Enlace y estados de agregación de la materia

Anuncio
ENLACE Y ESTADOS DE AGREGACIÃ N DE LA MATERIA
Antes de comenzar, comentaremos sobre qué va nuestro trabajo. El tema es el enlace quÃ−mico y los
estados de agregación de la materia. Como hemos querido tocar todos los aspectos referentes al tema,
nuestro trabajo se divide fundamentalmente en dos partes:
La primera, sobre el enlace quÃ−mico, hace un balance teórico sobre qué es el enlace y cuáles son sus
tipos.
La segunda parte, sobre los estados de agregación, resume brevemente los estados más conocidos en los
que la materia se presenta, centrándose en un nuevo descubrimiento en esta área de la quÃ−mica.
OBJETIVOS
• ¿Por qué se unen los átomos?
• ¿Qué es el enlace?
• Tipos de enlace:
• Enlace iónico.
• Enlace covalente.
• Fuerzas intermoleculares.
• Enlace metálico.
• Estados de agregación de la materia.
• El condensado fermiónico.
• ¿POR QUà SE UNEN LOS ÔTOMOS?
Los átomos, moléculas e iones y se unen entre sÃ− porque al hacerlo se llega a una situación de
mÃ−nima energÃ−a, lo que equivale a decir de máxima estabilidad.
Son los electrones más externos (última capa), los también llamados electrones de valencia los
responsables de esta unión, al igual que de la estequiometrÃ−a y geometrÃ−a de las sustancias quÃ−micas.
• ¿QUà ES EL ENLACE?
El enlace quÃ−mico es la fuerza responsable de la unión estable entre los iones, átomos o moléculas que
forman las sustancias.
El concepto de enlace es fundamental en QuÃ−mica, ya que a partir de los distintos tipos de enlace resultan
las diferentes clases de sustancias con sus propiedades caracterÃ−sticas
Las unidades estructurales de las sustancias son iones, átomos y moléculas:
Actualmente, sabemos que los electrones del átomo situados en el nivel más externo, también
denominado nivel de valencia, tiene especial importancia en la formación de los enlaces. La transferencia o
la compartición de electrones de este nivel justifica los dos tipos fundamentales de enlace: iónico y
covalente.
En general, puede admitirse que los átomos de los elementos, al enlazarse, cumplen la llamada regla del
octeto. Al formarse un enlace, los átomos tienden a ceder, ganar o compartir electrones hasta que el
número de éstos sea igual a ocho en su nivel de valencia.
1
2. tipos de enlace
Cuando dos o más átomos interaccionan entre sÃ− para formar un agregado molecular, éste se forma
porque es más estable que los átomos separados que lo constituyen.
AsÃ− pues, según sea el modo en que los átomos interaccionen, podremos definir formas diferentes de
enlace, que se agrupan en los tres tipos principales: Iónico, covalente y metálico.
a) Enlace iónico.
En el enlace iónico uno o varios átomos ceden electrones a otros, para formar un conjunto de cationes y
aniones, que se ejercen entre sÃ− interacciones electrostáticas y que son la causa del enlace. Los elementos
que forman este enlace tienen electronegatividades muy diferentes.
Para que se forme un compuesto iónico se requiere la existencia de energÃ−as de ionización pequeñas
para los átomos de la clase A y afinidades electrónicas exotérmicas para los átomos B.
Aá ® A+ + 1e- y B + 1e- á ® B- á
A+ + B- á ® AB
(EJ: Cloruro de sodio.
El elemento sodio (izda) cede el electrón más externo al elemento cloro (dcha), quedándose ambos con 8
electrones en su última capa (regla del octeto). El catión sodio y el anión cloruro forman la molécula de
cloruro sódico debido a las fuerzas eléctricas ejercidas por sus cargas).
Propiedades de los compuestos iónicos:
Los compuestos iónicos se presentan en la naturaleza en forma sólida cristalina y se caracterizan por poseer
las siguientes propiedades:
• Tienen elevadas temperaturas de fusión y ebullición.
• Son sólidos que tienen una pequeña compresibilidad, por lo que presentan una gran dureza, pero suelen
ser frágiles.
• En el caso de que sean solubles, lo son en disolventes inorgánicos como el agua, pero no en disolventes
orgánicos como la gasolina, el benceno o el tetracloruro de carbono.
• En estado sólido, los compuestos iónicos no conducen la electricidad, pero, al fundirse o al disolverse, se
hacen conductores de la corriente eléctrica. Además, el paso de corriente eléctrica a través de
compuestos iónicos fundidos o disueltos produce la electrolisis del compuesto.
• Pueden presentar el fenómeno de la hidratación: Un hidrato es una sustancia que ha incorporado en su
estructura sólida moléculas de agua por adición. El agua de un hidrato se llama agua de hidratación o
agua de cristalización y la misma sustancia no hidratada recibe el nombre de compuesto anhidro (sin
agua).
Las propiedades de estas sustancias se justifican mediante el modelo de enlace iónico, cuya teorÃ−a fue
desarrollada en 1916 por el alemán Albrecht Kössel (1853-1927), al justificar la existencia de dicho enlace
por la transferencia de electrones de unos átomos a otros y la formación de los respectivos iones.
La fórmula de un compuesto iónico no indica la presencia de moléculas aisladas, sino únicamente una
relación numérica de iones de distinto signo.
GeometrÃ−a de los compuestos iónicos:
2
En 1912 el alemán Max von Laue (1879-1960), tratando de determinar la longitud de onda de los rayos X,
dirigió un haz de dichos rayos hacia un cristal de un sólido iónico. Al recoger los resultados sobre una
placa fotográfica comprobó que:
Los sólidos iónicos son sólidos cristalinos, es decir, sólidos que están formando un conjunto de iones
ordenado regularmente.
En los cristales iónicos, las fuerzas electrostáticas, tanto atractivas como repulsivas, mantienen unidos a los
iones (cationes y aniones), de forma que el empaquetamiento de los iones en la estructura cristalina origina la
forma más estable posible.
La geometrÃ−a de un sólido iónico viene dada por el tamaño relativo de los iones que lo componen y la
neutralidad eléctrica de la estructura del cristal.
à ndice de coordinación:
En un cristal iónico los iones más próximos a uno dado son iones de carga eléctrica de signo contrario,
y por ello se define el número o Ã−ndice de coordinación como el número de iones de signo contrario
más próximos que rodean a un ion dado en un cristal iónico.
Se puede hablar de Ã−ndice de coordinación del catión o del anión, adoptando ambos Ã−ndices de
coordinación el mismo valor para compuestos cuya estequiometrÃ−a sea de tipo AB. Si la fórmula del
compuesto es del tipo A2B, el Ã−ndice de coordinación de la especie B es doble que el de la A.
La relación entre el Ã−ndice de coordinación y el radio iónico determina la estructura cristalina del
sólido iónico. AsÃ−, la disposición más estable para el compuesto A+ B-, si tiene un Ã−ndice de
coordinación igual a 2 es lineal: A+ B- A+ B-...... A+B-, porque asÃ− se reduce al mÃ−nimo la repulsión
entre los iones cargados del mismo signo.
Las disposiciones estables para los Ã−ndices de coordinación 3, 4, 6 y 8 son, respectivamente, plana
triangular, tetraédrica, octaédrica y cúbica centrada en el cuerpo.
Estas disposiciones estables se corresponden con unas relaciones determinadas de los cocientes de los radios
catión / anión: r+/r-.
La relación del cociente entre los radios iónicos de las especies que forman el compuesto iónico determina
los Ã−ndices de coordinación permitidos y la geometrÃ−a o forma estable del sólido iónico en cuestión.
EnergÃ−a reticular de un sólido iónico: Ciclo de Born-Haber:
La energÃ−a reticular de un sólido iónico AB es la energÃ−a desprendida a la formación de un
compuesto iónico a partir de un mol de cationes A+ y un mol de aniones B-, ambos en estado gaseoso,
cuando se aproximan desde una distancia infinita hasta sus posiciones de equilibrio en la red cristalina.
Es decir, es la energÃ−a, Er, intercambiada en el proceso:
A+ (g) + B- (g) á ® AB(s) y es siempre una magnitud exotérmica.
No hay un método experimental para la determinación de la energÃ−a reticular, sin embargo se puede
obtener indirectamente utilizando un método desarrollado en 1919 por los alemanes Max Born (1882-1970)
y Fritz Haber (1868-1934) y que se conoce como Ciclo de Born-Haber.
3
(EJ: Ciclo de Born-Haber para el fluoruro de litio.1. Sublimación del sólido. Cambia el estado de una sustancia desde el estado sólido al gaseoso:
Li(s) --> Li(g)     EntalpÃ−a de sublimación = DH = 161 kJ/mol
2. Ionización del átomo. AquÃ− se ioniza Li para dar Li+ en la fase gas:
Li(g) --> Li+(g) + e-     Pot. Ionización = 520 kJ/mol
3. Disociación de la molécula gaseosa F2(g):
(1/2)F2(g) --> F(g)     1/2 EntalpÃ−a de disociación F2 = 77 kJ/mol
4. Formación de F- gaseoso:
F(g) --> F-(g) Â Â Â Â Electroafinidad F = - 328 kJ/mol
5. Formación del sólido a partir de iones gaseosos:
Li+(g) + F-(g) ---> LiF(s) Â Â Â Â EnergÃ−a reticular LiF = - 1047 kJ/mol
6. Cambio global (entalpÃ−a de formación):
Li(s) + F(g)---> LiF(s) EntalpÃ−a de formación LiF= - 617 kJ/mol
b) Enlace covalente.
Se produce al unirse elementos no metálicos entre sÃ− o con el hidrógeno; es decir, entre átomos de
electronegatividades semejantes y muy altas en general; que se hallan dispuestos en la derecha del sistema
periódico.
Este enlace se debe fundamentalmente a la compartición de electrones entre:
Ôtomos iguales: da lugar a un enlace homonuclear este tipo de enlaces es siempre apolar.
Ôtomos diferentes: da lugar a un enlace heteronuclear, aquÃ− pueden considerarse tres opciones:
a) Si la diferencia de electronegatividades entre ambos átomos es superior a 2'0 el enlace puede considerarse
iónico.
b) Si la diferencia de electronegatividades se encuentra en el intervalo desde 0'4 y 2'0 el enlace es covalente
polar.
c) Si la diferencia de electronegatividades es inferior a 0'4, el enlace puede considerarse covalente puro o
apolar, es decir como si se tratara de un enlace homonuclear.
Un enlace covalente está tanto mas polarizado cuanto mayor es la diferencia de electronegatividad. Este
efecto conocido como polarización del enlace covalente da lugar a acumulaciones de carga negativa en el
extremo del enlace mas cercano al átomo más electronegativo.
Enlace covalente simple: Se forma cunado dos átomos comparten un par de electrones. Es le caso de la
4
molécula de hidrógeno, H2, de la molécula de cloruro de hidrógeno, HCL, de la de agua, H2O, o de la
de el amonÃ−aco, NH3.
Enlace covalente doble: Se forma cuando dos átomos comparten un par de electrones. Es el caso de la
molécula de oxÃ−geno, O2, de la molécula de dióxido de carbono, CO2, o de la de eteno, C2H4.
Enlace covalente triple: Se forma cuando dos átomos comparten tres pares de electrones. Es el caso del
Nitrógeno, N2, Cianuro de hidrógeno, HCN, y del etino, C2H2.
Modelo de Lewis
Este modelo formulado por GN. Lewis nos permite visualizar las uniones atómicas covalentes. La estructura
de Lewis presenta las siguientes caracterÃ−sticas:
a) Cada átomo se indica con su sÃ−mbolo rodeado de unos puntos que representan los electrones del
último nivel. à stos pueden aparecer también como aspas o como rayas.
b) Los átomos se enlazan uniendo los electrones necesarios mediante lÃ−neas, de manera que al final cada
átomo esté rodeado de ocho electrones, siguiendo la regla del octeto.
TeorÃ−a de enlace de valencia
Según esta teorÃ−a, para que se forme un enlace covalente entre dos átomos es necesario lo siguiente:
- Cada átomo debe tener un orbital atómico ocupado por un solo electrón.
- Los dos electrones de los orbitales semiocupados han de tener espines contrarios, es decir antiparalelos.
El enlace covalente se forma al superponerse los dos orbitales semiocupados para formar un orbital común,
en el que se emparejan los dos electrones. Los demás orbitales quedan intactos. Cuanto mayor es la
superposición de los orbitales semiocupados, mayor es la estabilidad del enlace covalente.
Si los orbitales que se solapan son los más sencillos, tipos s y p, se pueden considerar dos tipos de enlace:
- Enlace Ï (sigma): Se forma por solapamiento frontal, esto es sobre el mismo eje, tanto de orbitales s como
de orbitales p consigo mismos o entre sÃ−.
- Enlace Ï“: Se forma por solapamiento lateral, es decir sobre ejes paralelos, de los orbitales p.
El enlace Ï es mas fuerte que el Ï“ puesto que su interpenetración es mayor.
Propiedades de las sustancias covalentes:
1. Los compuestos covalentes pueden presentarse en forma molecular o como redes cristalinas.
2. Las moléculas resultantes poseen bajos puntos de fusión y de ebullición en comparación a los
iónicos.
3. La solubilidad de estos compuestos, cuando son apolares, es elevada en disolventes apolares y nula su
capacidad conductora. Por el contrario en las moléculas polares cuanto mayor sea su polaridad mayor
será su solubilidad en disolventes polares asÃ− como la conductividad eléctrica.
5
Las redes covalentes: Son sustancias formadas por un número muy elevado de átomos iguales o distintos
unidos entre sÃ−. Se trata de cristales cuyos átomos se enlazan covalentemente. En general están formadas
a partir de carbono o de silicio. El primero se presenta en forma de diamante, o grafito, mientras que el
segundo lo hace como sÃ−lice (SiO2).
Debido a que las redes que forman los sólidos covalentes macromoleculares son extremadamente rÃ−gidas,
observamos que tienen altos puntos de fusión y ebullición, son duros malos conductores y, habitualmente,
insolubles. Cuanto mas simétrica sea la estructura, y por lo tanto mas compacta, mayor será la dureza y
los puntos de fusión y ebullición. Por eso el diamante es la sustancia quÃ−mica mas dura.
(Ejemplos de redes covalentes: Conformación laminar del grafito (izda) y empaquetamiento de cristales del
carbono 60 (dcha))
C) FUERZAS INTERMOLECULARES:
Los enlaces citados hasta el momento son intramoleculares por producirse en el interior de las moléculas,
pero también existen interacciones entre las propias moléculas que reciben el nombre de
intermoleculares. Al no ser extremadamente fuertes se les considera fuerzas de atracción.
Básicamente son interacciones dipolo-dipolo y existen 2 tipos de ellas:
Enlace de hidrógeno
También llamado puente de hidrógeno. Se produce entre aquellas moléculas que contienen un enlace
entre el hidrógeno y un átomo muy electronegativo y pequeño (F, O, N) .En estos casos, el elemento
unido al hidrógeno atrae gran parte de la carga del enlace que los mantiene unidos dejando una fuerte
densidad de carga positiva sobre el hidrógeno y negativa sobre sÃ− mismo, lo que posibilita que las
moléculas pueden unirse entre sÃ− por mera atracción electroestática, que sin ser muy grande, al menos
sÃ− es apreciable. Los compuestos que experimentan estas interacciones presentan como principal
anomalÃ−a, los altos valores de sus puntos de ebullición y de fusión.
Fuerzas de Van der Waals
Son fuerzas de tipo electroestático que unen a las moléculas tanto polares como apolares.
- En las moléculas polares, los dipolos existentes pueden interaccionar entre sÃ−, produciéndose
débiles uniones entre ellos.
- En las moléculas apolares, la movilidad de las nubes electroestáticas al desplazarse puede provocar una
cierta asimetrÃ−a eléctrica lo que produce la formación de dipolos instantáneos en ellas. à stos a su
vez, pueden originar dipolos inducidos en las moléculas cercanas produciéndose las consiguientes
atracciones entre ellos. A estas últimas se las denomina fuerzas de dispersión o de London.
En ciertas ocasiones, una molécula polar (dipolo), al estar próxima a otra no polar, induce en ésta un
dipolo transitorio, produciendo una fuerza de atracción intermolecular llamada dipolo-dipolo inducido.
d) Enlace metálico.
Los elementos metálicos, que constituyen la mayorÃ−a de los elementos conocidos, presentan unas
propiedades fÃ−sicas caracterÃ−sticas, muy diferentes de las propias de las sustancias iónicas o de las
covalentes. Ello es debido al tipo de enlace entre sus átomos: el enlace metálico.
6
El enlace metálico es la fuerza de unión existente entre los átomos de los metales, a la que deben su
estabilidad y propiedades las redes cristalinas.
A temperatura y presión ambiente, los metales se presentan formando cristales que suelen pertenecer a uno
de estos tres tipos de estructura: cúbica centrada en el cuerpo, cúbica centrada en las caras y hexagonal
compacta.
Modelos de enlace metálico
• Modelo de nube electrónica.
La red cristalina metálica está formada por iones del metal, es decir, átomos que han cedido sus
electrones de valencia. à stos están deslocalizados en el conjunto del cristal y disponen de libertad de
desplazamiento a través de los huecos existentes entre los iones, constituyendo asÃ− la denominada nube
electrónica. La estabilidad de la red cristalina es debida a la interacción entre los iones metálicos y la
nube de electrones deslocalizados.
• Modelo de enlace covalente deslocalizado.
El enlace metálico es un caso especial de enlace covalente en que el número de electrones de valencia de
los átomos es menor que el de enlaces formados. AsÃ− , en los metales alcalinos, cada átomo de una celda
unidad está rodeada de otros 8 átomos situados en los vértices; el átomo central aporta un electrón,
mientras que los 8 átomos vecinos aportan uno en total, pues cada uno pertenece a 8 celdas unidad. Este
enlace formado por un par de electrones que une a la vez el átomo central con 8 vecinos se denomina enlace
covalente deslocalizado.
• Modelo de bandas.
La aplicación de la mecánica cuántica al modelo de nube electrónica proporcionó un nuevo modelo, el
modelo de bandas, que interpreta la conductividad eléctrica de los metales de manera interesante.
El modelo de bandas se basa en la teorÃ−a de orbitales moleculares por la cual al enlazarse los átomos se
forman tantos orbitales moleculares como orbitales atómicos habÃ−a. Si se combinan infinidad de orbitales
atómicos de igual energÃ−a se formarán dos bandas formadas por orbitales moleculares de muy parecida
energÃ−a, una de menor energÃ−a formada por los orbitales moleculares enlazantes (banda de valencia) y la
otra de mayor energÃ−a por los antienlazantes (banda de conducción). El modelo de bandas viene
respaldado por los espectros de emisión. Las lÃ−neas en los espectros de emisión de los metales en estado
gaseoso se transforman en bandas en el caso de metales en estado sólido.
En los metales ambas bandas están muy juntas, de manera que los electrones saltan con mucha facilidad de
la banda de valencia a la de conducción por donde circulan con gran facilidad a través de todo el cristal
metálico. Según el grado llenado de las bandas de valencia y su diferencia energética, podemos
encontrar:
• Metales conductores: Poseen bandas de valencia parcialmente llenas o llenas superpuestas a bandas
vacÃ−as. En ambos casos se necesita muy poca energÃ−a para que los electrones de orbitales llenos se
exciten a orbitales vacÃ−os más energéticos. Estos electrones pueden moverse por todo el metal
constituyendo la corriente eléctrica. Esto sucede en los metales alcalinos, alcalinotérreos y de
transición.
• Metales semiconductores: Tienen bandas de valencia llenas que no se superponen a las bandas vacÃ−as.
Pero la diferencia energética es tan pequeña que basta una mÃ−nima elevación de la temperatura para
excitar los electrones de más energÃ−a a la banda de conducción vacÃ−a. Esto sucede, por ejemplo, en
7
el silicio y en el germanio.
• Aislantes: La diferencia entre las bandas de valencia llenas o parcialmente llenas y las vacÃ−as es grande,
por lo que el paso de electrones de una a otra no es posible.
3. Estados de agregación
Si ahora mismo pensamos en cuáles son los estados de agregación de la materia, nos vienen a la mente las
tres formas clásicas en las que ésta se presenta:
Sólido: Estado caracterizado por un volumen y forma definidos (se resiste a la deformación). En la fase
sólida de la materia, los átomos tienen un orden espacial fijo, pero esto no impide al sólido el ser
deformado o comprimido hasta cierto punto. Debido a que toda materia tiene algo de energÃ−a cinética, los
átomos, aún en el sólido más rÃ−gido, se mueven ligeramente, aunque este movimiento es invisible. Sus
moléculas están unidas, tienen poca libertad de movimiento y la atracción entre moléculas es grande.
LÃ−quido: Fluido cuyo volumen es constante en condiciones de temperatura y presión constante y su forma
está definida por su contenedor. Un lÃ−quido ejerce presión en el contenedor con igual magnitud hacia
todos los lados. Los lÃ−quidos presentan tensión superficial y capilaridad, generalmente se expanden
cuando se incrementa su temperatura y se comprimen cuando se enfrÃ−an. Las moléculas en el estado
lÃ−quido ocupan posiciones al azar que varÃ−an con el tiempo. Las distancias intermoleculares son
constantes dentro de un estrecho margen.
Gaseoso: En los gases, las fuerzas que mantienen unidas las partÃ−culas son muy pequeñas. En un gas el
número de partÃ−culas por unidad de volumen es también muy pequeño.
Las partÃ−culas se mueven de forma desordenada, con choques entre ellas y con las paredes del recipiente
que los contiene. Esto explica las propiedades de expansibilidad y compresibilidad que presentan los gases:
sus partÃ−culas se mueven libremente, de modo que ocupan todo el espacio disponible.
Sin embargo, estudios cientÃ−ficos hasta finales del s XX que existÃ−an al menos otros dos estados en los
que la materia podÃ−a presentarse:
El Plasma: El plasma es un gas ionizado, esto quiere decir que es una especie de gas donde los átomos o
moléculas que lo componen han perdido parte de sus electrones o todos ellos. AsÃ−, el plasma es un estado
parecido al gas, pero compuesto por electrones, cationes (iones con carga positiva) y neutrones. En muchos
casos, el estado de plasma se genera por combustión.
Condensado de Bose-Einstein: Es un estado de agregación de la materia que se da en ciertos materiales a
muy bajas temperaturas. La propiedad que lo caracteriza es que una cantidad macroscópica de las
partÃ−culas del material pasan al nivel de mÃ−nima energÃ−a, denominado estado fundamental. Teorizado
en la década de 1920 por Satyendra Nath Bose y Albert Einstein, su comprobación experimental no se
produjo hasta 1995.
Sin embargo, el desarrollo de la quÃ−mica fÃ−sica no se estancó en estos descubrimientos, sino que sigue
experimentando dÃ−a a dÃ−a sobre los estados de agregación de la materia.
AsÃ− fue como, a inicios del siglo XXI (Diciembre 2003) un grupo de cientÃ−ficos de la Universidad de
Colorado/NIST llegó al descubrimiento del que podrÃ−amos llamar “el sexto estado de la materia”: El
condensado fermiónico.
4. CONDENSADO FERMIÃ NICO:
En realidad, poca información puede aportarse sobre este nuevo estado. Debido a su reciente descubrimiento,
8
sus propiedades básicas son prácticamente desconocidas y, por tanto, el condensado fermiónico sigue
siendo objeto de estudio.
Podemos decir que su descubridora creó el estado fermiónico enfriando 500.000 átomos de potasio (K) 40
hasta menos de una millonésima de grado por encima del cero absoluto o cero Kelvin (en el cual las
partÃ−culas permanecerÃ−an inmóviles), y los átomos fluÃ−an sin viscosidad.
Los átomos que forman el condensado fermiónico se llaman fermiones, y se definen como partÃ−culas
pertenecientes a una familia de partÃ−culas elementales caracterizada por su momento angular intrÃ−nseco o
espÃ−n. Según la teorÃ−a cuántica, el momento angular de las partÃ−culas sólo puede adoptar
determinados valores, que pueden ser múltiplos enteros o semienteros de una determinada constante h
(constante de Planck). Los fermiones (partÃ−culas que presentan estados totalmente antisimétricos), entre
los que se encuentran los electrones, los protones y los neutrones, tienen múltiplos semienteros de h, por
ejemplo ±1/2h o ±3/2h. Los bosones (estados simétricos) como por ejemplo los mesones, tienen un
espÃ−n que corresponde a un múltiplo entero de h, como 0 ó ±1. Los fermiones cumplen el principio de
exclusión de Pauli, al contrario que los bosones.
Por otro lado, sabemos que el condensado fermiónico se encuentra estrechamente relacionado con los
condensados de Bose-Einstein, ya que los dos están formados por átomos (en los CBE - bosones, en el CF
- fermiones) que, a bajas temperaturas, se unen para formar un cuerpo único.
La diferencia radica en las propiedades de estas partÃ−culas elementales (anteriormente dichas):
Los bosones son sociables, esto es, les “gusta “agruparse. Como regla general, cualquier átomo con un
número par de electrones+protones+neutrones es un bosón
Los fermiones, por otra parte, son antisociales. Por el principio de exclusión de Pauli, se les prohÃ−be
agruparse en un mismo estado cuántico. Cualquier átomo con un número impar de
electrones+protones+neutrones, como el potasio-40, es un fermión.
El grupo de cientÃ−ficos que realizó esta experiencia descubrió que se podÃ−a anular el comportamiento
antisocial de los fermiones aplicando cuidadosamente un campo magnético sobre los mismos.
Estas imágenes muestran el comportamiento del condensado fermiónico ante la actuación de campos
magnéticos de diferente intensidad. De izquierda a derecha observamos que, a pequeñas variaciones del
campo magnético, las interacciones atractivas entre los fermiones aumentan considerablemente.
El campo hace que los átomos se emparejen, y la fuerza de esta unión puede regularse ajustando el campo
magnético. AsÃ− pues, los átomos de potasio 40 adquieren un comportamiento caracterÃ−stico de los
bosones. Un par de fermiones se une a otro par y asÃ− sucesivamente, lo que llega a formar el condensado
fermiónico.
Aportaciones de este nuevo descubrimiento a la comunidad cientÃ−fica:
A este nuevo estado de agregación se le relaciona estrechamente con el fenómeno de la superconductividad.
Un superconductor (en resumen) es un material cuyos pares de electrones (fermiones) fluyen sin viscosidad,
esto es, tienen resistencia cero o conductividad infinita [diapositiva: diagrama de la superconductividad para
el caso del mercurio. Por debajo de su temperatura crÃ−tica, su resistencia es nula] y el campo magnético
inducido es cero cuando el superconductor es enfriado por debajo de su temperatura crÃ−tica en un débil
campo magnético externo (el flujo magnético es expedido del superconductor) (efecto Meissner
[diapositiva]). Estos materiales son muy importantes y despiertan un gran interés comercial. Con ellos
9
podrÃ−an darse avances tecnológicos tales como trenes levitantes u ordenadores ultrarrápidos.
El problema radica en que los superconductores actúan a temperaturas excesivamente bajas (por debajo de
-135 ºC, aproximadamente) por lo que su utilización resulta muy costosa. Sin embargo, con la “llegada”
del condensado fermiónico este problema puede ser erradicado porque al poder ajustar la fuerza de unión
entre los electrones mediante el campo magnético (como comentábamos antes), podrÃ−amos conseguir
un superconductor a temperatura ambiente, lo que facilitarÃ−a en gran medida el avance de la ciencia y
aumentarÃ−a notablemente nuestra calidad de vida diaria.
Y por último, aquÃ− se os muestra las direcciones de internet que hemos empleado para la elaboración de
este trabajo, Si a alguno/a le ha interesado el tema, aquÃ− podrá obtener información más ampliada;
aunque tampoco mucho, ya que los condensados fermiónicos están siendo estudiados actualmente y, por
tanto, nos son casi completamente desconocidos.
8
Sustancias covalente atómicas
Sustancias covalentes moleculares
Enlaces intermoleculares
Moléculas
Enlace covalente
Ôtomos
Compuestos iónicos
Sustancias metálicas
Enlace metálico
Enlace iónico
Iones
10
Descargar