RESUMEN
Se evaluó el ajuste de cinco modelos empíricos para estimar temperaturas horarias a partir de la máxima y
mínima diaria, durante dos períodos invernales consecutivos, e tres localidades de México. El modelo seno-senoexponencial (Eckersten, 1986) presentó el mejor ajuste en las tres localidades estudiadas; el modelo seno doble
(De wit et. al., 1978) obtuvo el segundo mejor ajuste en Calera, Zac. y Canatlán Dgo., mientras que en
Montecillos, Méx. El segundo mejor ajuste lo obtuvo el modelo seno-logarítmico (Linvill, 1990). Con estos
modelos de estimación de temperaturas horarias se determino la acumulación de Unidades Frío (UF) a través de
tres modelos: Utah (Richardson et. al 1974), Vega (1990), y Linvill (1990), que se compararon con la cantidad
de UF obtenida a partir de temperaturas horarias observadas. En Montecillo, Méx. Se compararon además con la
cantidad de UF registradas en un Biofenómetro marca Omnidata. Los resultados indican que para estas
localidades y ‚poca del año en particular, el ajuste de los modelos de estimación de temperaturas horarias es
mejor en días despejados que en días nublados o con precipitación y/o intromisión de masas de aire; además
demostraron ser más consistentes en sus ajustes para las temperaturas nocturnas que en las diurnas. Mostraron en
mayor o menor medida, variar espacial y temporalmente. En cuanto a los modelos de UF, para determinar la
acumulación es necesario usar una función continua, ya que el modelo que estimó las UF acumuladas m s
semejante al Biofenómetro fue el modelo de Vega (1990), el cual considera la acumulación de UF de esta
manera.
ABSTRACT.
The fitting of five empirical models to estimate hourly air temperatures from daily maximum and minimum was
evaluate during two winter sequential periods on three locations from Mexico. The sine-sine-exponential model
(Eckersten, 1986), obtained the best fitting in the three studied locations were; the double sine model (De Wit et
al., 1978) got the second one in Calera, Zac. and Canatlán Dgo. while in Montecillo, Mex. the second best model
was the sine.logaritmic (Linvill, 1990). With these models it was determined the accumulation of Chill Units
(CU) with three models: Utha (Richardson, et al. 1974), Vega (1990) and Linvill (1990), that were compare
besides with the quantity registered by Biophenometer Omnidata. The results indicate for these particular
locations and time of year, the adjustment of the models for estimate hourly temperatures is better in clear days
that in cloudy days or with precipitation and/or masses of air interference, besides their fitting demostrated be
more consistent for the nighttime temperatures that for daytime temperatures. They showed in major or minor
measurement spatial and temporality variation. As for CU models, in order to determine their accumulation is
necessary utilize a continuous function, since the model for estimate the CU accumulation more similar to the
Biophenometer was the Vega (1990) model, which accumulates of this manner.
I. INTRODUCCION
Por su origen, los frutales caducifolios están adaptados a condiciones climáticas donde los inviernos son estables
y el período de temperaturas frías está bien definido durante el cual el árbol entra en letargo, mientras que en los
meses de verano se presentan temperaturas cálidas, mismas que el árbol aprovecha para florear y fructificar.
Dichas características climáticas normalmente se presentan entre los 30° y 50° de latitud en ambos Hemisferios;
estos requerimientos naturales no han impedido su establecimiento en reas de menor latitud a las mencionadas,
llegando a encontrarse en zonas subtropicales, donde los árboles para poder romper el letargo aprovechan la
disminución de temperatura por efecto de la altitud y aún en tropicales, donde se recurre a la producción forzada
evitando el requerimiento de frío invernal a través de prácticas culturales, aplicación de substancias químicas
estimuladoras de la brotación y mejoramiento gen‚tico.
En México, la producción de frutales caducifolios se localiza en latitudes que van desde los 19° a los 32° N, sin
embargo una gran parte se ubica alrededor de los 25° LAT. N. y altitudes mayores de 1800 msnm aunque
algunas especies como vid, manzano y durazno crecen a nivel del mar en Hermosillo, Son. A nivel nacional las
principales especies de frutales caducifolios por superficie establecida son: manzana 66,026 Ha; vid 50,734 Ha;
durazno 43,586 Ha; nuez encarcelada 40,714; ciruela del país 14,081 Ha y pera 4,975 Ha (SARH, 1991). Por su
ubicación geográfica, México es un país localizado dentro de la zona tropical y subtropical, siendo en esta última
donde se encuentra la mayor superficie establecida de frutales caducifolios.
Los inviernos en las zonas subtropicales como sucede en nuestro país, se caracterizan por tener grandes
fluctuaciones de temperatura en el día, las temperaturas bajas se presentan por períodos intermitentes de pocos
días, como producto de la entrada de masas de aire frío provenientes del Norte e intercaladas con períodos de
temperaturas cálidas, estas últimas tienen un efecto negativo sobre la acumulación de frío por el árbol. Por esta
razón se les conoce como "Inviernos Benignos". El principal problema de los frutales que se desarrollan bajo
estas condiciones son retraso y prolongación del período de floración y foliación, reducción en el número de
yemas florales y en general, disminución de la producción.
El efecto de la temperatura durante el letargo puede ser estimado mediante el cálculo de las Unidades Frío,
índice agroclimático propuesto por Richardson, et al., (1974). Una Unidad Frío se define como una hora de
exposición del árbol a una temperatura de 6øC, considerada la temperatura óptima para romper el letargo. Para
determinar la cantidad de Unidades Frío acumuladas es necesario disponer de información de temperaturas
horarias, datos que en la mayoría de los casos no son registrados en las estaciones climatológicas
convencionales. La carencia de este tipo de información es posible superarla generando datos horarios sintéticos
haciendo uso de modelos que simulan la marcha diaria de la temperatura, a partir de simples observaciones de
las temperaturas máxima y mínima diaria. Existe una gran diversidad de modelos para generar temperaturas
horarias, tal como lo señalan Parton y Logan (1981), que van desde sofisticados modelos de balance de energía
que requieren una gran cantidad de datos de entrada, hasta los modelos empíricos que solo requieren de entrada
las temperaturas máxima y mínima diaria.
En la actualidad, el uso de las microcomputadoras y el desarrollo de programas de cómputo y su aplicación,
permiten disponer rápidamente de m‚todos y técnicas para modelar cierto tipo de condiciones; en este caso la
marcha diaria de temperatura, necesaria para la cuantificación y acumulación de las unidades frío en frutales
caducifolios se integran en un programa de cómputo que puede auxiliar en la toma de decisiones para el
establecimiento o manejo de un frutal en particular.
En el presente trabajo se analizó el ajuste de cinco modelos de simulación de temperaturas horarias durante dos
períodos invernales en las localidades de Calera, Zac.; Canatlán, Dgo. Y Montecillo, Méx., y posteriormente se
cuantificó por varios modelos la cantidad de Unidades Frío acumuladas en cada localidad, comparando las
obtenidas a partir de datos observados de temperatura con las obtenidas a partir de datos sintéticos y en el caso
de Montecillo, Méx. comparadas con las registradas en un Biophenometer. Así mismo se generó un programa de
cómputo que estima temperaturas horarias a partir de las extremas diarias y cuantifica Unidades Frío con los
modelos propuestos.
II. O B J E T I V O S
Evaluar el ajuste de cinco modelos empíricos para estimar temperaturas horarias en dos períodos invernales en
cada una de las localidades de estudio.
Determinar la acumulación de Unidades Frío mediante cuatro modelos a partir de temperaturas observadas y
compararlas con las Unidades Frío obtenidas con los dos mejores modelos de estimación de temperaturas
horarias, y en el caso de Montecillo, Méx. con las registradas en un Biophenometer.
Generar un programa de cómputo que sirva de apoyo en la toma de decisiones en el manejo de frutales
caducifolios. El programa calcula las temperaturas horarias con cinco modelos y cuantifica las Unidades Frío a
partir de cuatro modelos de unidades frío.
III. H I P O T E S I S
Es posible simular en forma confiable la marcha diaria de la temperatura, a partir de datos simples registrados en
estaciones convencionales.
El ajuste de los modelos de simulan la marcha diaria de la temperatura varía en espacio y tiempo.
Para cuantificar la acumulación efectiva de frío es necesario utilizar una función contínua, debido a que la
temperatura es un fenómeno contínuo.
La acumulación de Unidades Frío inicia primero en localidades situadas a mayor latitud.
C - METODOS PARA ESTIMAR T-HORARIAS
Para el cálculo de temperaturas horarias es necesario contar con los datos de fotoperíodo, hora de salida del sol y
hora de la puesta del sol. La duración del día y la noche son determinadas en función del día juliano y la latitud,
usando las ecuaciones:
Angulo Horario (Seller, 1969):
HS = arccos [-TAN(Decli) • TAN(lat)]
Donde:
lat = latitud
Decli = declinación solar = 23.45 • SEN[360 • (284 + dj)/365]
dj = día juliano
Fotoperíodo (Arteaga, 1990):
FOTO = 2 • HS/15
hora salida del sol
HSS = 12 - (HS/15)
hora puesta del sol
HPS = 12 + (HS/15)
Las horas son determinadas en relación a la hora de la salida del sol para el cálculo diurno y de la puesta del sol
para la curva nocturna (Linvill, 1991).
El modelo de Snyder (1985) que será denominado SENO SIMPLE, queda tal como fue propuesto por el autor, si
bien los modelos restantes fueron adaptados para ser utilizados en períodos de varios días.
Modelo SENO SIMPLE:
Th = M + W • SEN(t)
Donde:
t = π (h-6)/12; h varía de 1 a 24.
M = (TMAX + TMIN)/2
W = (TMAX - TMIN)/2
En el modelo propuesto por De Wit et al., (1978, citado por Reicosky et al.,1989) se modifica como sigue:
Para H < HSS
Th = MED + OSC • COS [(π • HP)/ (10 + HSSi)]
Para h > 14
Th = MED2 + OSC2 {COS [(π • H1)/ (10 + HSSi+1)]}
Para HSS <= H <= 14
Th = MED1 - OSC1 {COS [π • (H-HSSi)/ (14-HSSi)
Donde:
HP = H + 10
H1 = H - 14
HSSi = Hora de la salida del sol del día i
HSSi+1 = Hora de la salida del sol día siguiente.
MED = (MAXi-1 + MINi)/2
OSC = (MAXi-1 - MINi)/2
MED1 = (MAXi + MINi)/2
OSC1 = (MAXi - MINi)/2
MED2 = (MAXi + MINi+1)/2
OSC2 = (MAXi - MINi+1)/2
MAXi = Temperatura máxima del día i
MINi = Temperatura mínima del día i
MAXi-1 = temperatura máxima del día anterior
MINi+1= temperatura mínima del día siguiente.
El modelo propuesto por Parton y Logan (1981) se denomina en el programa como SENO-EXPONENCIAL, y
las ecuaciones correspondientes al mismo se modificaron como se muestra a continuación:
HSS <= H <= HPS
Th = (MAXi-MINi) • SEN [π • (H-HSSi)/ (FOTOi+2a)] +MINi
H < HSS
Th=MINi+ (THPSi-1-MINi) • EXP [-b (24-HPSi-1-H)/ (24-FOTOi-1)]
H > HPS
Th=MINi+1+ (THPSi-MINi+1) • EXP [-b(H-HPSi)/(24-FOTOi)]
Donde:
Th = temperatura a la hora h
MAXi = temperatura máxima del día actual.
MINi = temperatura mínima del día actual.
HSSi = hora de la salida del sol del día actual.
FOTOi = fotoperíodo en el día actual.
a = Coeficiente de retraso para la temperatura máxima.
THPSi-1 = temperatura a la hora de la puesta del sol del día anterior.
b = coeficiente para la disminución de la temperatura nocturna.
HPS = hora de la puesta del sol
FOTOi-1 = fotoperíodo del día anterior.
THPSi = temperatura a la hora de la puesta del sol día actual.
En cuanto al modelo de Linvill (1990), llamado modelo SENO-LOGARITMICO en el programa de cómputo,
queda como sigue:
Para HSS <= H <= HPS
Th = (MAXi -MINi) • SEN[π (H-HSSi)/(FOTOi + 4)] + MINi
Para H < HSS
Th=THPSi-1-[(THPSi-1-MINi)/ln(24-FOTOi-1)] • ln(24-HPSi-1-H)
Para H > (HPS + 1)
Th=THPSi-[(THPSi-MINi+1)/ln(24-FOTOi)] • ln(H-HPSi)
Donde:
MAXi = temperatura máxima del día i
MINi = temperatura mínima del día i
HSSi = hora salida del sol del día i
FOTOi = fotoperíodo del día i
THPSi-1 = temperatura a la hora de la puesta del sol del día anterior
FOTOi-1 = fotoperíodo día anterior
HPSi-1 = hora de la puesta del sol del día anterior
H = hora actual
MINi+1 = temperatura mínima del día siguiente.
El modelo de Eckersten es denominado como SENO-SENO-EXPONENCIAL y se modificó de modo que el día
se divide en cuatro segmentos: De la media noche a la hora de la salida del sol; de la hora de la salida del sol a la
hora de la máxima; de la hora de la temperatura máxima a la hora de la puesta del sol y de la hora de la puesta
del sol a las 24 horas.
0 <= H < HSSi
Th=MINi-1+(THPSi-1-MINi) • EXP[-b(24+H-HSSi-1)-FOTOi-1) /Zi-1]
HSS <= H < HMAX
Th= MINi + (MAXi-MINi) • SEN[π (H-HSSi)/FOTOi • (1+2a)]
HMAX <= H <= HPS
Th=MINi+1+(MAXi-MINi+1) • SEN[π • (H-HSSi)/(FOTOi • (1+2a)]
HPS < H <= 24
Th = MINi+1 + (THPSi-MINi+1) • EXP[-b((H-HSSi) - FOTOi)/Zi]
Donde:
MINi-1 = temperatura mínima del día anterior
THPSi-1 = Temp. a la hora de la puesta del sol del día anterior
HSSi-1 =hora de la salida del sol del día anterior
FOTOi-1 = fotoperíodo del día anterior
MINi = temperatura mínima del día actual
b = par metro de la disminución exponencial de la temperatura durante la noche = 2.2.
Zi-1 = duración de la noche anterior
MINi = temperatura mínima día actual
MAXi = temperatura máxima día actual
HSSi = hora de la salida del sol del día actual
FOTOi = fotoperíodo del día actual
a = (MAXi - 12)/FOTOi). Tiempo de retraso de la temperatura máxima con respecto al mediodía solar.
Si la hora de la temperatura máxima es antes de las 12, a = 0.1 valor promedio reportado originalmente por el
autor.
THPSi = temperatura a la hora de la puesta del sol del día actual
MINi+1 = temperatura mínima del día siguiente
Zi = duración de la noche actual.
D - METODOS PARA ESTIMAR UF
Los cuatro disponibles:Vega (1990), Utah (Richardson et al.,1974), Linvill (1990) y N. Carolina (Shaltout y
Unrath , 1983). Es posible también generar el correspondiente archivo de salida. Las unidades frío pueden
estimarse a partir de datos de temperaturas horarias o bien, a partir de extremas diarias. En este ultimo caso se
estiman las temperaturas horarias mediante cinco modelos empíricos: seno (Snyder, 1985), seno doble (De Wit
et al.,1978), seno exponencial (Parton y Logan, 1981), seno logarítmico (Linvill, 1990) y seno-seno-exponencial
(Eckersten, 1986).
Métodos para estimar UF
Revisión, rutinas, graficas, formulas diagramas,
Etc...
E - Programa de cómputo para el cálculo de UF
FRIOLET es un programa de computo para el calculo de las unidades frío (UF). FRIOLET considera en el
cálculo de las UF 3 métodos. Pueden almacenarse las temperaturas horarias, (se consideran 4 métodos), y las UF
para usos futuros u otras aplicaciones.
El programa establece como la fecha de inicio de invierno, un día después de que se encuentra la máxima
acumulación negativa de UF, considerado así por algunos autores como la fecha en la cual el frutal inicia el
periodo de letargo y la acumular frío. Definido el periodo invernal FRIOLET acumula las UF y los compara con
las UF, requeridas para una lista de frutales caducifolios. Si las UF acumuladas en el periodo invernal son
menores a las requeridas por el frutal el usuario tiene información de las deficiencias de frío para que considere
la aplicación de compensadores de frío.
Descargar

iii.5 - friolet/gdd

Termoterapia

Termoterapia

Tratamientos fisioterapéuticosAplicación de frío o calorTermoreceptores cutáneosTemperatura corporalEfectos Fisiológicos

ESTUDIO DEL CLIMA

ESTUDIO DEL CLIMA

AtmósferaPrecipitacionesRegímenes térmicosTemperaturas

SOCIALES ZONAS DEPRIMIDAS Valles: Zonas entre alineaciones montañosas.

SOCIALES ZONAS DEPRIMIDAS Valles: Zonas entre alineaciones montañosas.

TemperaturaPrecipitacionesCordillerasCostaClimaSistemas montañososGeografía españolaPenínsula ibéricaRelieveRiosMesetas

CUESTIONARIO PREVIO INDIVIDUAL.

CUESTIONARIO PREVIO INDIVIDUAL.

TermodinámicaTemperatura absolutaCero absoluto

Tipos de climas

Tipos de climas

TemperaturaPrecipitacionesMeteorologíaEcuatorialTropicalZonas climáticasDesértico