HISTORIA DE LA MAQUINA DE VAPOR

Anuncio
HISTORIA DE LAS MAQUINAS DE VAPOR
Máquina de vapor, dispositivo mecánico que convierte la energía del vapor de
agua en energía mecánica y que tiene varias aplicaciones en propulsión y
generación de electricidad. El principio básico de la máquina de vapor es la
transformación de la energía calorífica del vapor de agua en energía mecánica,
haciendo que el vapor se expanda y se enfríe en un cilindro equipado con un
pistón móvil. El vapor utilizado en la generación de energía o para calefacción
suele producirse dentro de una caldera. La caldera más simple es un depósito
cerrado que contiene agua y que se calienta con una llama hasta que el agua se
convierte en vapor saturado. Los sistemas domésticos de calefacción cuentan
con una caldera de este tipo, pero las plantas de generación de energía utilizan
sistemas de diseño más complejo que cuentan con varios dispositivos auxiliares.
La eficiencia de los motores de vapor es baja por lo general, lo que hace que en
la mayoría de las aplicaciones de generación de energía se utilicen turbinas de
vapor en lugar de máquinas de vapor.
HISTORIA
El primer motor de pistón fue desarrollado por el físico e inventor francés Denis
Papin y se utilizó para bombear agua. El motor de Papin, poco más que una
curiosidad, era una máquina tosca que aprovechaba el movimiento del aire más
que la presión del vapor. La máquina contaba con un único cilindro que servía
también como caldera. Se colocaba una pequeña cantidad de agua en la parte
inferior del cilindro y se calentaba hasta que producía vapor. La presión del
vapor empujaba un pistón acoplado al cilindro, tras lo cual se eliminaba la fuente
de calor de la parte inferior. A medida que el cilindro se enfriaba, el vapor se
condensaba y la presión del aire en el exterior del pistón lo empujaba de nuevo
hacia abajo.
En 1698 el ingeniero inglés Thomas Savery diseñó una máquina que utilizaba
dos cámaras de cobre que se llenaban de forma alternativa con vapor producido
en una caldera. Esta máquina se utilizó también para bombear agua, igual que la
máquina llamada motor atmosférico desarrollada por el inventor británico
Thomas Newcomen en 1705. Este dispositivo contaba con un cilindro vertical y
un pistón con un contrapeso.
El vapor absorbido a baja presión en la parte inferior del cilindro actuaba sobre el
contrapeso, moviendo el pistón a la parte superior del cilindro. Cuando el pistón
llegaba al final del recorrido, se abría automáticamente una válvula que
inyectaba un chorro de agua fría en el interior del cilindro. El agua condensaba el
vapor y la presión atmosférica hacía que el pistón descendiera de nuevo a la
parte baja del cilindro. Una biela, conectada al eje articulado que unía el pistón
con el contrapeso, permitía accionar una bomba. El motor de Newcomen no era
muy eficiente, pero era lo bastante práctico como para ser utilizado con
frecuencia para extraer agua en minas de carbón.
Durante sus trabajos de mejora de la máquina de Newcomen el ingeniero e
inventor escocés James Watt desarrolló una serie de ideas que permitieron la
fabricación de la máquina de vapor que hoy conocemos. El primer invento de
Watt fue el diseño de un motor que contaba con una cámara separada para la
condensación del vapor. Esta máquina, patentada en 1769, redujo los costos de
la máquina de Newcomen evitando la pérdida de vapor producida por el
calentamiento y enfriamiento cíclicos del cilindro. Watt aisló el cilindro para que
permaneciera a la temperatura del vapor. La cámara de condensación separada,
refrigerada por aire, contaba con una bomba para hacer un vacío que permitía
absorber el vapor del cilindro hacia el condensador. La bomba se utilizaba
también para eliminar el agua de la cámara de condensación.
Otro concepto fundamental de las primeras máquinas de Watt era el uso de la
presión del vapor en lugar de la presión atmosférica para obtener el movimiento.
Watt diseñó también un sistema por el cual los movimientos de vaivén de los
pistones movían un volante giratorio. Esto se consiguió al principio con un
sistema de engranajes y luego con un cigüeñal, como en los motores modernos.
Entre las demás ideas de Watt se encontraba la utilización del principio de
acción doble, por el cual el vapor era inyectado a un lado del pistón cada vez
para mover éste hacia adelante y hacia atrás. También instaló válvulas de
mariposa en sus máquinas para limitar la velocidad, además de reguladores que
mantenían de forma automática una velocidad de funcionamiento estable.
El siguiente avance importante en el desarrollo de máquinas de vapor fue la
aparición de motores sin condensación prácticos. Si bien Watt conocía el
principio de los motores sin condensación, no fue capaz de perfeccionar
máquinas de este tipo, quizá porque utilizaba vapor Máquinas de vapor
modernas.
El funcionamiento de una máquina de vapor moderna convencional se muestra
en las figuras 1a-d, que muestran el ciclo de funcionamiento de una máquina de
este tipo. En la figura 1a, cuando el pistón se encuentra en el extremo izquierdo
del cilindro, el vapor de agua entra por el cabezal de la válvula y a través del
orificio hacia la parte izquierda del cilindro. La posición de la válvula deslizante
de corredera permite que el vapor ya utilizado en la parte derecha del pistón
escape a través del orificio de expulsión o conducto de salida. El movimiento del
pistón acciona un volante, que a su vez mueve una biela que controla la válvula
deslizante. Las posiciones relativas del pistón y la válvula deslizante son
reguladas por las posiciones relativas de los puntos en que están acoplados el
cigüeñal y la biela de la válvula de deslizamiento al volante.
En la segunda posición, que se muestra en la figura 1b, el vapor que se
encuentra en la parte izquierda del cilindro se ha expandido y ha desplazado el
pistón hacia el punto central del cilindro. Al mismo tiempo, la válvula se ha
movido a su posición de cierre de forma que el cilindro queda estanco y no
pueden escapar ni el vapor del cilindro ni el de la caja de válvulas.
Según se mueve el pistón hacia la derecha a causa de la presión del vapor en
expansión, como se muestra en la figura 1c, la caja de válvulas, que contiene
vapor, se conecta al extremo derecho del cilindro. En esta posición la máquina
está preparada para iniciar el segundo tiempo del ciclo de doble acción. Por
último, en la cuarta posición (figura 1d), la válvula cubre de nuevo los orificios de
ambos extremos del cilindro y el pistón se desplaza hacia la izquierda, empujado
por la expansión del vapor en la parte derecha del cilindro.
El tipo de válvula que aparece en la figura es la válvula simple de deslizamiento,
la base de la mayoría de las válvulas de deslizamiento utilizadas en las
máquinas de vapor actuales. Este tipo de válvulas tienen la ventaja de ser
reversibles, o sea, que su posición relativa al pistón puede variarse cambiando la
porción de la excéntrica que las mueve, tal y como se muestra en la figura 2.
Cuando se mueve la excéntrica 180 grados, puede invertirse la dirección de
rotación de la máquina.
La válvula de deslizamiento tiene no obstante un buen número de desventajas.
Una de las más importantes es la fricción, causada por la presión del vapor en la
parte posterior de la válvula. Para evitar el desgaste que causa esta presión, las
válvulas de las máquinas de vapor suelen fabricarse en forma de un cilindro que
encierra el pistón, con lo que la presión es igual en toda la válvula y se reduce la
fricción. El desarrollo de este tipo de válvula se atribuye al inventor y fabricante
estadounidense George Henry Corliss. En otros tipos de válvulas, su parte móvil
está diseñada de forma que el vapor no presione directamente la parte posterior.
La unión entre el pistón y la válvula que suministra el vapor es muy importante,
ya que influye en la potencia y la eficiencia de la máquina. Cambiando el
momento del ciclo en que se admite vapor en el cilindro puede modificarse la
cantidad de compresión y expansión del cilindro, consiguiéndose así variar la
potencia de salida de la máquina. Se han desarrollado varios tipos de
mecanismos de distribución que unen el pistón a la válvula, y que no sólo
permiten invertir el ciclo sino también un cierto grado de control del tiempo de
admisión y corte de entrada del vapor. Los mecanismos de distribución por
válvulas son muy importantes en locomotoras de vapor, donde la potencia que
se requiere de la máquina cambia con frecuencia. El esfuerzo alcanza su punto
máximo cuando la locomotora está arrancando y es menor cuando circula a toda
velocidad.
Un componente importante de todos los tipos de máquinas de vapor de vaivén
es el volante accionado por el cigüeñal del pistón. El volante, una pieza por lo
general pesada de metal fundido, convierte los distintos empujes del vapor del
cilindro en un movimiento continuo, debido a su inercia. Esto permite obtener un
flujo constante de potencia.
En las máquinas de vapor de un solo cilindro la máquina puede detenerse
cuando el pistón se encuentra en uno de los extremos del cilindro. Si el cilindro
se encuentra en esta posición, se dice que el motor se encuentra en punto
muerto y no puede arrancarse. Para eliminar los puntos muertos, las máquinas
cuentan con dos o más cilindros acoplados, dispuestos de tal forma que la
máquina puede arrancar con independencia de la posición de los pistones. La
manera más simple de acoplar dos cilindros de una máquina es unir los dos
cigüeñales con el volante de la forma que se muestra en la figura 3. Para
conseguir un equilibrio mayor puede utilizarse una máquina de tres cilindros en
la que las manivelas de los cilindros se colocan en ángulos de 120 grados. El
acoplamiento de los cilindros no sólo elimina las dificultades de arranque sino
que permite diseñar plantas de generación con un funcionamiento más fiable.
Los cilindros de una máquina compuesta, al contrario que el de una de un solo
cilindro, pueden mantenerse próximos a una temperatura uniforme, lo que
aumenta la eficiencia de la máquina.
Un avance en el diseño de las máquinas de vapor fue la máquina de flujo
unidireccional, que utiliza el pistón como válvula y en la que todas las partes del
pistón permanecen aproximadamente a la misma temperatura cuando la
máquina está en funcionamiento. En estas máquinas el vapor se mueve
solamente en una dirección mientras entra en el cilindro, se expande y
abandona el cilindro. Este flujo unidireccional se consigue utilizando dos
conjuntos de orificios de entrada en cada extremo del cilindro, junto con un único
conjunto de orificios de salida en la parte central de la pared del cilindro. La
corriente de vapor que entra por los dos conjuntos de orificios de entrada se
controla con válvulas separadas. Las ventajas inherentes a este sistema son
muy considerables por lo que este tipo de máquina se utiliza en grandes
instalaciones, si bien su coste inicial es mucho mayor que el de las máquinas
convencionales. Una virtud de la máquina de flujo unidireccional es que permite
un uso eficiente del vapor a altas presiones dentro de un único cilindro, en lugar
de requerir un cilindro compuesto.
A muy baja presión. A principios del siglo XIX el ingeniero e inventor británico
Richard Trevithick y el estadounidense Oliver Evans construyeron motores sin
condensación con buenos resultados, utilizando vapor a alta presión. Trevithick
utilizó este modelo de máquina de vapor para mover la primera locomotora de
tren de todos los tiempos. Tanto Trevithick como Evans desarrollaron también
carruajes con motor para carretera.
Por esta época el ingeniero e inventor británico Arthur Woolf desarrolló las
primeras máquinas de vapor compuestas. En estas máquinas se utiliza vapor a
alta presión en un cilindro y cuando se ha expandido y perdido presión es
conducido a otro cilindro donde se expande aún más. Los primeros motores de
Woolf eran del tipo de dos fases, pero algunos modelos posteriores de motores
compuestos contaban con tres o cuatro fases de expansión. La ventaja de
utilizar en combinación dos o tres cilindros es que se pierde menos energía al
calentar las paredes de los cilindros, lo que hace que la máquina sea más
eficiente.
Trasporte de vapor Acuático
Barcos de vapor
La primera ocasión en que se utilizó el vapor para propulsar un barco fue
registrada en 1786; en ese año, el inventor estadounidense John Fitch botó un
pequeño barco de vapor en el río Delaware. Gracias a un diseño posterior,
alcanzó una velocidad de más de 10 km/h en un segundo barco de vapor que
construyó en 1788. El inventor estadounidense Robert Fulton construyó su
primer buque de ruedas en 1807, y a los pocos años se utilizaban nuevos barcos
de este tipo en aguas interiores y en las costas de Gran Bretaña y Estados
Unidos. Otro dato muy importante es que durante el siglo XIX se produjeron
grandes avances gracias a la tecnología producto de la energía a vapor. El
Clermont, primer barco de vapor eficiente, fue construido por el inventor
estadounidense Robert Fulton. Hizo su viaje inaugural en 1807 por el río Hudson
desde la ciudad de Nueva York hasta Albany, que realizó la distancia del viaje
de ida y vuelta de casi 483 Km. en 62 horas.
Primeros desarrollos
El primer barco de vapor que cruzó el Atlántico fue el buque correo de costa
remozado Savannah, que zarpó desde Savannah, Georgia, el 28 de mayo de
1819 y llegó a Liverpool el 20 de junio. Algunos otros barcos cruzaron después
el océano Atlántico, pero no se instituyó un servicio regular hasta 1840, año en
que la empresa recién creada Cunard Line estableció y mantuvo una línea
regular entre Gran Bretaña y Estados Unidos. Los buques eran de madera, con
ruedas accionadas por vapor, y llevaban también mástiles y un aparejo de barca
que se usaba cuando el viento era favorable. Sus dos máquinas le
suministraban una potencia de 1.500 CV, aproximadamente, y propulsaban el
barco a unos 9 nudos (16 km/h). Los primeros vapores estadounidenses que
mantuvieron un programa regular de viajes transatlánticos fueron el Hermann y
el Washington, que comenzaron sus servicios en 1847.
Entre los primeros intentos de aplicación de la propulsión por hélice, se cuenta la
construcción en 1804, por el inventor John Stevens, de un barco de vapor con
dos hélices.
Aunque obtuvo éxito en varias pruebas, Stevens se desalentó debido a
dificultades en la construcción de la máquina, y no prosiguió sus ensayos. En
1836, el sueco John Ericsson y el británico Francis Smith introdujeron, cada
uno de ellos por caminos independientes, la hélice que fue sometida a prueba
en una serie de barcos, entre los que destacó el navío británico Great Britain,
terminado en 1844. El buque tenía 98,2 m de eslora y una capacidad de carga
de casi 3.550 t. Una única máquina de 2.000 CV impulsaba el barco a una
velocidad de 12 nudos (22 km/h). El Great Britain se hundió en la costa de
Irlanda, pero soportó severos vientos y marejadas durante un invierno
completo, y fue reflotado más tarde sin daños. Este hecho eliminó una gran
parte de los prejuicios conservadores contrarios al uso del hierro como material
apropiado para la construcción de barcos.
Transporte de Vapor terrestre.
Vehículos
El vapor parecía el sistema más prometedor, pero sólo se logró un cierto éxito a
finales del siglo XVIII. El vehículo autopropulsado más antiguo que se conserva,
un tractor de artillería de tres ruedas construido por el ingeniero francés Nicolás
Cugnot en 1770, era muy interesante, pero de utilidad limitada.
Después, una serie de ingenieros franceses, estadounidenses y
británicos -entre ellos William Murdoch, James Watt y William Symingtoninventaron vehículos todavía menos prácticos.
En 1789 el inventor estadounidense Oliver Evans obtuvo su primera patente por
un carruaje de vapor, y en 1803 construyó el primer vehículo autopropulsado
que
circuló
por
las
carreteras
estadounidenses.
En Europa, el ingeniero de minas británico Richard Trevithick
construyó el primer carruaje de vapor en 1801, y en 1803
construyó el llamado London Carriage. Aunque este vehículo no
se perfeccionó, siguieron produciéndose mejoras en la máquina de vapor y en
los vehículos. Estos avances tuvieron lugar sobre todo en Gran Bretaña, donde
el período de 1820 y 1840 fue la edad de oro de los vehículos de vapor para el
transporte por carretera.
Eran máquinas de diseño avanzado fueron construídas por ingenieros
especializados como Gurney, Hancock o Macerone. Sin embargo, esa naciente
industria de fabricación tuvo una vida muy breve. Los trabajadores que
dependían del transporte con caballos para su subsistencia fomentaron unos
peajes o cuotas más elevados para los vehículos de vapor. Esta circunstancia
tenía una cierta justificación, ya que dichos vehículos eran pesados y
desgastaban más las carreteras que los coches de caballos.
Por otra parte, la llegada del ferrocarril significó un importante golpe para los
fabricantes de vehículos de vapor. La restrictiva legislación de la Locomotive Act
de 1865 supuso la restricción final a los vehículos de vapor de transporte por
carretera en Gran Bretaña, y durante 30 años impidió prácticamente cualquier
intento de desarrollar vehículos autopropulsados para el transporte por carretera.
Ferrocarril
Hacia 1830, poco después de que la línea de ferrocarril de Stephenson
empezara a dar servicio en Inglaterra, había en Estados Unidos 1.767 Km. de
ferrocarriles de vapor. En 1839, el trazado se había incrementado hasta 8.000
Km. y desde 1850 hasta 1910 el crecimiento del ferrocarril fue espectacular. La
construcción del ferrocarril estimulaba en gran parte la colonización y el
desarrollo del Oeste. El primer ferrocarril de Estados Unidos fue establecido en
1827, si bien el verdadero desarrollo se inició el 4 de julio de 1828, con el
Ferrocarril entre Baltimore y Ohio.
La implantación del ferrocarril en España fue relativamente rápida. En parte
estuvo estimulado por la carencia de vías fluviales de navegación interior, a
diferencia de otros países del entorno. La primera línea ferroviaria fue
inaugurada en 1848 entre las ciudades de Barcelona y Mataró. Hacia 1870 ya se
contaba con una red que era la tercera de Europa en extensión, tras Inglaterra y
Francia. No obstante, la decisión tomada en 1844 de dotar de un ancho de vía a
la red española de ferrocarril distinto al del continente europeo aisló a España
del resto del continente por este modo de transporte.
Después de un siglo de explotación privada del ferrocarril, en 1941 se crea la
Red de Ferrocarriles Españoles (RENFE), compañía de carácter estatal para la
explotación de una gran parte del trazado ferroviario.
En las últimas décadas, la mejora de la infraestructura viaria y el incremento de
la motorización de las familias y las empresas ha supuesto una disminución
acusada en el número de viajeros y de mercancías transportadas por el tren. Sin
embargo, la implantación de servicios de alta velocidad en los últimos años ha
supuesto una considerable recuperación de viajeros en trayectos muy concretos
de la red.
A partir de 1850 este modo de transporte comenzó su expansión en América
Latina. La red f erroviaria —financiada por capital francés, inglés o
estadounidense—, si bien benefició el transporte de mercancías y pasajeros, fue
diseñada generalmente respondiendo a las necesidades comerciales de sus
propietarios y países de origen y no atendiendo a las necesidades de los países
latinoamericanos. En Argentina, las líneas férreas tenían sus terminales en las
ciudades portuarias: Buenos Aires y Bahía Blanca, en el litoral, y Rosario, en el
río Paraná. Lo mismo ocurrió en la ciudad uruguaya de Montevideo. En Brasil, la
red ferroviaria se extendía a través de la meseta de São Paulo, dado que allí se
concentraba
la
producción
del
preciado
café.
El caso mexicano es paradójico, dado que los mismos ferrocarriles utilizados
para el transporte de productos terminaron siendo, a principios de siglo, la base
fundamental del transporte de los revolucionarios de Emiliano Zapata.
Fue por 1945 cuando los ferrocarriles comenzaron a ser deficitarios, dando
paso al transporte por carretera, tanto de pasajeros como —y sobre todo— de
mercancías. De este modo, y ya no resultándoles beneficiosos a sus dueños,
casi todo el sistema ferroviario de Latinoamérica fue estatizado, muchas veces
bajo un falso discurso nacionalista.
TRANSPORTE DE VAPOR AEREO
La idea del vuelo con aparatos propulsados por reacción es mucha más antigua
de lo que podemos suponer. Aún antes de que Newton enunciara su famosísima
ley, un filósofo alejandrino -Heron- la empleo para hacer girar su "eolipila", una
esfera hueca que recibía la presión del vapor obtenido de una caldera. El vapor
se producía en uno de los soportes del eje de la esfera y salía por dos toberas
tangenciales, cuya reacción originaba una cupla que la obligaba a girar. Si bien
este dispositivo no pasó de ser un juguete con mucha inventiva, esbozó en su
tiempo uno de los descubrimientos más rentables de la humanidad. En cambio,
el que si penso en la utilidad de las turbinas (del latín turbinis, remolino) para
producir trabajo fue el italiano Giovanni Branca, quien en 1629 ideo un
dispositivo para la molienda que se basaba en una rueda de paletas accionadas
por un chorro de vapor. El giro era transformado mecánicamente en
movimientos alternativos, y se lo aprovechaba para moler los granos en varios
morteros.
Uno de los sueños más viejos del hombre ha sido el de volar y es así como
inicia una búsqueda constante para inventar aparatos que le permitan surcar los
aires.
Lilienthal, inspirándose en los pájaros, creo un planeador con línea
aerodinámica que se utilizan en la actualidad para los mismos aviones.
También Leonardo Da Vinci que fue precursor de la creación de aeronaves. El
primer vuelo con motor fue realizado por los hermanos Orville y Wilbur Wright, el
17 de Diciembre de 1903 que duro solamente 12 segundos.
En 1700 fue cuando se experimento utilizando globos más ligeros que el aire y
así se invento el globo aerostático. Fue tanto el auge de los globos elevados por
Hidrogeno que se creo un globo de pasajeros, pero a lo inseguro de este medio
de transporte en la actualidad se utiliza como medio de diversión.
Surgen en la primera guerra mundial, pero en la segunda guerra mundial es
cuando se lleva a su límite a los aviones propulsados por hélice.
Hoy en día a sido suplantado por el avión propulsado por el motor de propulsión
a chorro.
El Helicóptero, alcanza su perfeccionamiento en la segunda guerra mundial,
ahora sirve como eficaz medio de transporte y servicio en las grandes ciudades
debido a que la mayoría de edificios y hoteles cuentan con ellos.
ANEXOS
Vías de ferroviarias
Locomotora de vapor
maquina de vapor
barcos de vapor
Maquina de vapor
Descargar