ADAPTABILIDAD: Es la propiedad que tiene un sistema de aprender y modificar un proceso, un estado o una característica de acuerdo a las modificaciones que sufre el contexto. Esto se logra a través de un mecanismo de adaptación que permita responder a los cambios internos y externos a través del tiempo. Para que un sistema pueda ser adaptable debe tener un fluido intercambio con el medio en el que se desarrolla. AMBIENTE: El Ambiente es el medio que rodea externamente al sistema, es una fuente de recursos y de amenazas. Se conoce también con el nombre de Entorno o Contexto. ADMINISTRADOR CIENTÍFICO: Su meta es explicar en detalle que es el sistema integrar el medio ambiente en el cual se desenvuelve. Su objetivo y como esta apoyado por las actividades de las partes. ARMONÍA: Es la propiedad de los sistemas que mide el nivel de compatibilidad con su medio o contexto. Un sistema altamente armónico es aquel que sufre modificaciones en su estructura, proceso o características en la medida que el medio se lo exige y es estático cuando el medio también lo es. ATRIBUTOS: Los atributos de los sistemas, definen al sistema tal como lo conocemos u observamos. Los atributos pueden ser definidores o concomitantes: los atributos definidores son aquellos sin los cuales una entidad no sería designada o definida tal como se lo hace; los atributos concomitantes en cambio son aquellos que cuya presencia o ausencia no establece ninguna diferencia con respecto al uso del término que describe la unidad. CAJA NEGRA: La caja negra se utiliza para representar a los sistemas cuando no sabemos que elementos o cosas componen al sistema o proceso, pero sabemos que a determinadas corresponden determinadas salidas y con ello poder inducir, presumiendo que a determinados estímulos, las variables funcionaran en cierto sentido. CENTRALIZACIÓN Y DESCENTRALIZACIÓN: Un sistema se dice centralizado cuando tiene un núcleo que comanda a todos los demás, y estos dependen para su activación del primero, ya que por sí solos no son capaces de generar ningún proceso. Por el contrario los sistemas descentralizados son aquellos donde el núcleo de comando y decisión está formado por varios subsistemas. En dicho caso el sistema no es tan dependiente, sino que puede llegar a contar con subsistemas que actúan de reserva y que sólo se ponen en funcionamiento cuando falla el sistema que debería actuar en dicho caso. Los sistemas centralizados se controlan más fácilmente que los descentralizados, son más sumisos, requieren menos recursos, pero son más lentos en su adaptación al contexto. Por el contrario los sistemas descentralizados tienen una mayor velocidad de respuesta al medio ambiente pero requieren mayor cantidad de recursos y métodos de coordinación y de control más elaborados y complejos. CIBERNÉTICA: La cibernética ha sido definida por Weiner como "la ciencia de control y comunicación en el animal y la máquina; en una palabra, el arte del timonel". - Ashby. Hasta la llegada de la cibernética (según Bateson uno de los dos acontecimientos de mayor influencia en el siglo XX), los modelos de causalidad eran casi siempre lineales. CIRCULARIDAD: Concepto cibernético que nos refiere a los procesos de autocausación. Cuando A causa B y B causa C, pero C causa A, luego A en lo esencial es autocausado (retroalimentación, morfostásis, morfogénesis). COMPLEJIDAD: Por un lado, indica la cantidad de elementos de un sistema (complejidad cuantitativa) y, por el otro, sus potenciales interacciones (conectividad) y el número de estados posibles que se producen a través de éstos (variedad, variabilidad). La complejidad sistémica está en directa proporción con su variedad y variabilidad, por lo tanto, es siempre una medida comparativa. Una versión más sofisticada de la TGS se funda en las nociones de diferencia de complejidad y variedad. Estos fenómenos han sido trabajados por la cibernética y están asociados a los postulados de R.Ashby (1984), en donde se sugiere que el número de estados posibles que puede alcanzar el ambiente es prácticamente infinito. Según esto, no habría sistema capaz de igualar tal variedad, puesto que si así fuera la identidad de ese sistema se diluiría en el ambiente. CONGLOMERADO: Cuando la suma de las partes, componentes y atributos en un conjunto es igual al todo, estamos en presencia de una totalidad desprovista de sinergia, es decir, de un conglomerado (Johannsen. 1975:3133). CONJUNTOS DISJUNTOS: Si dos conjuntos A y B no tienen ningún elemento común entonces A y B son disjuntos. CONJUNTOS NO DISJUNTOS: Si dos conjuntos A y B tienen algún o algunos elementos en común entonces A y B no son disjuntos. CONTEXTO: Un sistema siempre estará relacionado con el contexto que lo rodea, o sea, el conjunto de objetos exteriores al sistema, pero que influyen decididamente a éste, y a su vez el sistema influye, aunque en una menor proporción, influye sobre el contexto; se trata de una relación mutua de contexto-sistema. Tanto en la Teoría de los Sistemas como en el método científico, existe un concepto que es común a ambos: el foco de atención, el elemento que se aísla para estudiar. El contexto a analizar depende fundamentalmente del foco de atención que se fije. Ese foco de atención, en términos de sistemas, se llama límite de interés. Para determinar este límite se considerarían dos etapas por separado: a) La determinación del contexto de interés. b) La determinación del alcance del límite de interés entre el contexto y el sistema. a) Se suele representar como un círculo que encierra al sistema, y que deja afuera del límite de interés a la parte del contexto que no interesa al analista. d) En lo que hace a las relaciones entre el contexto y los sistemas y viceversa. Es posible que sólo interesen algunas de estas relaciones, con lo que habrá un límite de interés relacional. Determinar el límite de interés es fundamental para marcar el foco de análisis, puesto que sólo será considerado lo que quede dentro de ese límite. Entre el sistema y el contexto, determinado con un límite de interés, existen infinitas relaciones. Generalmente no se toman todas, sino aquellas que interesan al análisis, o aquellas que probabilísticamente presentan las mejores características de predicción científica. CYBORG: La palabra cyborg se forma a partir de las palabras inglesas Cyber (netics) organism (organismo cibernético) y se utiliza para designar una criatura medio orgánica y medio mecánica, generalmente con la intención de mejorar las capacidades del organismo utilizando tecnología artificial. DECISIONES PROGRAMADAS: otra aplicación de sistema de control implica el desarrollo y la implantación de decisiones programadas. Una parte apreciable de las decisiones de carácter técnico y una parte pequeña de las decisiones tácticas abarcan decisiones repetitivas y rutinarias. Diseñando el sistema de información de manera que ejecute esas decisiones de rutina, el analista proporciona a los administradores más tiempo para dedicarse a otras decisiones menos estructuradas. Si se procura que el sistema vigile las órdenes pendientes y se programa las decisiones de cuáles pedidos necesitan mayor atención, se logrará un significativo ahorro de tiempo y esfuerzo. DETERMINISMO ESTRUCTURAL: la propiedad de los sistemas autopoieticos por la cual toda acción o influencia proveniente del exterior no tiene un efecto directo o mecánico sobre el sistema, sino que resulta modificada o mediada por la estructura del mismo. ELEMENTO MUESTRAL: Los elementos muéstrales corresponden a otra forma de interpretar los elementos de una matriz de actividad por medio de mascaras. EMERGENCIA: hace referencia a todas aquellas características o procesos de un sistema no reducibles a las propiedades o procesos de sus partes constituyentes. EMERGENCIA DEBIL Y FUERTE: Se habla de emergencia débil cuando estructuras o propiedades emergentes son identificadas como tales por un observador externo. En el caso de las moléculas de agua, su cristalización en cristal es un fenómeno que no pertenece ni al hidrógeno ni al oxígeno. Sin embargo, se trata de un fenómeno que puede explicarse a partir de las propiedades de estos constituyentes. No existe, por tanto, ninguna propiedad realmente nueva. La emergencia fuerte concierne a propiedades independientes de toda observación, intrínsecas al sistema y que actúan con los otros constituyentes del sistema de un modo original. Es el caso de la aparición de la vida a partir de lo inanimado o de la emergencia de la conciencia. ENERGIA: La energía que se incorpora a los sistemas se comporta según la ley de la conservación de la energía, lo que quiere decir que la cantidad de energía que permanece en un sistema es igual a la suma de la energía importada menos la suma de la energía exportada (entropía, negentropía). ENTROPIA: El segundo principio de la termodinámica establece el crecimiento de la entropía, es decir, la máxima probabilidad de los sistemas es su progresiva desorganización y, finalmente, su homogeneización con el ambiente. Los sistemas cerrados están irremediablemente condenados a la desorganización. No obstante hay sistemas que, al menos temporalmente, revierten esta tendencia al aumentar sus estados de organización (negentropía, información). ENTRADAS: Las entradas son los ingresos del sistema que pueden ser recursos materiales, recursos humanos o información. Las entradas constituyen la fuerza de arranque que suministra al sistema sus necesidades operativas. Las entradas pueden ser: - en serie: Es el resultado o la salida de un sistema anterior con el cual el sistema en estudio está relacionado en forma directa. - aleatoria: es decir, al azar, donde el termino "azar" se utiliza en el sentido estadístico. Las entradas aleatorias representan entradas potenciales para un sistema. - retroacción: es la reintroducción de una parte de las salidas del sistema en sí mismo. EQUIFINALIDAD: Se refiere al hecho que un sistema vivo a partir de distintas condiciones iniciales y por distintos caminos llega a un mismo estado final. El fin se refiere a la manutención de un estado de equilibrio fluyente. "Puede alcanzarse el mismo estado final, la misma meta, partiendo de diferentes condiciones iniciales y siguiendo distintos itinerarios en los procesos organísmicos" (von Bertalanffy. 1976:137). El proceso inverso se denomina multifinalidad, es decir, "condiciones iniciales similares pueden llevar a estados finales diferentes" (Buckley. 1970:98). EQUILIBRIO: Los estados de equilibrios sistémicos pueden ser alcanzados en los sistemas abiertos por diversos caminos, esto se denomina equifinalidad y multifinalidad. La manutención del equilibrio en sistemas abiertos implica necesariamente la importación de recursos provenientes del ambiente. Estos recursos pueden consistir en flujos energéticos, materiales o informativos. ESTABILIDAD: Un sistema se dice estable cuando puede mantenerse en equilibrio a través del flujo continuo de materiales, energía e información. La estabilidad de los sistemas ocurre mientras los mismos pueden mantener su funcionamiento y trabajen de manera efectiva (mantenibilidad). ESTRUCTURA: Las interrelaciones más o menos estables entre las partes o componentes de un sistema, que pueden ser verificadas (identificadas) en un momento dado, constituyen la estructura del sistema. Según Buckley (1970) las clases particulares de interrelaciones más o menos estables de los componentes que se verifican en un momento dado constituyen la estructura particular del sistema en ese momento, alcanzando de tal modo una suerte de "totalidad" dotada de cierto grado de continuidad y de limitación. En algunos casos es preferible distinguir entre una estructura primaria (referida a las relaciones internas) y una hiperestructura (referida a las relaciones externas). ESTRUCTURA ST: Cuando se conoce el control y el comportamiento de un sistema, es muy fácil determinar su estructura ST. Los estados del sistema se conocen porque cada componente del comportamiento representa un estado del sistema. Queda por determinar la transición entre los estados. Para el caso de sistemas determinísticos, se puede obtener con la ayuda de la estructura UC. El procedimiento es el siguiente: Se considera un estado Si. El próximo estado se determina únicamente por la estructura UC cuando el correspondiente estímulo (una parte de Si) no cambia. El próximo estado se registra aún si es idéntico a Si. ESTRUCTURAS UC: Conjunto de elementos y un conjunto de acoplamientos entre estos elementos. Propiedades de los diagramas de bloques de las estructuras UC 1. Contiene un conjunto de nodos, un conjunto de bloques y conjunto de conexiones solo entre los nodos y los bloques. 2.- Cada nodo representa una variable del sistema, sea interna o externa. 3.- Cada bloque representa una relación invariante en el tiempo, entre las variables que están conectadas con el bloque y generalmente algunas variables internas del elemento. 4.- No debe haber ninguna conexión directa entre dos nodos o dos bloques en el diagrama. 5.- Cuando se considera el control, cada variable debe estar controlada únicamente por uno de los bloques o solo por el ambiente. EXITO: El éxito de los sistemas es la medida en que los mismos alcanzan sus objetivos. La falta de éxito exige una revisión del sistema ya que no cumple con los objetivos propuestos para el mismo, de modo que se modifique dicho sistema de forma tal que el mismo pueda alcanzar los objetivos determinados. FEED-FORWARD O ALIMENTACIÓN DELANTERA: Es una forma de control de los sistemas, donde dicho control se realiza a la entrada del sistema, de tal manera que el mismo no tenga entradas corruptas o malas, de esta forma al no haber entradas malas en el sistema, las fallas no serán consecuencia de las entradas sino de los proceso mismos que componen al sistema. FRONTERA: Los sistemas consisten en totalidades y, por lo tanto, son indivisibles como sistemas (sinergia). Poseen partes y componentes (subsistema), pero estos son otras totalidades (emergencia). En algunos sistemas sus fronteras o límites coinciden con discontinuidades estructurales entre estos y sus ambientes, pero corrientemente la demarcación de los límites sistémicos queda en manos de un observador (modelo). En términos operacionales puede decirse que la frontera del sistema es aquella línea que separa al sistema de su entorno y que define lo que le pertenece y lo que queda fuera de él (Johannsen. 1975:66). FUNCION: Se denomina función al output de un sistema que está dirigido a la manutención del sistema mayor en el que se encuentra inscrito. FUNCION DE TRANSFERENCIA: Una función de transferencia es un modelo matemático que describe el comportamiento de un sistema (conocer cómo va a responder) cuando a su entrada se le aplica una variable física. Por definición una función de transferencia se puede determinar según la expresión: Función de transferencia (F.T.)=Variabledesalida / Variabledeentrada Cualquier sistema físico (mecánico, eléctrico, etc...) se puede traducir a una serie de valores matemáticos a través de los cuales se conoce el comportamiento de estos sistemas frente a valores concretos. Uno de los primeros matemáticos en describir estos modelos fue Laplace, a través de su transformación matemática. HOMEOSTASIS Y ENTROPÍA: La homeostasis es la propiedad de un sistema que define su nivel de respuesta y de adaptación al contexto. Es el nivel de adaptación permanente del sistema o su tendencia a la supervivencia dinámica. Los sistemas altamente homeostáticos sufren transformaciones estructurales en igual medida que el contexto sufre transformaciones, ambos actúan como condicionantes del nivel de evolución. La entropía de un sistema es el desgaste que el sistema presenta por el transcurso del tiempo o por el funcionamiento del mismo. Los sistemas altamente entrópicos tienden a desaparecer por el desgaste generado por su proceso sistémico. Los mismos deben tener rigurosos sistemas de control y mecanismos de revisión, reelaboración y cambio permanente, para evitar su desaparición a través del tiempo. En un sistema cerrado la entropía siempre debe ser positiva. Sin embargo en los sistemas abiertos biológicos o sociales, la entropía puede ser reducida o mejor aun transformarse en entropía negativa, es decir, un proceso de organización más completa y de capacidad para transformar los recursos. Esto es posible porque en los sistemas abiertos los recursos utilizados para reducir el proceso de entropía se toman del medio externo. Asimismo, los sistemas vivientes se mantienen en un estado estable y pueden evitar el incremento de la entropía y aun desarrollarse hacia estados de orden y de organización creciente. INFORMACION: La información tiene un comportamiento distinto al de la energía, pues su comunicación no elimina la información del emisor o fuente. En términos formales "la cantidad de información que permanece en el sistema (...) es igual a la información que existe más la que entra, es decir, hay una agregación neta en la entrada y la salida no elimina la información del sistema" (Johannsen. 1975:78). La información es la más importante corriente negentrópica de que disponen los sistemas complejos. INPUT / OUTPUT (modelo de): Los conceptos de input y output nos aproximan instrumentalmente al problema de las fronteras y límites en sistemas abiertos. Se dice que los sistemas que operan bajo esta modalidad son procesadores de entradas y elaboradores de salidas. Input: Todo sistema abierto requiere de recursos de su ambiente. Se denomina input a la importación de los recursos (energía, materia, información) que se requieren para dar inicio al ciclo de actividades del sistema. Volver al Indice. Output: Se denomina así a las corrientes de salidas de un sistema. Los outputs pueden diferenciarse según su destino en servicios, funciones y retroinputs. Volver al Indice. INTEGRACIÓN E INDEPENDENCIA: Se denomina sistema integrado a aquel en el cual su nivel de coherencia interna hace que un cambio producido en cualquiera de sus subsistemas produzca cambios en los demás subsistemas y hasta en el sistema mismo. Un sistema es independiente cuando un cambio que se produce en él, no afecta a otros sistemas. LA BIONICA: La medicina se beneficia de los descubrimientos las aplicaciones de la electrónica, se asiste sin embargo desde hace muchos años a un cambio inverso. Cuando dos disciplinas se fusionan, es muy raro que la colaboración se haga en sentido único; un día u otro hay un cambio mutuo. La aplicación de la biología a la electrónica, el estudio de los fenómenos fisiológicos que puedan inducir los dispositivos electrónicos, ha incitado a los electrónicos a examinar su propia disciplina bajo un ángulo nuevo: La biónica. MANTENIBILIDAD: Es la propiedad que tiene un sistema de mantenerse constantemente en funcionamiento. Para ello utiliza un mecanismo de mantenimiento que asegure que los distintos subsistemas están balanceados y que el sistema total se mantiene en equilibrio con su medio. MASCARA: Conjunto fijo de elementos muéstrales que determinan algún comportamiento del sistema. MODELO: Los modelos son constructos diseñados por un observador que persigue identificar y mensurar relaciones sistémicas complejas. Todo sistema real tiene la posibilidad de ser representado en más de un modelo. La decisión, en este punto, depende tanto de los objetivos del modelador como de su capacidad para distinguir las relaciones relevantes con relación a tales objetivos. La esencia de la modelística sistémica es la simplificación. El metamodelo sistémico más conocido es el esquema input-output. MORFOGENESIS: Los sistemas complejos (humanos, sociales y culturales) se caracterizan por sus capacidades para elaborar o modificar sus formas con el objeto de conservarse viables (retroalimentación positiva). Se trata de procesos que apuntan al desarrollo, crecimiento o cambio en la forma, estructura y estado del sistema. Ejemplo de ello son los procesos de diferenciación, la especialización, el aprendizaje y otros. En términos cibernéticos, los procesos causales mutuos (circularidad) que aumentan la desviación son denominados morfogenéticos. Estos procesos activan y potencian la posibilidad de adaptación de los sistemas a ambientes en cambio. MORFOSTASIS: Son los procesos de intercambio con el ambiente que tienden a preservar o mantener una forma, una organización o un estado dado de un sistema (equilibrio, homeostasis, retroalimentación negativa). Procesos de este tipo son característicos de los sistemas vivos. En una perspectiva cibernética, la morfostasis nos remite a los procesos causales mutuos que reducen o controlan las desviaciones. MUESTRA DE ACTIVIDADES: Conjunto de los elementos muéstrales de la mascara dada. MÉTODO DE CONTROL: Es una alternativa para reducir la cantidad de información recibida por quienes toman decisiones, sin dejar de aumentar su contenido informativo. Las tres formas básicas de implementar el método de control son: 1. REPORTE DE VARIACIÓN: esta forma de variación requiere que los datos que representan los hechos reales sean comparados con otros que representan los hechos planeados, con el fin de determinar la diferencia. La variación se controla luego con el valor de control, para determinar si el hecho se debe o no informar. El resultado del procedimiento, es que únicamente se informa a quién toma las decisiones acerca de los eventos o actividades que se apartan de modo significativo que los planes, para que tomen las medidas necesarias. 2. DECISIONES PROGRAMADAS: otra aplicación de sistema de control implica el desarrollo y la implantación de decisiones programadas. Una parte apreciable de las decisiones de carácter técnico y una parte pequeña de las decisiones tácticas abarcan decisiones repetitivas y rutinarias. Diseñando el sistema de información de manera que ejecute esas decisiones de rutina, el analista proporciona a los administradores más tiempo para dedicarse a otras decisiones menos estructuradas. Si se procura que el sistema vigile las órdenes pendientes y se programa las decisiones de cuáles pedidos necesitan mayor atención, se logrará un significativo ahorro de tiempo y esfuerzo. 3. NOTIFICACIÓN AUTOMÁTICA: en este caso, el sistema como tal, no toma decisiones pero como vigila el flujo general de información puede proporcionar datos, cuando sea preciso y en el momento determinado. Las notificaciones automáticas se hacen en algunos criterios predeterminados, pero solo quienes toman las decisiones deben decir si es necesario o no emprender alguna acción. NEGENTROPIA: Los sistemas vivos son capaces de conservar estados de organización improbables (entropía). Este fenómeno aparentemente contradictorio se explica porque los sistemas abiertos pueden importar energía extra para mantener sus estados estables de organización e incluso desarrollar niveles más altos de improbabilidad. La negentropía, entonces, se refiere a la energía que el sistema importa del ambiente para mantener su organización y sobrevivir (Johannsen. 1975). NIVEL DE RESOLUCION: Corresponde al nivel de exactitud y frecuencia de las observaciones o mediciones. OBSERVACION (de segundo orden): Se refiere a la nueva cibernética que incorpora como fundamento el problema de la observación de sistemas de observadores: se pasa de la observación de sistemas a la observación de sistemas de observadores. OPERADORES: Otro comportamiento es el de operador, que son las variables que activan a las demás y logran influir decisivamente en el proceso para que este se ponga en marcha. Se puede decir que estas variables actúan como líderes de las restantes y por consiguiente son privilegiadas respecto a las demás variables. Cabe aquí una aclaración: las restantes variables no solamente son influidas por los operadores, sino que también son influenciadas por el resto de las variables y estas tienen también influencia sobre los operadores. OPTIMIZACIÓN Y SUB-OPTIMIZACIÓN: Optimización modificar el sistema para lograr el alcance de los objetivos. Sub-optimización en cambio es el proceso inverso, se presenta cuando un sistema no alcanza sus objetivos por las restricciones del medio o porque el sistema tiene varios objetivos y los mismos son excluyentes, en dicho caso se deben restringir los alcances de los objetivos o eliminar los de menor importancia si estos son excluyentes con otros más importantes. ORGANIZACIÓN: N. Wiener planteó que la organización debía concebirse como "una interdependencia de las distintas partes organizadas, pero una interdependencia que tiene grados. Ciertas interdependencias internas deben ser más importantes que otras, lo cual equivale a decir que la interdependencia interna no es completa" (Buckley. 1970:127). Por lo cual la organización sistémica se refiere al patrón de relaciones que definen los estados posibles (variabilidad) para un sistema determinado. PARÁMETRO: Uno de los comportamientos que puede tener una variable es el de parámetro, que es cuando una variable no tiene cambios ante alguna circunstancia específica, no quiere decir que la variable es estática ni mucho menos, ya que sólo permanece inactiva o estática frente a una situación determinada. PERMEABILIDAD: La permeabilidad de un sistema mide la interacción que este recibe del medio, se dice que a mayor o menor permeabilidad del sistema el mismo será más o menos abierto. Los sistemas que tienen mucha relación con el medio en el cuál se desarrollan son sistemas altamente permeables, estos y los de permeabilidad media son los llamados sistemas abiertos. Por el contrario los sistemas de permeabilidad casi nula se denominan sistemas cerrados. RANGO: En el universo existen distintas estructuras de sistemas y es factible ejercitar en ellas un proceso de definición de rango relativo. Esto produciría una jerarquización de las distintas estructuras en función de su grado de complejidad. Cada rango o jerarquía marca con claridad una dimensión que actúa como un indicador claro de las diferencias que existen entre los subsistemas respectivos. Esta concepción denota que un sistema de nivel 1 es diferente de otro de nivel 8 y que, en consecuencia, no pueden aplicarse los mismos modelos, ni métodos análogos a riesgo de cometer evidentes falacias metodológicas y científicas. Para aplicar el concepto de rango, el foco de atención debe utilizarse en forma alternativa: se considera el contexto y a su nivel de rango o se considera al sistema y su nivel de rango. Refiriéndonos a los rangos hay que establecer los distintos subsistemas. Cada sistema puede ser fraccionado en partes sobre la base de un elemento común o en función de un método lógico de detección. El concepto de rango indica la jerarquía de los respectivos subsistemas entre sí y su nivel de relación con el sistema mayor. En el universo existen distintas estructuras de sistemas y es factible ejercitar en ellas un proceso de definición de rango relativo. Esto produciría una jerarquización de las distintas estructuras en función de su grado de complejidad. Cada rango o jerarquía marca con claridad una dimensión que actúa como un indicador claro de las diferencias que existen entre los subsistemas respectivos. Esta concepción denota que un sistema de nivel 1 es diferente de otro de nivel 8 y que, en consecuencia, no pueden aplicarse los mismos modelos, ni métodos análogos a riesgo de cometer evidentes falacias metodológicas y científicas. Para aplicar el concepto de rango, el foco de atención debe utilizarse en forma alternativa: se considera el contexto y a su nivel de rango o se considera al sistema y su nivel de rango. Refiriéndonos a los rangos hay que establecer los distintos subsistemas. Cada sistema puede ser fraccionado en partes sobre la base de un elemento común o en función de un método lógico de detección. El concepto de rango indica la jerarquía de los respectivos subsistemas entre sí y su nivel de relación con el sistema mayor. RECURSIVIDAD: Proceso que hace referencia a la introducción de los resultados de las operaciones de un sistema en él mismo (retroalimentación). RELACIONES: Las relaciones son los enlaces que vinculan entre sí a los objetos o subsistemas que componen a un sistema complejo. Podemos clasificarlas en: - Simbióticas: es aquella en que los sistemas conectados no pueden seguir funcionando solos. A su vez puede subdividirse en unipolar o parasitaria, que es cuando un sistema (parásito) no puede vivir sin el otro sistema (planta); y bipolar o mutual, que es cuando ambos sistemas dependen entre si. - Sinérgica: es una relación que no es necesaria para el funcionamiento pero que resulta útil, ya que su desempeño mejora sustancialmente al desempeño del sistema. Sinergia significa "acción combinada". Sin embargo, para la teoría de los sistemas el término significa algo más que el esfuerzo cooperativo. En las relaciones sinérgicas la acción cooperativa de subsistemas semiindependientes, tomados en forma conjunta, origina un producto total mayor que la suma de sus productos tomados de una manera independiente. - Superflua: Son las que repiten otras relaciones. La razón de las relaciones superfluas es la confiabilidad. Las relaciones superfluas aumentan la probabilidad de que un sistema funcione todo el tiempo y no una parte del mismo. Estas relaciones tienen un problema que es su costo, que se suma al costo del sistema que sin ellas puede funcionar. REPORTE DE VARIACIÓN: esta forma de variación requiere que los datos que representan los hechos reales sean comparados con otros que representan los hechos planeados, con el fin de determinar la diferencia. La variación se controla luego con el valor de control, para determinar si el hecho se debe o no informar. El resultado del procedimiento, es que únicamente se informa a quién toma las decisiones acerca de los eventos o actividades que se apartan de modo significativo que los planes, para que tomen las medidas necesarias. RETROALIMENTACIÓN: La retroalimentación se produce cuando las salidas del sistema o la influencia de las salidas del sistema en el contexto, vuelven a ingresar al sistema como recursos o información. La retroalimentación permite el control de un sistema y que el mismo tome medidas de corrección en base a la información retroalimentada. Retroalimentación Negativa: Este concepto está asociado a los procesos de autorregulación u homeostáticos. Los sistemas con retroalimentación negativa se caracterizan por la mantención de determinados objetivos. En los sistemas mecánicos los objetivos quedan instalados por un sistema externo (el hombre u otra máquina). Retroalimentación Positiva: Indica una cadena cerrada de relaciones causales en donde la variación de uno de sus componentes se propaga en otros componentes del sistema, reforzando la variación inicial y propiciando un comportamiento sistémico caracterizado por un autorreforzamiento de las variaciones (circularidad, morfogénesis). La retroalimentación positiva está asociada a los fenómenos de crecimiento y diferenciación. Cuando se mantiene un sistema y se modifican sus metas/fines nos encontramos ante un caso de retroalimentación positiva. En estos casos se aplica la relación desviaciónamplificación (Mayurama. 1963). RETROINPUT: Se refiere a las salidas del sistema que van dirigidas al mismo sistema (retroalimentación). En los sistemas humanos y sociales éstos corresponden a los procesos de autorreflexión. ROBÓTICA: La robótica es una ciencia o rama de la tecnología, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas realizadas por el ser humano o que requieren del uso de inteligencia. Las ciencias y tecnologías de las que deriva podrían ser: el álgebra, los autómatas programables, las máquinas de estados, la mecánica o la informática. SALIDAS: Las salidas de los sistemas son los resultados que se obtienen de procesar las entradas. Al igual que las entradas estas pueden adoptar la forma de productos, servicios e información. Las mismas son el resultado del funcionamiento del sistema o, alternativamente, el propósito para el cual existe el sistema. Las salidas de un sistema se convierten en entrada de otro, que la procesará para convertirla en otra salida, repitiéndose este ciclo indefinidamente. SERVICIO: Son los output de un sistema que van a servir de inputs a otros sistemas o subsistemas equivalentes. SINERGIA: Todo sistema es sinérgico en tanto el examen de sus partes en forma aislada no puede explicar o predecir su comportamiento. La sinergia es, en consecuencia, un fenómeno que surge de las interacciones entre las partes o componentes de un sistema (conglomerado). Este concepto responde al postulado aristotélico que dice que "el todo no es igual a la suma de sus partes". La totalidad es la conservación del todo en la acción recíproca de las partes componentes (teleología). En términos menos esencialistas, podría señalarse que la sinergia es la propiedad común a todas aquellas cosas que observamos como sistemas. SISTEMA: Es un conjunto organizado de cosas o partes interactuantes e interdependientes, que se relacionan formando un todo unitario y complejo. Cabe aclarar que las cosas o partes que componen al sistema, no se refieren al campo físico (objetos), sino más bien al funcional. De este modo las cosas o partes pasan a ser funciones básicas realizadas por el sistema. Podemos enumerarlas en: entradas, procesos y salidas. SISTEMAS CIBERNÉTICOS: 1. SISTEMA PROSPECTIVO DETERMINADO: La llave y su correspondiente cerradura y cerrojo. La llave es el único input y el cerrojo de la cerradura su único output. El estado del cerrojo siempre está determinado únicamente por el estado pasado (movimiento) de la llave. 2. SISTEMA PROSPECTIVO SEUDODETERMINADO: Supongamos dos urnas que contiene sólo bolas negras y bolas blancas. En una de las urnas hay más bolas negras que blancas y en la otra urna sucede lo contrario. Se extraen las bolas, una a uno, indistintamente de las urnas colocándolas en un plato. Antes de hacer la siguiente extracción se reintroduce la bola en su correspondiente urna. El input al sistema es obviamente la mano extractora, representando dos: uno a cada urna. Los outputs son también dos (bola blanca y bola negra en el plato). Si el input está en la urna con más de bolas blancas, la probabilidad de sacarla de ese color es mayor que un medio. 3. SISTEMAS RETROSPECTIVO DETERMINADO: La habilidad de un policía estriba en conocidos los estados presentes de output (huellas dactilares o de otro tipo) determinar únicamente los estados pasados del input (el auto del delito). 4. SISTEMA RETROSPECTIVO SEUDODETERMINADO: Utilizando el ejemplo anterior, que es el ideal soñado por el policía, cabe señalar que la realidad difiere de los sueños, de forma que todos los policías tienen que luchar en sus investigaciones con sistemas retrospectivos seudodeterminados. SISTEMAS FISICOS: compuestos por equipos, maquinaria, objetos y cosas reales. El hardware. SISTEMAS FISICOS REALES: Son aquellos sistemas donde las cantidades existen realmente, no son supuestas. Estos además se subdividen en sistemas limitados y sistemas ilimitados. Sistemas Limitados: Son todos aquellos sistemas que tienen un numero finito e cantidades externas y a su vez una cantidad de estructuras finitas. Sistemas Ilimitados: Son todos aquellos sistemas que tienen un numero infinito de cantidades externas y estructuras. SISTEMAS CONCEPTUALES: Un sistema conceptual o sistema ideal es un conjunto organizado de definiciones, nombres, símbolos y otros instrumentos de pensamiento o comunicación. Ejemplos de sistemas conceptuales son las Matemáticas, la Lógica formal, la Nomenclatura binomial o la notación musical. SISTEMAS ABSTRACTOS: Los sistemas abstractos son todos aquellos sistemas que no clasifican como sistemas físicos reales, o sea, todos los demás. SISTEMAS RELATIVAMENTE CERRADOS: Es un sistema donde las vías de interacción entre el sistema y su ambiente se definen adecuadamente. Un sistema relativamente cerrado se puede convertir en un sistema abierto incluyendo un elemento del ambiente por el cual esta definido y viceversa. SISTEMA ABIERTO: Este es un sistema que se denomina como objeto. SISTEMA DE CONTROL: Un sistema de control estudia la conducta del sistema con el fin de regularla de un modo conveniente para su supervivencia. Una de sus características es que sus elementos deben ser lo suficientemente sensitivos y rápidos como para satisfacer los requisitos para cada función del control. SISTEMAS DISCRETOS O DE PULSO: En este sistema las cantidades adquieren un número finito de diferentes valores discretos y se conocen solo en instantes discretos del tiempo. En estos sistemas las relaciones se expresan entre cantidades principales por ecuaciones de un algebra lógica particular. Los problemas de composición y descomposición de las relaciones se resuelven dentro del algebra respectiva. SISTEMAS CONTINUOS: Las cantidades se consideran como variables continuamente variables y en tiempo continuo sobre el rango completo de la actividad. En estos sistemas las cantidades se expresan por ecuaciones diferenciales. El orden se corresponde al periodo infinitesimal de tiempo que interviene en estas relaciones, las cantidades externas+derivadas temporales=cantidades principales. SISTEMA HIBRIDO: Es un sistema superior conformado por sistemas discretos y sistemas continuos. SISTEMAS UNICOS: Son aquellos sistemas definidos desde el punto de vista de la historia, o sea, es solo uno y ya esta definido con anterioridad sin oportunidad a modificación. SISTEMAS REPETIDOS: Existen generalmente numerosos sistemas físicos que satisfacen una definición dada. Desde el punto de vista del tipo de las relaciones entre la salidas y otras cantidades principales desde el punto de vista del comportamiento. SISTEMAS DETERMINISTICOS: Estos sistemas se representan correspondencias (biyectivas o sobreyectivas); y se subdivide en: por SISTEMAS COMBINATORIOS (sin memoria): En este sistema las cantidades principales se definen en base solo a los valores actuales de las cantidades externas. SISTEMAS SECUENCIALES: En este tipo de sistema al menos una de las cantidades no se define como el valor actual de una cantidad externa. SISTEMAS PROBABILISTICOS (estocásticos): En estos sistemas al menos una de las relaciones R no es una aplicación (relación uno a muchos). Cada elemento (a, b) se asocia con la probabilidad de ocurrencia b cuando sucede a. Estos se subdividen en: SIMPLES (sin memoria): Todas las cantidades principales se definen en base a los valores actuales de cantidades externas. COMPLEJAS (secuenciales): Al menos una de las cantidades principales no se define como el valor actual de una cantidad externa. Estos subsistemas se dividen en: Sistemas no anticipadores: ninguna cantidad principal se define en base a los valores futuros de cantidades externas con respecto al tiempo de referencias de estas. SISTEMAS ANTICIPADORES (TELEOLÓGICOS): Las cantidades se definen en base a un valor futuro con respecto al tiempo. SISTEMAS RETROACTIVOS: Del latín llama este tipo de sistema "retroactivo" porque parte del sistema vuelve a influir – "retroactúa" – sobre una de las causas del efecto y la cambia. Algunas de las características de tal sistema son: Es un sistema no aditivo y no simétrico. Las relaciones entre las partes y de las partes al todo no son las mismas cuando el sistema está funcionando que cuando está quieto. No hay feedback hasta que la máquina está en operando. El feedback no es una parte estructural de la máquina sino una función suya cuando está operando. No obstante, está función tiene el efecto de una estructura. Es una estructura que estructura – una función. Surgen nuevas características como resultado del funcionamiento del mecanismo que no están presentes al comienzo. SISTEMAS NATURALES: Sistema generado por la naturaleza ejemplos: Ríos, bosque, molécula de agua. SISTEMAS ARTIFICIALES: Sistema producto de la actividad humana; son concebidos y construidos por el hombre ejemplos: Tren, avión, marcapasos, idioma inglés SISTEMAS SIMPLES: Sistema con pocos elementos y relaciones ejemplos: Juego de billar, péndulo, f(x) = x + 1, palanca. SISTEMAS COMPLEJOS: Sistema con numerosos elementos y relaciones entre ellos ejemplos: Cerebro, universidad, cámara fotográfica. SISTEMAS ESTÁTICOS: Sistema que no cambia en el tiempo ejemplos: Piedra, vaso de plástico, montaña. SISTEMAS DINÁMICOS: Sistema que cambia en el tiempo ejemplos: Universo, átomo, la tierra, hongo. SISTEMAS VIVIENTES Y NO VIVIENTES: Los sistemas vivientes están dotados de funciones biológicas como el nacimiento, la muerte y la reproducción. SISTEMAS ABSTRACTOS Y CONCRETOS: Un sistema abstracto es aquel en que todos sus elementos son conceptos. Un sistema concreto es aquel en el que por lo menos dos de sus elementos son objetos o sujetos, o ambos. SISTEMAS REACTIVOS: a diferencia de los puramente transformacionales, mantienen una continua interacción con su entorno, respondiendo ante los estímulos externos en función de su estado interno. Esto causa que su comportamiento sea complejo de analizar y muy sujeto a errores. Muchos de estos errores pueden causar problemas de seguridad, por lo que a menudo los sistemas reactivos son también sistemas críticos. Entre los formalismos utilizados para especificación de sistemas en tiempo real y sistemas reactivos destacan los métodos estructurados. Son métodos operacionales que tienen amplia difusión en la industria por ser gráficos, fáciles de aprender, de utilizar y de revisar. Sin embargo, al no ser métodos formales, no existe, en general la posibilidad de analizar propiedades tan importantes como pueden ser las de seguridad. SISTEMAS TRIVIALES: Son sistemas con comportamientos altamente predecibles. Responden con un mismo output cuando reciben el input correspondiente, es decir, no modifican su comportamiento con la experiencia. SUBSISTEMA: Se entiende por subsistemas a conjuntos de elementos y relaciones que responden a estructuras y funciones especializadas dentro de un sistema mayor. En términos generales, los subsistemas tienen las mismas propiedades que los sistemas (sinergia) y su delimitación es relativa a la posición del observador de sistemas y al modelo que tenga de éstos. Desde este ángulo se puede hablar de subsistemas, sistemas o supersistemas, en tanto éstos posean las características sistémicas (sinergia). TIEMPOS MUESTRALES: Periodos discretos de tiempo (disjuntos) durante los cuales se consideran las cantidades. Los tiempos muéstrales se fijan de dos formas 1. En los mismos términos que las demás cantidades se asegura que todas las cantidades estarán definidas y no cambiaran durante los tiempos muéstrales. 2. Por los intervalos de tiempo durante los cuales los valores de todas las cantidades consideradas se definen y no cambian. TOTALIDAD: Totalidad se define como todo el total, el conjunto de todos los componentes. El objetivo de aplicar este concepto al sistema tiene que ver con la evaluación al unísono de todos los aspectos relacionados con el mismo, sin dejar ninguno de ellos de lado. El sistema debe considerarse como un cosa íntegra, completa, entera, absoluta y conjunta. VALORES DISCRETOS: Valores específicos, en general valores enteros. En contraposición a los valores continuos que tienen infinito numero de decimales. VARIABLES: Cada sistema y subsistema contiene un proceso interno que se desarrolla sobre la base de la acción, interacción y reacción de distintos elementos que deben necesariamente conocerse. Dado que dicho proceso es dinámico, suele denominarse como variable, a cada elemento que compone o existe dentro de los sistemas y subsistemas. Pero no todo es tan fácil como parece a simple vista ya que no todas las variables tienen el mismo comportamiento sino que, por lo contrario, según el proceso y las características del mismo, asumen comportamientos diferentes dentro del mismo proceso de acuerdo al momento y las circunstancias que las rodean. VARIABILIDAD: Indica el máximo de relaciones (hipotéticamente) posibles (n!).