Teoria de límites.

Anuncio
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
I.E.S. “La Ería”
Año académico: 2006-2007
Departamento Didáctico de
Matemáticas
Nivel: Bach.
CCSS
Tema: Límites de sucesiones y funciones.
Complementos teórico-prácticos.
Realizados por: D. Juan José Menéndez Díaz, Ldo. en CC. Físicas por la U.C.M. y profesor agregado de Matemáticas en E.S.
Teoría de Límites.
 Sucesiones: una sucesión numérica no es más que una lista, o serie, ordenada
de números reales.
 Ordenada, ya que si los números no ocupan una posición bien determinada,
como las cifras que hay dentro del bombo de un sorteo de lotería, no forman
una serie, es en el momento de su extracción ordenada cuando configuran la
serie de extracción, de modo que cada cifra sale una o varias veces, paro cada
vez en una posición distinta.
 El valor de los números en la serie puede o no depender de la posición en
la que éstos se encuentran, de ahí que puede haber series aleatorias, sin ninguna relación en cuanto al orden y valor de los números, y series que siguen
una ley o criterio de formación.
 Término de una serie es cada uno de los elementos que la componen y consta
de dos partes bien diferenciadas:
 Orden del término, que nos indica qué posición ocupa dentro de la sucesión el número en cuestión, así el primero, el segundo, ....., el vigésimo, etc. ...
 Valor del término, es el valor numérico asociado al mismo.
 Notación: para referirnos a un término de la sucesión lo haremos poniendo
a n  b , donde n indica el orden o posición del término, a es el nombre genérico del
término, y b es el valor numérico del término.
 Terminología: para nombrar términos de una sucesión utilizaremos letras
minúsculas, a, b, c, etc. .... junto con un subíndice, un número, que nos indica
la posición dentro de la serie. Cuando nos refiramos a una posición genérica
utilizaremos una letra minúscula n, k, i, j, etc. ...
37
 Ejemplo: a 7 
nos dice que el término séptimo de la serie tiene el
4
valor numérico asociado de treinta y siete cuartos.
 Término general: es la forma en la que nos referiremos a un término cualquiera de la sucesión, se suele indicar por a n ; a k ; a i etc. ..

Términos equidistantes de los extremos: son aquellos que se
encuentran a igual distancia del primero y del último, por ejemplo:
 2 ; 6 ; 10 ; 14 ; 18 ; 22 , son equidistantes el 6 y el 18 y el 10 y el 14.
 Si nos fijamos en el orden, el segundo y el penúltimo, el tercero y el antepenúltimo, en general el a k 1 y el a n  k , es decir a 2 y a n -1 ; a 3 y a n - 2 , etc. ...
Definiciones y conceptos.
Página.- i
Dpto. Didáctico de Matemáticas.

Teoría de Límites.
Clases de sucesión:
 Limitadas, cuando constan de un número finito de términos, 10, 12, 40, etc.
 1 ; 1.1 ; 1.2 ; 1.3 ; 1.4 ; 1.5 ; 1.6 ; 1.7 ; 1.8 ; 1.9 ; 2
 Ilimitadas, cuando el número de términos es infinito.
 1 ; 2 ; 3 ;  ; n  1 ;  
 Acotadas superiormente: una sucesión a n  está acotada superiormente
si existe un número real M,, igual o mayor que todos los elementos de la sucesión.
 a n  acotada superiormente  M  ¡ / M  a n , n  ¥ *
 1 2 3 
 0, , , L   1 , acotada superiormente
n2  4 5 6 
por 1 e inferiormente por 0.
 Acotadas inferiormente: una sucesión bn  está acotada inferiormente si
existe un número real m,, igual o menor que todos los elementos de la sucesión.
 bn  acotada inferiormente  m  ¡ / m  bn , n  ¥ *

n 1
Ejemplo: a n 
1 3 5

  , , ,L   0 acotada superiormente
n 2  1  2 5 10 
por 0,5 e inferiormente por 0.
 Acotadas: cuando lo está superior e inferiormente.
 Positivas: una sucesión a n  se define positiva si p  ¥ * / n  p, a n  0 .

Ejemplo: bn 
 Ejemplo: a n 
2n  1
n2  9
, desarróllala y compruébalo.
8n  12
 Negativas: una sucesión a n  se define negativa si p  ¥ * / n  p, a n  0
 Ejemplo: b n 
5n
, desarróllala y compruébalo.
n 1
 Alternantes: una sucesión a n  se dice alternante cuando el signo de sus
términos se va alternando entre positivo y negativo.
n
 Ejemplo: cn   1   2n  1 , desarróllala y compruébalo.
 Monotonía:
 Monótonas crecientes: una sucesión a n  es creciente si cada término de
la misma es igual o mayor que el inmediatamente anterior al mismo.
 a n  es creciente  a1  a 2  L  a n
 Monótonas estrictamente crecientes: una sucesión a n  es estrictamente creciente si cada término de la misma es mayor que el inmediatamente
anterior al mismo (no puede haber ninguno que sea igual).
 a n  es estrictamente creciente  a1  a 2  L  a n

Definiciones y conceptos.
Ejemplo: a n 
n4
, desarróllala y compruébalo.
n
Página.- ii
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
 Monótonas decrecientes: una sucesión a n  es decreciente si cada término de la misma es igual o menor que el inmediatamente anterior al mismo.
 a n  es decreciente  a1  a 2  L  a n
 Monótonas estrictamente decrecientes: una sucesión a n  es estrictamente decreciente si cada término de la misma es menor que el inmediatamente
anterior al mismo (no puede haber ninguno que sea igual).
 a n  es estrictamente decreciente  a1  a 2  L  a n

Ejemplo: b n 
1
, desarróllala y compruébalo.
n
 Monótonas constantes: aquella en la que todos los términos toman el
mismo valor constantemente.
 a n  es constante  a1  a 2  a3  L  a n  k
 Punto de acumulación, aproximación: un punto a es un punto de acumulación de una sucesión a n  cuando en cualquiera de sus entornos reducidos
 a,   x   / a    x  a  , y x  a  a,   a , por pequeño que sea ,
existen términos de la sucesión.
2n  3  7 9 11 13 
 Ejemplo: a n   1n 
 5, ,  , ,  , L  , se puede ver que los
n
5
 2 3 4

términos negativos van tendiendo hacia −2 y los positivos hacia 2.
 Límite de una sucesión: se dice que una sucesión a n  tiene límite un número
a cuando, fijado un entorno del punto a, de radio tan pequeño como queramos, se
puede encontrar un término, ap, de la sucesión a partir del cual todos los demás
caen dentro del entorno.
  lím a n  a    0, n  ¥ / p  n, a p    a,   , en términos de distancia
n 
 lím a n  a    0, n  ¥ / p  n, a  a p  
n 
 Ejemplo: a n 
2n  4
tiene límite y este vale 2, ya que, aún fijando un
n
radio de entorno grande, como de una décima, tenemos que para que se
cumpla la definición 2 
2p  4
p

4
p
1

 p  40 , es decir, a partir
10
del término 41 todos ellos están dentro del entorno de 2,   2,101  . Si
queremos podemos fijar un entorno aún más pequeño, por ejemplo de
diezmilésimas, en cuyo caso 2 
2p  4
4
n 
Definiciones y conceptos.
2n  4
 2.
n
Página.- iii

1
 p  40000 , es
p
p 10000
decir que a partir del término 40001, todos los demás estarán dentro del
entorno   2,104  . Como la sucesión es ilimitada podemos concluir que
 lím

Dpto. Didáctico de Matemáticas.
Teoría de Límites.
 Unicidad del límite: si una sucesión tiene límite éste es único.
 Demostración (reducción al absurdo): supongamos que existieran dos límites,
a y a’, distintos para una misma sucesión a n  , necesariamente podremos encontrar dos entornos, uno de a y otro de a’, disjuntos, es decir, sin puntos o
elementos comunes, en términos de conjuntos,
en   a,  y   a ',  ' /   a,   a ',  '   , del siguiente modo:
 Sea   a  a ' , es decir, la distancia entre los dos límites, tomemos
entonces  

y ' 
3
a


, de este modo los entornos ya no solapan.
3
a’


’
 Por otro lado, de la definición de límite tenemos:
’

 Si  lím a n  a  n1  ¥ * / p  n1 , a p   a, 
3
 Si  lím a n  a '  n 2  ¥ * / p  n 2 , a p   a, 
n 



3
 Sea ahora n  máx  n1 ,n2  , existirá entonces p  ¥ / p  n , de modo
n 
que por ser p  n 2 y al mismo tiempo ser p  n1 , entonces ap estará o
pertenecerá simultáneamente a ambos entornos, con lo que
  a,    a ',  '   en contradicción a como hemos construido éstos,
luego no puede ser y el límite ha de ser único.
 Las sucesiones que tienen por límite un número real finito se llaman convergentes.
 Si una sucesión tiene límite entonces está acotada superior e inferiormente.
Lo contrario no es cierto necesariamente
 Por definición de límite   a,1 dentro del cual se encuentran todos los
términos de la sucesión a partir de un cierto término p-ésimo. Sea entonces k  máx a1 , a 2 , a 3 L a p , a  1 , éste será una cota superior para la
sucesión, y del mismo modo m  mín a1 , a 2 , a 3 L a p , a  1 será una
cota inferior para la misma.
 Toda sucesión monótona y acotada es convergente.
 Por ser monótona será creciente o decreciente, luego una de las dos de
las siguientes afirmaciones y demostraciones será suficiente.
 Toda sucesión decreciente y acotada inferiormente tiene límite, y éste coincide con su extremo inferior.
 Se demuestra que si a n  es una sucesión monótona decreciente y
acotada inferiormente, tendrá un extremo inferior m, el cual será a su
vez el límite de la sucesión, ya que m será la mayor de todas las cotas
inferiores y si  es un número positivo, m +  no puede ser una cota
inferior. Lo cual nos lleva a que debe existir un término ap de la sucesión para el que se verifique que m +  > ap > m. Por otro lado, por ser
Definiciones y conceptos.
Página.- iv
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
una sucesión monótona decreciente
n  p  m    a p  a n  m  a n   m,   , es decir, m es el límite
de la sucesión.
 Toda sucesión creciente y acotada superiormente tiene límite, y éste coincide con su extremo superior.
 Si a n  es una sucesión monótona creciente y acotada superiormente,
tendrá un extremo superior k, el cual será a su vez el límite de la sucesión, ya que k será la menor de todas las cotas superiores y si  es un
número positivo, k −  no puede ser una cota superior. Lo cual nos lleva
a que debe existir un término ap de la sucesión para el que se verifique
que k −  < ap < k. Por otro lado, por ser una sucesión monótona creciente n  p  k    a p  a n  k  a n   k,   , es decir, k es el
límite de la sucesión.
 Operaciones con límites:
a n  lím b n  a  b , siendo a y b
 a n  b n   lím
 Límite de una suma:  lím
n 
n 
n 
los límites respectivos de a n  y bn 
 Lo mismo sería si se tratara de una resta.
a n  lím b n  a  b , siendo a y b
 a n  b n   lím
 Límite de un producto:  lím
n 
n 
n 
los límites respectivos de a n  y bn 
 a  lím a n a
n
  n   , siendo a y b los límites res
bn b
 b n  lím
n 

 Límite de un cociente:  lím
n  
pectivos de a n  y bn  , siempre que b  0

an
 a n b   lím
 Límite de una potencia:  lím
n 
n 
n

lím bn
n 
 a b , siendo a y b los
límites respectivos de a n  y bn 
bn  k  b ,
 k  bn   k  lím
 Límite de una constante por una sucesión:  lím
n 
n 
siendo b el límite de bn 

an
 a n k   lím
 Límite de la potencia de una sucesión:  lím
n 
n 

k
 a k , siendo a
el límite de a n 
 Cálculo práctico de límites:
 Se trata de sustituir n por su valor en el límite, , y realizar las operaciones
indicadas, teniendo en cuenta que:
Definiciones y conceptos.
Página.- v
Dpto. Didáctico de Matemáticas.

Teoría de Límites.
       ;        ;   
p
  ;
 si p es par
; k     , con k  ¡ constante ;

 si p es impar
k     , con k  ¡ constante ;              ;
  
p
             ;
k     , con k  ¡ constante y
k     , con k  ¡ constante y
k     , con k  ¡ constante y
k     , con k  ¡ constante y
k
  
 
k
 
k

 
k  0;
k  0;
k  0;
k  0;
 0, con k  ¡ constante ;
 , con k  ¡ constante y k  0 ;
 , con k  ¡ constante y k  0 ;
 , con k  ¡ constante y k  0 ;
k
 
 , con k  ¡ constante y k  0
k
 Ejemplos:
3n 2 2  7n 2  1 2
 3n 2  7n  1 
n
n
n 
 E1.- lím 
  lím
n 
n  5n 2
2
9
4n
 5n  4n  9 


n2
n2
n2
3  7  1 2 3  7  1 2 3  0  0 3
n

n 
 
 lím

n 
5 4  9 2
5 4  9 2
500
5
n

n


3n  2
2
2
 E2.- lím
 lím  3    3   3
n 
n 
n

n

3n  2

lím
3 2

 2  3  1  4 9    4
2



 
76 4 
7



4 1
4 1
n
 42
 E4.- lím
n 
2 5
2 5
2
n

Definiciones y conceptos.
3n  2
 2n 2  3n  1  4n 9
 2n 2  3n  1 n  4n 9
E3.- lím 
 lím 



n 
n 
 7n 2  6n  4 
 7n 2  6n  4 
Página.- vi
3
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
1
4 8 n  4 8
E5.- lím  
 4      4   1
n 
 n n2
  

6
1
 E6.- lím  4    4  61  4  6  4   4
n 
6n 


 El número e, o número de Neper: definimos el número e como el límite de


1

1
la sucesión a n  1   , es decir, e = lím
1 + 
n 

n
 n
n
n
 Expresiones indeterminadas, tipos de indeterminaciones:


, se suele dar al calcular el límite de sucesiones definidas como cociente de

n 2  4n  3
polinomios a n 
. Para superar la indeterminación debemos dividir
3n 2  5
todos los términos de ambos polinomios por n elevado al mayor exponente que
aparezca en uno cualquiera de los dos polinomios, o en ambos (ver ejemplos 1
y 3), antes de proceder a calcular de nuevo el límite. En estos casos se suelen
dar tres circunstancias básicas:
0, si p  q
Pp  x   a
  , si p  q , donde p y q son los grados de los polino lím
n 
Qq  x   b
, si p  q
mios P y Q respectivamente, y a y b son los coeficientes de los términos
de mayor grado de P y Q, respectivamente.
    , suele darse en muy variados casos, así pues veamos algunos y cómo
superarla en cada caso según la circunstancia:
 n 2  n  1 n3  1 
 E1.- lím 

     , en este caso procedemos prin 

n
n2  1 
mero a realizar las operaciones de dentro del paréntesis antes de volver
a calcular el límite, así
n 2  n  1 n 3  1 n 4  n 3  n 2  n 2  n  1  n 4  n n 3  1
y el



n
n2  1
n3  n
n3  n
n 3  1 1  0 1
límite ahora será lím


 1
n 
n3  n
1 0
1
 E2.- lím
n 


n 2  1  n     , en este caso procederemos como si
hiciéramos una racionalización a la inversa, multiplicamos y dividimos
todo por el “conjugado” de la expresión, así pasaríamos al nuevo límite

lím

n2  1  n 
n2  1  n
  lím n
2
 1  n2
1
0
n 
n2  1  n
n2 1  n   
n n


 E3.- lím
, en este caso procederemos a hacer una
n 
n 1  n   
doble racionalización inversa del numerador y del denominador,
n 
Definiciones y conceptos.
Página.- vii

Dpto. Didáctico de Matemáticas.
Teoría de Límites.
quedándonos, una vez reducidos términos, el siguiente límite
n  n    n 1  n
 n  n   lím
lím
 lím
n 1 n    n  n
n  1  n 
2
n 
2
n 
2
2
n 1  n
n 
n n

1 1
 1
1 1
 1 , suele darse en los límites de potencias de base polinómica y exponente
polinómico. Siempre podemos superarla con la siguiente aproximación, si
b
lím  a n  n  1 , entonces el verdadero valor del límite coincidirá con el de la
n 
lím  bn  a n 1
expresión en 
.
n
 n3

 E1.- lím 
  1 , podemos resolver aplicando la fórmula o
n 
n 2
razonando, personalmente prefiero razonar ya que las fórmulas tienden
al olvido, así pues intentaré hacer que mi límite se parezca lo más posible al del número e, para ello sumo y resto uno a la expresión del parénn
n
n

 n 3n 2

n3 
1 
 1  lím 1 
 lím 1 
tesis, lím 1 


n 
n 
n 
 n2 

n2

 n 2
que ya se va pareciendo más al límite del número e, el último arreglo
nos deja
n
lím
n

1 

n  n  2

1


1 
1   n  2  nlím
 
n2 
 1 
lím 1 
 

e
  lím
 
por definición e
n 
n  


 n 2

n

2





ya que el límite del exponente es 1. Hazlo aplicando la fórmula y
comprueba el resultado.
n 2
n
n2
n

n 
 E2.- lím  p
 1 , vamos a intentar hacerlo de modo parecido al


n 
 n 1 
anterior, así
n
n
1
n
  n  1p 

p 



n
n



p
lím 
 lím 1 
 1  
  lím


n 
n  
n  


 n 1 
 n 1 
 n 1  
n
n
n
1  n 1 
n 1

  n  n  1  1p 
p

n 1


1
1   p n 1





 lím 1 
 lím  1 



1 
 
  nlím
n  
n 
 


n

1


n

1


n

1
 







lím
n
 lím 1 1 
 n  p n 1
1
n  
p
p
n

1


  

e
 e
 por definición e 


n 1
Definiciones y conceptos.
Página.- viii
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
 3n 2  5 
 E3.- lím 

n 
 3n 2  9 
n 2 1
 3n 2  5 
 lím 1 
 1
n 
 3n 2  9 
n 2 1



14  14
1 2 
 nlím

 
 3n 9 
  


por definición e




3n 2  9
 3n 2  5 
 1  lím 

n 
 3n 2  9 

n 2 1

 3n 2  5  3n 2  9 
 lím 1 

n 
3n 2  9


n 2 1

14 
lím  n 2 1 

3n 2 9 
n  



14
e
3
 3 e14  e4  3 e2
0   , siempre se puede convertir en una indeterminación del tipo

0
1

 0 
1

 




, ya que

 Límites de funciones: sea f(x) una función real de variable real definida en el
intervalo abierto I   a, b  , y sea c   a,b , f no tiene porqué estar necesariamente
definida en c, entonces decimos que tiene límite en el punto c, y escribimos
 lím f  x   L , si   0 y   0 , respectivamente radios de entornos de L y c,
x c
tales que L  f  x    siempre que c  x   , o en otros términos,
 lím f  x   L    0,   0 / f  x     L,   siempre que x    c,  
x c
 Límites laterales: siempre nos podemos acercar a un punto del intervalo por dos
sentidos, por la derecha y por la izquierda del punto, y así podemos decir que hay
dos límites en función de por dónde nos aproximemos al punto, de este modo:
 Límite lateral por la derecha:  lím f  x   L1    0 y   0 tales que si
x c
tomamos valores por la derecha de c, esto es, x   c,  , entonces las imágenes estarán todas comprendidas en un entorno de L1, f  x    L1 ,   .
 Límite lateral por la izquierda:  lím f  x   L2    0 y   0 tales que si
x c 
tomamos valores por la izquierda de c, esto es, x   c,  , entonces las imágenes estarán todas comprendidas en un entorno de L2, f  x    L2 ,   .
 Límites y continuidad: una función real de variable real definida en un intervalo abierto I   a, b  es continua en un punto c de dicho intervalo si está bien
f  x   f  c     0,   0 / f  x     f  c  ,  
definida en él y además  lím
x c
siempre que x   c,  .
 Condiciones necesarias y suficientes de continuidad de una función en un
punto:
  lím f  x   L1 y  lím- f  x   L 2 , ambos finitos y además iguales enx c
x c
tre sí y con el valor de la función en el punto, esto es, L1  L2  f  c
Definiciones y conceptos.
Página.- ix
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
 Clasificación de los puntos de discontinuidad:
 Primer grado, o evitable. Se suele dar en los siguientes casos:
 Cuando por error hemos dejado sin definir un punto. Por ejemplo:
x  1 si x  5

si 5  x  7 , en este caso el punto x = 5 ha que dado
 f ( x )  6
13  x si x  7

sin definir, para evitar la discontinuidad basta con hacer
x  1 si x  5

f ( x )  6
si 5  x  7 .
13  x si x  7

 Cuando por error damos un valor que no corresponde en el punto, por
ejemplo:
x  1 si x  5

si x  5 , ya que por la izquierda de 5 toma el valor
 f ( x )   6
13  x si x  5

6 y por la derecha también, luego sería lógico decir que en 5
debería tomar el valor 6, y no –6 como figura.
 Segundo grado, primera especie, o inevitable de salto finito. Se suele dar en
el caso:
 La función está definida por zonas y en el límite de alguna zona no
coinciden los valores por la derecha y por la izquierda, por ejemplo:
x  1 si x  5

si 5  x  7 , se ve que por la izquierda de 5 toma
 f ( x )   6
13  x si x  7

el valor 6 y por la derecha el valor –6, hay un salto de 12 unidades.
Lo mismo pasa en 7.
 Segundo grado, segunda especie, o salto infinito. Se suele dar en los casos:
 En funciones definidas por zonas, cuando en alguna de las zonas la
función explota, o cuando en alguno de los límites de zona la función
explota, por ejemplo:

x  1
si x  5

si 5  x  7 , en este caso al acercarnos a 7 por la
 f ( x )  6
13  x

si x  7
 x 7
derecha la función explota a .

x  1
si x  5

si 5  x  7 , en este caso en los límites de zona
 f ( x )  6
13  x

si x  7
 x  12
no hay problemas, pero en la zona Ⅲ, es decir, para x ≥ 7, en x =
12, la función explota.
Definiciones y conceptos.
Página.- x
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
 En todas aquellas funciones definidas en forma de fracción cuando el
denominador se anula, por ejemplo:
2x  1
 f (x) 
, cuando x 2  1  1, la función explota, es
log x 2  1




decir, cuando x   2 .
 Álgebra de límites: sean f(x) y g(x) dos funciones reales de variable real, ambas
definidas en un intervalo abierto I   a, b  y sea c   a,b tal que ambas tienen
límite en él,  lím f  x   L1 y además  lím g  x   L 2
x c
x c
 Límite de una suma de funciones:  lím
 f  x   g  x    L1  L2
x c
 Límite de un producto de funciones:  lím
 f  x   g  x    L1  L2
x c
 f x  L
  1 , siempre que L2  0
 g x  L
2



 Límite de un cociente de funciones:  lím
x c
 Límite de la potencia de una función:  lím
 f  x     L1 
x c
p

g x 
 Límite de una potencia de funciones: lím
f  x 
x c
p
  L 
L2
1
 Límites e indeterminaciones: al igual que con las sucesiones, en los límites
de funciones se nos pueden presentar las mismas indeterminaciones que con aquellas, la forma de superarlas será la misma que entonces. Además se nos puede pre0
sentar la indeterminación
en los casos, sobre todo, de cocientes de funciones po0
linómicas en las que ambas tengan raíces comunes en el punto en el que calculamos
el límite, así:
x 2  6x  9 32  6  3  9 0
 lím

 , esto nos dice que tanto el polinomio numex 3
x2  9
32  9
0
rador como el denominador son divisibles por  x  3 . Debemos descomponer
ambos en factores, simplificar y volver a calcular el límite de la expresión
simplificada, así
lím
x 3
x 2  6x  9
x2  9
 x  3
x 3 33 0
 lím
 lím

 0
x 3
x 3
x 3 33 6
 x  3   x  3
2
 Si aún persistiera la indeterminación deberíamos seguir simplificando hasta
eliminar todas las raíces.
 Límites infinitos, asíntotas verticales: se dice que una función tiene límite
infinito cuando x  a y f  x    , en términos de definición de límite
lím f  x       0,   0 / f  x     L,   cuando x    a,   , se dice que la
x a
función explota. La recta x  a es una asíntota vertical para la función.
 De igual modo pueden ocurrir uno de los siguientes casos:
  lím f  x   L1 pero lím f  x    , en este caso explota por la izx a
x a
quierda del punto.
Definiciones y conceptos.
Página.- xi
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
  lím f  x   L2 pero lím f  x    , en este caso explota por la
x a
x a
derecha del punto.
  lím f  x   lím f  x    , en este caso explota por ambos lados y
x a
x a
en el mismo sentido.
  lím f  x     lím f  x   m , en este caso explota por ambos
x a
x a
lados pero mientras por un lado lo hace en un sentido por el otro lo hace
en sentido opuesto.
 Límites en el infinito, asíntotas horizontales: cuando al tender la variable
a más o menos infinito las imágenes se mantienen en un entorno de un valor finito,
f  x   L    0 y M>0 / f  x     L,   cuando x  M , y de igual modo
así lím
x 
lím f  x   L    0 y M>0 / f  x     L,   cuando x  M . En ambos casos la
x 
recta y  L es una asíntota horizontal para la función.
 Límites en el infinito, asíntotas oblicuas: cuando al tender la variable a
f x
más o menos infinito las imágenes de
se mantienen en un entorno de un valor
x
f x
f x
 L    0 y M>0 /
  L,   cuando x  M , y de igual
finito, así lím
x 
x
x
f x
f x
modo lím
 L    0 y M>0 /
  L,   cuando x  M . En ambos
x 
x
x
casos hay una asíntota oblicua para la función de pendiente L y ordenada en el
origen Lím  f (x)  ax   b , es decir, de ecuación y  L  x  b .
x 
 Resumen del comportamiento asintótico:
 Hay asíntotas verticales cuando:
 Dado un valor de x concreto, x0:
  Lím f ( x)  Lím f ( x)  


x x 0

x x 0
 Lím f (x)  Lím f (x) , y uno de los dos no es finito.


x x 0
x x 0
La recta de ecuación x  x 0 es una asíntota vertical.
 Hay asíntotas horizontales cuando:

 Lím f ( x )  L1 , siendo L1 un valorfinito. La ecuación de la asínx 
tota horizontal será y  L1 , y si L1 = 0, entonces es el eje de abscisas.
  Lím f ( x )  L 2 , siendo L 2 un valorfinito. La ecuación de la
x 
asíntota horizontal será y  L2 , y si L2 = 0, entonces es el eje de
abscisas.
  Lím f ( x )  Lím f ( x )  L, finito , en este caso habría una única
x 
x 
asíntota horizontal común a toda la gráfica y  L .
Definiciones y conceptos.
Página.- xii
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
 Hay asíntotas oblicuas cuando:
f (x)
 L  0 , en cuyo caso:
x  x
f (x)
L
 a  Lím
x  x
  Lím f ( x )  ax  b
  Lím
x  
 La ecuación de la asíntota será: y  ax  b
 Un modo sencillo para su cálculo en funciones racionales es:
 Hacemos la división de la fracción y el cociente es la fórmula de la
asíntota.
x 2  3  x  3 x 2  3  x  3 x 1
 Ejemplo:

 asíntota y  x  2
x 1
1
x2
 Esquemáticamente: (Para funciones racionales)
a) Una función tiene tantas asíntotas verticales como raíces reales distintas tenga
el denominador y que no pertenezcan al numerador.
b) Una función tiene una asíntota horizontal si el grado del numerador es menor o
igual que el del denominador.
c) Una función tiene una asíntota oblicua si el grado del numerador es uno más
que el del denominador.
Definiciones y conceptos.
Página.- xiii
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
Funciones reales de variable real:
Límites y estudio de la continuidad.
Actividades de aplicación.
P1.- Calcula los siguientes límites de sucesiones:
a) lím
n 
c) lím
n 
e) lím
2n 2  3n  5

3n 2  5n  6
4n 3  5n 2  2n  3
7n  3n  8
4
3n  5n 2  4n  2
2
n 
7n  6n  2n  4
n2  3

g) lím
n 
 n  1   n  2 
4
3
b) lím
n 

d) lím

f) lím
n 
5n 3  7n  12
8n 3  6n 2  3n  2
6n 2  7n  10
5n 3  2n 2  4n  5
2n 3  6n 2  5n  4
n 
1  2n  3n 2  5n 3
n2  1

h) lím
n 
 n  1   n  2 



P2.- Calcula los siguientes límites de sucesiones:
 3n 2  2n  3 6n  9 
a) lím 


n 
 2n  1
4 
 2n 2  4n  3 4n 2  5 
c) lím 


n 
6n  1 
 3n  2
 5n 2  6n  2 5n  4 
e) lím 


n 
3 
 3n  4
 2n 3  3n 6n 2  2 
g) lím 


n 
3n  1 
 n2  3
i) lím
n 


4n 2  4  2n 
 n 3  2n
3n 2  4n  1 
b) lím 


n 
 n 2  2n  1
n 1

 3n  11 3n 2  5 
d) lím 


n 
8n  2 
 8
 2  3n  4n 2 6  4n 
f) lím 


n 
5 
 5n  3
 n  4  n 
j) lím  n  9  n  
2
h) lím
n 
2
n 
 9n 2  4  3n 
k) lím 

n  

2n  1


 3n  2 
m) lím 
 
n 
2
n n 5 
 n  n2  4 
l) lím 

n  

n 1


 n2  4  n 
n) lím 

n  
2

n

9

n


 2n  4n 2  5 
o) lím 

n  
2

 4n  9  2n 
p) lím


q) lím n  n 2  1 
n 
Actividades de aplicación.
n 


n2  1  n2  1 

n 2  5n  3 
l) lím 

n  
2
2

n

3

n

2


Página.- i
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
P3.- Calcular los siguientes límites del número e:
 14
c) lím 1   
n 
 n
n

4
f) lím  1  
n 

n

1 
b) lím 1 
 
n 

2n 
n

2 
e) lím  1   
n 
 3n 

3
d) lím 1   
n 
 n
2n
n

5 5
g) lím 1   
n 
 3n 
 n 3
j) lím 

n 
n 4
2n
 3n  5 
m) lím 

n 
 3n  1 

2 
s) lím 1  
x 
 3x 
3n 1
 n 1
 q) lím 

n 
 n2  1 
2
2n 2 3
4
 n2  3 
 r) lím 

n 
 n2 1 
n
2x 2


2x 
w) lím 1 

x 
2
 x 1

 4n  5  4
o) lím 
 
n 
 4n  1 

1 
t) lím 1 
 
n 
 n 6

n 2
n
 2n  3  2
 n) lím 
 
n 
 2n  1 
5x
 6  3x 
v) lím 

x 
 3x  8 
 n 1 
l) lím 

n 
 n 3
3n
2n  3

n 2
i) lím 
 
n 
 n 1 
n 6 5
k) lím 
 
n 
 n 3

n 3
n
n 4
h) lím 
 
n 
 n 1 
2n
 5n  2 
p) lím 

n 
 5n  2 
3n
n
n
 8
a) lím 1   
n 
 n
 n 1 
u) lím 

n 
n 5
3n 3

6n  2

4x

2
x) lím  3x  2 x 1 
x 
P4.- Calcular, si existen, los siguientes límites de funciones:
x 2  3x  2
a) lím
x 0
x  2x  1
2
1 1 x
d) lím
x 0
2
x
x 1
2
g) lím
x 1
x 2  2x  1
x 2  3x  2

x 1
Actividades de aplicación.
x 0

e)

h)

x2  1
x 1

m) lím
x 1
x 1
x2  4
p) lím

x 2 2
x  4x  4
j) lím
b) lím
k)
n)
q)
x 3  x 2  5x  3
x  3x  4
1
1

lím 2  x 2 
x 0
x
x2  1
lím

x 1 2
x  2x  1
x5  1
lím

x 1 3
x 1
x 1
lím

x 1
x 1
1 x  2
lím

x 3
2
x 9
2
Página.- ii
 c) lím
2 2x
x 0

x
1

1
f) lím 5  x 5 
x 0
x
3
x  3x 2  3x  1
i) lím

x 1
x3  x 2  x  1
x5  1
l) lím

x 1 3
x 1
x 2  3x  2
o) lím

x 2
x2  4
x3  6x 2  12x  8
r) lím

x 2
x3  2x 2  4x  8
Dpto. Didáctico de Matemáticas.
s) lím
1 x  3
x 4
v) lím
x 

y) lím
x 1
B) lím
x 2  16
Teoría de Límites.

t) lím
x 



x 2  5  x  w) lím
x3  1
x4  1

1  x 
x 
2
x 3
z) lím

x 3
 x
3 

x) lím 

x 3
 x 3 x 3
x 3
1  x 
C) lím
2

1

3x 2  4x  7
 x  2
2
x 
A) lím
x2
x
x 
x

x  3  x 1 
u) lím
x 0
1

x2  x  x 
3x  6
 x  2
2


P5.- ¿Para qué valores de x pueden ser discontinuas las siguientes funciones?:
a) f (x) 
1
b) f (x) 
x
d) f (x) 
x  3x  2
2
4
2
g) f (x)  x 2  x  6
3
j) f (x) 
x 4
2
5
x 1
4
q) f (x) 
s) f (x) 
u) f (x) 
y) f (x) 
x2
o) f (x) 
x2  9
x 5
x2  4
1
2
2x  7
 x  3 
x 2  3x
v) f (x) 
x 5
1  9x 2
3
p) f (x) 
w) f (x) 
z) f (x) 
6x  5x  1
2
x 2  1
si x  0

A) f  x    x  1
si x  0, 2
 2
 x  4x  2 si x  2
Actividades de aplicación.
x 2  7x  12
k) f (x)  9  49x 2
t) f (x) 
x3
3x  2
3x  2
x2 1
x 3
3x  4
x2  1
r) f (x)  x 4  25x 2  144
x  3x  2x
3
h) f (x) 
m) f (x) 
l) f (x)  x 3  2x 2  15x
n) f (x) 
c) f (x)  x 2  5x  6
e) f (x)  9  x 2
x  9x  11x  21
3
f) f (x)  x 2  16
i) f (x) 
1
Página.- iii
x2
x 2  5x  6
3
x 4  2x 3  3x 2
6x  9
x 3  25x
si x  2
 x

si 2  x  5
B) f (x)   1
 x  6 si x  5

Dpto. Didáctico de Matemáticas.
Teoría de Límites.
si x  1
3

C) f (x)  1  2x si  1  x  1
3x  1 si x  1

1  x 2
si x  1

D) f  x    1  x
 x  3 si x  1


5x  2 si x  1

E) f (x)  2
si x  2
1
 x
si x  2
 2
 x2  4
si x  2

F) f (x)   x  2
3
si x  2


1

H) f (x)  x  2
8

 x

2x

J) f (x)  x 2  1
 1

 x  4
 x  2 si x  3

G) f (x)   x  2
si x  3

x  2
2

x 4
I) f (x)  

2x  1
si  4  x  4
si x  4
x
si  4  x  0

2

si 0  x  2
K) f (x)   x 2
x  6

si 2  x  4
 2
P6.- La función f  x  
x2  9
x3
3
3x  3

L) f (x)   2
 x  2x  3
 x 2  9x  18

si  8  x  4
si  4  x  2
si 2  x
si x  0
si 0  x  4
si x  4
si x  2
si  2  x  0
si 0  x  3
si x  3
, ¿Es continua en x = −3?.
 x 1
si x  1

P7.- Calcular el valor de k para que la función f  x    x 2  1
, sea continua
k
si x  1

en x = 1.
x3  1
P8.- Estudia la continuidad de f  x  
en los puntos x = −1, x = 0 y x = 1.
2
x 1
3
P9.- Estudia la continuidad en x = 0 y en x  2 de la función f  x  
.
x2  2
P10.- Indica para qué valores de a y b son continuas las funciones:
 x  1 si x  1
 x 2  1 si x  0


a) f  x   a  x 2 si  1  x  1
b) f  x   ax  b si 0  x  3

 x  5 si x  1
2

 b  x  si x  1
Actividades de aplicación.
Página.- iv
Dpto. Didáctico de Matemáticas.
Teoría de Límites.
 x 2  a si x  1

c) f  x    x  1 si x   1,1
2  b si x  1

P11.- Indica para qué valores de k son continuas las siguientes funciones:
 x 2  2x  1
 2x
si
x

2
si x  1


a) f  x    4  x 2
b) f  x    x  2
k
x  k si x  2
si x  1


P12.- La altura media de una determinada especie de pinos viene dada por la función
12t 2  3t  1
, donde t expresa los años transcurridos desde su plantación.
f x 
t 2  9t  10
a) ¿Qué altura media tienen los pinos al cabo de 5 años?.
b) ¿A cuánto tiende la altura media de estos árboles con el paso del tiempo?.
Actividades de aplicación.
Página.- v
Descargar