IntroNT-Colinérgico2016.pdf

Anuncio
Sistemas de Neurotransmisores
Introducción
Neurotransmisión colinérgica
Síntesis y degradación de acetilcolina (Ach),
Colina acetil transferasa (ChaT) y aceticolinesterasa (AChE)
Recaptación por el terminal sináptico: transportador de
colina (ChT)
Llenado de las Vesículas: Transportador Vesicular de ACh
(VAT)
Receptores Nicotínicos y Muscarínicos
FSN 2016
Eleonora Katz
Neurotransmisión
Eléctrica
Química
Purves 3rd edition
Neurotransmisión Química
Pequeñas moléculas NT= ACh y las
Aminas biogenicas (dopamina, NE,
Epinefrina, serotonina, histamina)
Aminoácidos: gaba, glutamato,
aspartato, glicina
Purinas: ATP, ADP
Neuropéptidos: CGRP, ACTH,
Enkefalinas, etc..
Tres criterios básicos para determinar si una molécula es un
neurotransmisor en una dada sinapsis
Purves 3rd Edition
Purves 3rd Edition
Cargado de las vesículas de NT
Receptores ionotrópicos y metabotrópicos
2015
Sistema colinérgico
[1] Langley JN. On the reaction of cells and nerve-endings to certain poisons, chiefly
as regards the reaction of striated muscle to nicotine and to curari. J Physiol
1905;33:374–413. (“sustancias receptivas”)
[2] Loewi O. On the background of the discovery of neurochemical transmission. J
Mt Sinai Hosp N Y 1957;24:1014–6. 1921
[3] Dale H. Transmission of nervous effects by acetylcholine: Harvey Lecture, May
20, 1937. Bull N Y Acad Med 1937;13:379–96. 1930
[4] Fatt P, Katz B. An analysis of the endplate potential recorded with an intracellular
electrode. J Physiol (Lond) 1951;115:320–70.
In 1936 Dale shared the Nobel Prize in Physiology or Medicine with Otto Loewi “for their
discoveries relating to the chemical transmission of nerve impulses”.
Experimento de Otto Loewi en 1921
Otto Loewi llamó a esa sustancia “Vagusstoff” luego Henry dale
demostró que esa sustancia era Aceticolina.
Fatt P, Katz B 1951
MEPPs
Liberación espontánea de ACh : potenciales miniatura
MEPP = 1 cuanto o paquete = 1
vesícula de ACh conteniendo ~
6000-10000 moléculas de ACh
Se activan ~ 3000 a 5000 canales
Síntesis de Acetilcolina
?
Recaptación de Colina
Se expresa específicamente en neuronas colinérgicas
Fig. 2. Electrophysiological characterization of ACh release
at CHT NMJs. (A) Examples of evoked EPP traces (arrows)
from CHT (left) and
CHT (right) sternomastoid NMJs 1 or 4 h after birth.
Cargado de las vesículas de ACh
Terminación del efecto de la acetilcolina: Degradación por las colinesterasas
La ACh actúa sobre dos tipos de receptores
nicotínicos
ionotrópicos
canales iónicos
muscarínicos
metabotrópicos
acoplados a proteínas G
Estructura cuaternaria de los receptores nicotínicos
Esquema basado en el receptor del
órgano eléctrico de Torpedo
Californica
Los receptores nicotínicos son
proteínas oligoméricas compuestas
por 5 subunidades glicosiladas que
atraviesan la membrana y
conforman un canal catiónico
290 KDa
40-65 KDa
TM2 poro del canal
Pertencen a la superfamilia de receptores
activados por ligando con asa de cisteina
formada por los receptores nicotínicos, GABAA,
GabaC , glicina y 5HT3 (el receptor de glutamato
tiene una estructura diferente)
S
S
Topología de plegamiento de las subunidades de receptores con ‘asa de cisteína’
Sitio de unión a la acetilcolina
Agonistas y antagonistas competitivos
en las subunidades α de todos los nAChR:
2 cisteínas contiguas, las Tyr 93, 190 y 198 y el
Trp 149 (excepto en α5 Asp 190)
En músculo: γTrp 53; δΤrp55 -Τyr 111; δArg113 y
γTyr 117
Selectividad iónica
Na+, K+ y Ca2+
PNa/PK ∼ 1
PCa/PNa 0.2-20
TM2
3 anillos de aa cargados negativamente
orientados hacia el poro del canal,
determinantes de la selectividad iónica
K+ K+
+
+
K
K
Permeabilidades relativas PK/PNa y
PCa/PNa
Corriente neta y potencial de membrana
(Eq de los iones permeantes)
A Vm ̴ -60 a Entrada masiva de Na+
Despolarización
Entrada de Ca2+
Segundo Mensajero
Activación de otras corrientes
Hiperpolarización
Ca2+ Ca2+ Ca2+
+ Na+
2+
Na
Na+ + + Ca2+ Ca2+ Ca
Na Na
Subunidades Colinérgicas Nicotínicas
nAChR Musculares
Alpha1 (α1)
Beta1 (β1)
Gamma (γ)
Delta (δ)
Epsilon (ε)
nAChR Neuronales
Alpha2 (α2)
Alpha3 (α3)
Alpha4 (α4)
Alpha5 (α5)
Alpha6 (α6)
Beta2 (β2)
Beta3 (β3)
Beta4 (β4)
Alpha9 (α9)
Alpha10 (α10)
Alpha7 (α7)
Alpha8 (α8)
Los receptores que difieren en la composición de sus subunidades
presentan propiedades biofísicas, funcionales y farmacológicas
diferentes
Receptores Nicotínicos: Diversidad funcional y farmacológica
Participan en la neurotransmisión rápida excitatoria (Placa neuromuscular y SN
autónomo)
En la modulación de la liberación de otros NT (SN central)
En la inhibición rápida en la sinapsis eferente olivococlear (SNC a las CCE del órgano de
Corti en el oído interno)
Antagonistas
Agonistas
α-Bungarotoxina
ACh
nicotina
citisina
DMPP
epibatidina
anatoxina
tubocurarina
n-Bungarotoxina
dihidro-β-eritroidina
mecamilamina
Los tipos de subunidades ensambladas determinan las propiedades
biofísicas, farmacológicas y fisiológicas del canal.
Músculo fetal vs adulto (canales
nativos)
δ
Fetal
ε
Adulto
Oocitos αβγδ vs. αβγε (canales
recombinantes)
Farmacología de los receptores recombinantes expresados en
sistemas heterólogos y su correlato con los receptores nativos
Respuestas obtenidas con el
nAChR α7 homomérico expresado
en ovocitos de Xenopus laevis
Respuestas obtenidas en
neuronas de hipocampo
de Clarke, 1992
Otras subunidades? Diferente
procesamiento posttraduccional?
Receptor
α β γδ
1 1
orden de potencia de
agonistas
suberildicolina > ACh >
epibatidina >
α β
3 4
α β
4 2
α
7
orden de potencia de antagonistas
α
-bungarotoxina > d-tubocurarina >
β
mecamilamina > DH E
dimetilfenilpiperazonio
≈
(DMPP) > citisina nicotina
epibatidina > DMPP > nicotina
≈
≈
citisina suberildicolina >
ACh
mecamilamina > d-tubocurarina >
β
DH E
β
epibatidina > nicotina > citisina mecamilamina > DH E > MLA > d> DMPP > ACh > carbacol
epibatidina > DMPP > citisina
> nicotina > ACh > colina
tubocurarina
α
-bungarotoxina > MLA > dβ
tubocurarina > DH E
Farmacología de las corrientes sensibles a α-Bungarotoxina en neuronas
ganglionares intracardíacas
de Cuevas y Berg, 1998
Caracterización de distintos tipos de corrientes en neuronas
de hipocampo de rata
Corrientes evocadas por ACh
de Alkondon y Albuquerque, 1993
K+ K+
+
+
K
K
Permeabilidades relativas PK/PNa y
PCa/PNa
Corriente neta y potencial de membrana
(Eq de los iones permeantes)
A Vm ̴ -60 a Entrada masiva de Na+
Despolarización
Entrada de Ca2+
Segundo Mensajero
Activación de otras corrientes
Hiperpolarización
Ca2+ Ca2+ Ca2+
+ Na+
2+
Na
Na+ + + Ca2+ Ca2+ Ca
Na Na
Compuesto
Células ciliadas
ACh
a-j
agonista
µ
EC50 ( M):
α
α α
9 y 9 10
agonistak, n µ
EC50 : 11.4 M
7; 13.5, 17 (cobayo) 4,8,9
22 (pollo)10
b, d, i, j
agonistan µ
EC50: 63.7 M
carbacol
agonista µ
EC50: 87 M
DMPP
agonista parcial
suberildicolina
agonista parcial
nicotina
antagonista µ
IC 50: rango M
citisina
sin actividad agonista
muscarina
sin actividad agonista
α
-bungarotoxina
agonista parcialk
b, d, i, j
agonista parcialn
j
antagonistaµk,n, competitivon
IC 50: 31.5 M
b, d, j
d, e, g, h
c, d, g, h
antagonista
IC 50: rango nM
d-tubocurarina
antagonista
IC 50: rango nM
atropina
antagonista µ
IC 50: rango M
antagonistaµk,n competitivon
IC 50: 43.1 M
k, n
antagonista
µ
IC 50: 83 M
b, d, j
antagonista ,reversible
nM
estricnina
bicuculina
b, d, i, j
a, c, d, e, g, h
d, g
d
≈ µ
antagonista IC 50: 1 M
IC50: rango
antagonista reversible
IC 50: 4 nM
k,l
k, m
antagonista
IC 50: 17.9 nM
k
antagonista
IC 50: 300 nM
k, n
antagonista
competitivon
µ
IC 50: 1 M
m
µ
antagonista IC 50: 0.8 M
nAChR
mAChR
Transmisión sináptica colinérgica rápida en la sinapsis neuromuscular
Transmisión colinérgica en el SNC
Schematic representation of a hypothetical cholinergic synapse illustrating
general synaptic localization and function of cholinergic receptors in the CNS
En el SNC los nACHRs se encuentran principalmente fuera de la brecha sináptica
modulando la liberación de otros NT o modulando la excitabilidad de otras neuronas
UNMuscular
Sistema
Nervioso
Autonomo
Adicción a la nicotina
2008
Nicotine-Induced Upregulation of Native Neuronal Nicotinic Receptors Is Caused by Multiple
Mechanisms Anitha P. Govind, Heather Walsh, and William N. Green Department of
Neurobiology, University of Chicago, Chicago, Illinois 60637 J. Neurosci. 2012
Nicotine causes changes in brain nicotinic acetylcholine receptors (nAChRs) during smoking
that initiate addiction. Nicotine-induced upregulation is the long-lasting increase in nAChR
radioligand binding sites in brain resulting from exposure. The mechanisms causing
upregulation are not established. Many different mechanisms have been reported with the
assumption that there is a single underlying cause. Using live rat cortical neurons, we
examined for the firsttime how exposure and withdrawal of nicotine shape the kinetics of
native alpha4beta2-containing nAChR upregulation in real time. Upregulation kinetics
demonstrates that at least two different mechanisms underlie this phenomenon. First, a
transient upregulation occurs that rapidly reverses,faster than nAChR degradation, and
correspondsto nAChR conformational changes as assayed by conformational-dependent,
subunit-specific antibodies. Second, a long-lasting process occurs correlating with increases in
nAChR numbers caused by decreased proteasomal subunit degradation. Previous radioligand
binding measurements to brain tissue have measured the second process and largely missed
the first. We conclude that nicotine-induced upregulation is composed of multiple processes
occurring at different rates with different underlying causes.
Cholinergic connectivity: it’s implications for psychiatric disorders
Elizabeth Scarr 1,2*, Andrew S. Gibbons1,2, Jaclyn Neo1,2, Madhara Udawela
2,3 and Brian Dean1,2 2013
Acetylcholine has been implicated in both the pathophysiology and treatment
of a number of psychiatric disorders, with most of the data related to its role
and therapeutic potential focusing on schizophrenia. However, there is little
thought given to the consequences of the documented changes in the
cholinergic system and how they may affect the functioning of the brain. This
review looks at the cholinergic system and its interactions with the intrinsic
neurotransmitters glutamate and gamma-amino butyric acid as well as those
with the projection neurotransmitters most implicated in the
pathophysiologies of psychiatric disorders; dopamine and serotonin. In
addition, with the recent focus on the role of factors normally associated with
inflammation in the pathophysiologies of psychiatric disorders, links between
the cholinergic system and these factors will also be examined. These
interfaces are put into context, primarily for schizophrenia, by looking at the
changes in each of these systems in the disorder and exploring, theoretically,
whether the changes are interconnected with those seen in the cholinergic
system. Thus, this review will provide a comprehensive overview of the
connectivity between the cholinergic system and some of the major areas of
research into the pathophysiologies of psychiatric disorders, resulting in a
critical appraisal of the potential outcomes of a dysregulated central
cholinergic system
Vesicular neurotransmitter transporters depend differentially on the chemical and electrical components of the H+ electrochemical
gradientThe vacuolar-type H+-ATPase generates the H+ electrochemical gradient (ΔμH+) required for transport of all classical
neurotransmitters into synaptic vesicles. However, different vesicular neurotransmitter transporters rely to differing extents on the two
components of ΔμH+, the chemical gradient (ΔpH) and the electrical gradient (Δψ). The vesicular accumulation of monoamines and ACh
(left) involves the exchange of protonated cytosolic transmitter for two lumenal H+. The resulting movement of more H+ than charge
dictates a greater dependence on ΔpH than Δψ for both VAChT and VMAT. Vesicular glutamate transport (right) may not involve
H+ translocation. In the absence of Δψ, however, disruption of ΔpH inhibits uptake, suggesting that the transport of anionic glutamate
involves exchange for nH+, resulting in the movement of n + 1 charge and hence greater dependence on Δψ than ΔpH. Transport of the
neutral zwitterion GABA (and glycine) involves the movement of an equal number of H+ and charge, consistent with the similar
dependence of VGAT on ΔpH and Δψ. These differences suggest that vesicles storing monoamines or ACh may have mechanisms to favor
the accumulation of ΔpH at the expense of Δψ, whereas those storing glutamate may promote a larger Δψ. The extent to which vesicles
differ in their expression of these two components remains unknown, but intracellular chloride carriers such as the synaptic vesicleassociated ClC-3 promote vesicle acidification by dissipating the positive Δψ developed by the vacuolar H+ pump, thereby disinhibiting
the pump to make larger ΔpH. The VGLUTs can also contribute to formation of ΔpH because as an anion, glutamate entry similarly
dissipates Δψ to promote ΔpH. Interestingly, a Cl− conductance associated with the VGLUTs may also promote acidification by Cl−.
Frederik De Smet,
Arthur
Christopoulos
& Peter Carmeliet
2014
To discharge the electrocytes at the correct
time, the electric eel uses its pacemaker
nucleus, a nucleus of pacemaker neurons.
When an electric eel spots its prey, the
pacemaker neurons fire and acetylcholine is
subsequently released from electromotor
neurons to the electrocytes, resulting in an
electric organ discharge.
Descargar