de vapor a 10
bar, saturado. El condensado se descarga en forma de líquido saturado.
Calcule el flujo requerido de vapor.
Figura 7.15 Calentador de vapor de doble tubo
Ejemplo 7.16 Calcule la capacidad calorífica de un carbón cuyo análisis
aproximado (en peso) corresponde a 54 % de carbono fijo, 21 % de materia
volátil, 5 % de cenizas y 20 % de humedad, a 100 ºF.
Ejemplo 7.17
Calcule el cambio de entalpía de un mol de vapor de
benceno a 1 atm, para un cambio de temperatura de 800 ºF a 1000 ºF, usando
(a) la integral completa, (b) la suposición de Cp promedio y (c) la aproximación
con dos términos.
Ejemplo 7.18 Una corriente de oxígeno a 1 bar, cuyo flujo es de 100
kgmol/h, se va a calentar de 25 a 200 ºC en un intercambiador de calor aislado,
mediante la condensación de vapor saturado disponible a 1.5 bar. Determine el
consumo de vapor.
Ejemplo 7.19 Supóngase que el intercambiador de calor del ejemplo 7.18
se limita a un flujo de vapor de 150 kg/h, Calcule la temperatura de salida de la
corriente de O2.
Ejemplo 7.20 Usando el calor de vaporización del agua a 90 ºC, estime
el calor de vaporización del agua a 110 ºC mediante las fórmulas aproximada y
exacta.
Ejemplo 7.21 Repita el estimado del calor de vaporización del agua a
110 ºC, usando la correlación de Watson con n = 0.38.
Ejemplo 7.22 La corriente de oxígeno del ejemplo 7.18 se calienta
mediante un intercambio de calor con vapor de benceno sobrecalentado,
disponible a 5.5 bar y 250 ºC. Calcule el flujo de benceno, suponiendo que sale
del intercambiador en forma de líquido saturado.
Ejemplo 7.23 Una corriente de vapor de agua a 200 ºC y 5 bar se
despresuriza hasta 48 psia y se mezcla adiabáticamente con una corriente de
amoniaco a 100 ºF y 48 psia, para obtener una corriente compuesta a 300 ºF.
Calcule el flujo de vapor de agua, si el flujo de NH3 es de 1000 kg/h. Use las
tablas de vapor y los datos de entalpía del amoníaco que se proporcionan en la
tabla 7.1
Figura 7.23 Diagrama de flujo. Mezclado de corrientes
Ejemplo 7.24 En el sistema de la turbina de vapor del ejemplo 7.14,
supóngase que se especifica que las condiciones en la descarga deben ser 1
bar y una calidad de 0.9. Calcule el flujo de alimentación de vapor necesario,
por hp producido en la turbina.
Ejemplo 7.25 Una corriente de gas del proceso a 400 ºC se debe enfriar
rápidamente hasta 200 ºC, poniéndola en contacto directo con benceno líquido
frío a 20 ºC. Si la composición de la corriente caliente es: 40 % de C 6H6, 30 %
de C6H5CH3, 10 % de CH4 y 20 % de H2, calcule el flujo necesario de benceno
para una alimentación de gas de 1000 kgmol/h, suponiendo que el proceso es
adiabático. En la figura 7.25 se ilustra el disgrama de flujo del proceso.
Figura 7.25 Diagrama de flujo. Sistema de enfriamiento
Ejemplo 7.26 Desarrolle el análisis de grados de libertad para el
problema del ejemplo 7.25.
Ejemplo 7.27 Analizar los ejemplos 7.18, 7.19 y 7.25, para determinar si
los balances están desacoplados.
Descargar