ESTIMACIÓN Y CÁLCULO MENTAL
(Tomado de varios números de "Arithmetic Teacher" de 1986 y 1987)
Como profesores, deseamos que los estudiantes sepan optar por el instrumento de cálculo más
apropiado para la situación que estén considerando. Sin embargo, salvo que los estudiantes hayan
desarrollado ambas destrezas, la de calcular mentalmente y la de estimar, y la conciencia de
aprovecharse de la que sea apropiada, no veremos cumplido ese deseo.
Se expondrán más adelante varios métodos y estrategias para enseñar a estimar y a calcular
mentalmente y se propondrá una muestra de actividades. Pero primeramente establezcamos unas
bases: ¿Qué son la estimación y el cálculo mental?. ¿Qué sabemos acerca de cada proceso? ¿Cómo
podemos ayudar a los estudiantes a que adquieran esas destrezas?.
¿QUÉ SON EL CÁLCULO MENTAL Y LA ESTIMACIÓN?
Aunque ambos conceptos se meten a menudo en el mismo saco, tienen algunas diferencias
significativas. Especialmente, el cálculo mental produce una respuesta exacta, mientras que pueden
existir muchas estimaciones diferentes pero razonables para un problema dado. Por ello, todo
problema aritmético puede ser estimado, pero sólo un subconjunto de problemas cae dentro del
campo de la capacidad de muchos estudiantes para calcular mentalmente.
Cálculo mental. El proceso de producir una respuesta exacta sin ninguna ayuda calculatoria
externa.
Estimación. El proceso de producir una respuesta suficientemente próxima como para permitir
tomar decisiones.
LO QUE SABEMOS
El cuerpo de investigaciones disponibles en ambas áreas está creciendo con rapidez. Lo que
sigue es un breve resumen de lo que estas investigaciones nos dicen:

Más del 80 por ciento de todos los usos de las matemáticas por los adultos en la vida real
van acompañados de cálculos hechos mentalmente.

Las pruebas sobre estimación pasadas a estudiantes indican que éstos no tienen mucho
éxito. De hecho, hay informes sólidos que muestran que los estudiantes lo hacen peor
cuando estiman los resultados de ejercicios de cálculo que cuando hallan las respuestas
exactas a los mismos ejercicios.

Un pobre desarrollo conceptual de fracciones, y porcentajes inhibe la aplicación de la
estimación y del cálculo mental, en problemas que contengan esos números.

Los buenos estimadores tienen una gran habilidad para el cálculo mental, pero la
recíproca no es cierta. Esto es, las personas pueden ser buenas en cálculo mental, pero no
necesariamente buenas estimadoras.
1

Los estudiantes competentes en cálculo mental usan una variedad de diferentes estrategias
de pensamiento. Análogamente, los estudiantes competentes en estimación usan muchas
estrategias distintas.

La atención sistemática al cálculo mental y a la estimación puede producir cambios
significativos en los resultados que consigan los estudiantes, así como en sus procesos de
pensamiento. Aunque la práctica frecuente es importante, debe ir acompañada por una
enseñanza ideada para estimular el pensamiento y la discusión de estrategias eficaces.
Los cambios en los procesos de pensamiento llevan tiempo. En cada curso pueden y deben hacerse
progresos, pero para que esto ocurra debe dedicarse tiempo de instrucción al cálculo mental y a la
estimación a lo largo de todo el año en cada uno de los cursos.
¿QUÉ PODEMOS HACER EN NUESTRAS CLASES?
Antes de entrar en algunos puntos con más detalle, he aquí algunas sugerencias generales:

Adquirir el compromiso de dedicar tiempo a estos dos temas cada semana. Planear la
enseñanza de estrategias y ofrecer oportunidades para practicarlas de una manera regular.
Aprovechar las oportunidades para poner de relieve al cálculo mental y la estimación
siempre que sea apropiado a medida que se avance a lo largo del currículo. Por ejemplo,
en los primeros cursos incluir "ampliaciones" de los hechos básicos, tales como 60 + 70 ó
600 + 700. En lugar de limitar la práctica de los hechos multiplicativos básicos a 6 x 7,
practicar 6 x70, 60 x 70, e incluso 0.6 x 700 en cursos posteriores. Este procedimiento
no sólo permite variar las sesiones de práctica de los hechos básicos, sino que sugiere
muchas interesantes regularidades y ayuda a desarrollar el sentido numérico.

Hacer una lista de las estrategias de cálculo mental que uno mismo use y decidir cuáles
son más apropiadas para sus estudiantes. Hacer lo mismo con técnicas de estimación. Si
las listas que uno puede hacer no son muy extensas, consúltese con otros compañeros y
anótese las que aparecen en libros y revistas.

Animar a la discusión y al intercambio de estrategias. Por ejemplo, ¿cómo estimar el
precio de un lapicero si una caja de 24 cuesta 869 pesetas?, ¿Ha pensado en 800 : 20?
¿880 : 25? ¿900 : 25? ¿Quizás en 1000 : 25?. Cada una de estas parejas de "números
compatibles" cambia el cálculo original por otro mucho más sencillo y más manejable
mentalmente. Cuando los estudiantes se dan cuenta de que pueden cambiar el problema a
"números más fáciles" que les permiten calcular mentalmente un valor aproximado,
consiguen un mayor aprecio por la potencia de la estimación. Una vez que los estudiantes
se dan cuenta de que son posibles muchos procedimientos diferentes para el problema, se
hacen más abiertos a las estrategias alternativas que pueden proponer otros compañeros de
clase. En ultima instancia, deberán decir qué estrategia usar, pero primero deben sentirse
cómodos con la noción de que no sólo existen muchas estrategias sino que además
frecuentemente son usadas por sus compañeros.

Confeccionar un plan de evaluación que refleje su compromiso didáctico. Pruebas
periódicas acerca de las destrezas de estimación y cálculo mental que han sido subrayadas
les recordarán a los estudiantes que el profesor se está tomando en serio la adquisición de
esas destrezas. Y servirán también como documentación clara de los progresos que los
estudiantes realicen.
2

Reconocer que la atención didáctica al cálculo mental y a la estimación está realmente
dirigida hacia el desarrollo de capacidades de pensamiento de orden superior. La
adquisición de múltiples estrategias y el desarrollo del sentido numérico contribuirán no
sólo a mejorar la resolución de problemas sino a una más amplia comprensión de lo que
son las matemáticas.
ALGUNOS EJEMPLOS DE ACTIVIDADES
REGULARIDADES DE LA TABLA DE CIEN.
0
1
2
3
4
5
6
7
8
9
10
11
12
13 14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
La tabla de cien es una herramienta habitual en las clases de la escuela primaria. Con frecuencia
se usa para poner de manifiesto regularidades en el sistema de numeración de base diez, así como
para servir de modelo para los números escritos. Puede ser un rico modelo para ayudar a los
alumnos con la suma y resta mentales de decenas y unidades. Cuando los alumnos sumen y resten
mentalmente querríamos que sacasen provecho de las regularidades y cadencias que hay en la base
diez, en lugar de aplicar mentalmente algoritmos de lápiz y papel. Empecemos.
Se exhibe la tabla de cien en un retroproyector o se fija como póster a la pared. Se pide a los
alumnos que comenten todas las relaciones que vean entre los números. Por ejemplo, el último
dígito de cada columna es el mismo, todos los números de una diagonal tienen sus dos dígitos
iguales, etc. Dejar que los alumnos verbalicen tales regularidades les ayudar a ver la estructura de
nuestro sistema de numeración.
Utilícese la tabla para contar de diez en diez descendiendo a lo largo de algunas columnas. Por
ejemplo, empezando con 0, luego 10, 20 30, etc. O con 4, luego 14, 24,34, etc. Practíquese varias
veces contando hacia adelante de diez en diez, así como hacia atrás de diez en diez (93, 83, 73,
etc.). Debe animarse a los alumnos a que cuenten sin mirar a la tabla, y usando en lugar de ello las
3
cadencias que ellos hayan advertido.
Déjese aproximadamente un minuto para que los alumnos "memoricen" la tabla de cien. Luego
retírese la tabla y pídase a los niños usen su cuadro mental para responder a preguntas como "¿Qué
número está debajo del 26?" "¿Qué número está encima del 62?" "¿Qué número está a la derecha
del 47?".
Pídase a los alumnos que sigan mentalmente direcciones como las siguientes: "Fija bien en tu
cabeza dónde está en la tabla el número 26. Muévete una fila hacia abajo. Muévete otra fila hacia
abajo. Luego mueve un lugar hacia la derecha. ¿Qué número está en esa posición?". O también:
"Mentalmente, empieza en el 45. Muévete un lugar hacia la izquierda. Muévete tres lugares hacia
abajo. Muévete un lugar hacia la derecha. ¿Dónde estás?". Después de que hayan respondido a
cada pregunta despliéguese la tabla para confirmar la respuesta. El trazado mental de estos caminos
es un buen entrenamiento para un trabajo más simbólico, como 26 + 10 - 20 +1, y estimula a los
alumnos a confiar en las cadencias y regularidades en lugar de realizar algoritmos de lápiz y papel
mentalmente. Puede ser conveniente dar a cada alumno un folio con la tabla para las preguntas
iniciales antes de retarles los caminos mentalmente.
UNA EXTENSIÓN
El mismo tipo de ideas acabado de exponer puede extenderse a actividades con alumnos de
cursos posteriores modificando la tabla:
a) una tabla de décimas, empezando en 0 y terminando en 9.9, que puede usarse para sumar y
restar décimas mentalmente;
b) una tabla de centésimas, con números que van desde el 0 hasta el 0.99, que puede usarse
mentalmente para sumar y restar décimas y centésimas.
MEDIDA
¿Qué? ¿Qué significa la estimación en lo referente a la medida?. Una definición que puede
ayudar a traducir la estimación en acción es la siguiente: Estimar es el proceso mental de a) llegar a
una medida sin el uso directo de un instrumento de medida, b) seleccionar una representación de
una medida dada, o c) comparar dos cantidades sin medirlas.
a) ¿Cuál es la longitud de b) ¿Puedes alcanzarme c) ¿Cabrá este caldo en
este cable?.
una sartén de 25 cm
este plato ?.
de diámetro?
¿Por qué? ¿Por qué incluir en nuestra enseñanza la estimación de medidas?.
1. Es práctico. Todos los días usamos la estimación para responder a preguntas como estas:

¿Cuánto tardaré en acabar este trabajo que tengo que hacer para mañana?.

¿Cuánta fruta necesitaré comprar para este fin de semana?.
4

¿Cabrá esta mesa en la habitación?.
2. Ayuda a los alumnos a entender los atributos medibles. Estimando antes de usar instrumentos
o fórmulas puede desarrollar el concepto de qué es lo que ha de ser medido. Por ejemplo, al
determinar cuál de las dos banderas es más grande
el estudiante debe estimar el área que no está cubierta por los cuadros. Al hacerlo así, el estudiante
fortalece su concepto de área y disminuye la tendencia a decir que área es ancho por largo.
3. Ayuda a los estudiantes a desarrollar el sentido del tamaño de las unidades. Preguntas como
¿es esto más largo que un metro?, enfocan la atención sobre la unidad de medida.
¿Cómo? ¿Cómo puedo ayudar a mis alumnos a hacer mejores estimaciones?.
Los buenos estimadores emplean al menos tres estrategias:
a. Referente. Saber que una persona mide un metro setenta ¿te sirve para estimar la altura de la
puerta?.
b. Empaquetamiento. Estimar la distancia desde el suelo a la ventana, la altura de la ventana, y
la distancia desde el techo a la ventana ¿te ayuda a estimar la altura de la habitación?.
c. Servirse de unidades. Dividir la habitación en ocho partes iguales ¿te ayuda a estimar la
longitud de la habitación.
5
RECOMENDACIONES

Un buen modo de desarrollar técnicas de cálculo mental es emplear cortas sesiones (de
cinco a diez minutos) de instrucción y práctica como una actividad de calentamiento.
Pruebe a dirigir una sesión de instrucción el lunes o el martes y haga luego una sesión de
continuación de la práctica el jueves o el viernes, limite cada sesión a diez minutos.

Excelentes ocasiones para practicar el cálculo mental y la estimación son los juegos cuyo
desarrollo y cuyo desenlace dependen de las capacidades de cálculo y estimación de los
jugadores. (Ver ejemplos a continuación de estas recomendaciones).

No deje de lado los resultados más "descabellados". Al contrario, discuta en clase
aquellos que sean menos aproximados y los procedimientos de cálculo mental y
estimación que hayan dado lugar a ellos.

Acepte un intervalo como respuesta a las estimaciones. Mejor aún, estimule a que los
alumnos mismos ofrezcan un intervalo en su respuesta; por ejemplo, "esto pesa entre 5 y
8 kilos", "la distancia está entre 300 y 350 kilómetros".

No piense que hay una estrecha relación entre buenos calculadores y buenos estimadores.
No se sorprenda de que alumnos excelentes en ejercicios de cálculo tengan miedo de
atreverse a hacer una estimación aproximada.

Haga una lista de las situaciones cotidianas que requieren una estimación. Si los
estudiantes ven que la estimación es una destreza práctica, reconocerán la necesidad de
hacerse mejores estimadores.
6
Descargar

¿DESTREZAS MATEMÁTICAS BÁSICAS O DESTREZAS

Teoría del método triangular de Grau

Teoría del método triangular de Grau

PerfeccionismoExamenEsquemasMemoria fotográficaLectura y subrayadoTécnica de estudio

Salud Mental comunitaria

Salud Mental comunitaria

PsicopatologíaEstudios psicoclínicosCriterio normativoAdaptaciónCreatividadTrastornos mentalesToleranciaCerebro

Pentagrama de las decisiones exitosas

Pentagrama de las decisiones exitosas

Sentido del tiempoOportunidadConocimiento y calidadCalidadCreatividadComportamientoVisión

Técnicas de Estudio (I)

Técnicas de Estudio (I)

FacilidadesConcentraciónRelajaciónConocimientosOrganizaciónPreliminaresPsicosociología educativaPasosMemoriaAprendizajeAmbiente

El cálculo mental en primaria; su función en la Educación... El cálculo mental en la programación de Matemáticas en Primaria •

El cálculo mental en primaria; su función en la Educación... El cálculo mental en la programación de Matemáticas en Primaria •

Habilidades y destrezasLenguajeTabla de sumar y multiplicarNoción de espacio y tiempoMatemáticas

Enseñanza de ortografía

Enseñanza de ortografía

Estrategias didácticasTécnicas de enseñanazaProceso mentalEnseñanza de ortografíaTrabajo en clasePedagogíaAprendiazajeEducación infantilMétodos de enseñanazaEjercicios